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Phase transitions and correlations in fracture processes where disorder and stress compete
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We study the effect of the competition between disorder and stress enhancement in fracture processes using
the local load sharing fiber bundle model, a model that hovers on the border between analytical tractability
and numerical accessibility. We implement a disorder distribution with one adjustable parameter. The model
undergoes a localization transition as a function of this parameter. We identify an order parameter for this
transition and find that the system is in the localized phase over a finite range of values of the parameter
bounded by a transition to the nonlocalized phase on both sides. The transition is of first order at one side and
of second order at the other. The critical exponents characterizing the second-order transition are close to those
characterizing the percolation transition. We determine the spatiotemporal correlation function in the localized
phase. It is characterized by two power laws as in invasion percolation. We find exponents that are consistent

with the values found in that problem.
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I. INTRODUCTION

It has been known for a long time that heterogeneities
make materials more resilient against failure under load by
offsetting the point at which a microfracture becomes unsta-
ble [1]. Examples of materials where heterogeneities play an
important role are concrete [2,3] and carbon-fiber compos-
ites [4] which possess larger strength and toughness than the
individual components [5,6]. Heterogeneities introduce spa-
tial disorder in the local material strength and create a spatially
dependent dynamic stress field.

The interplay between disorder and dynamical effects dur-
ing the breakdown process of brittle materials was the focus
of much research within the statistical physics community
during the 1980s and 1990s [7]. Those studies were based
on a number of lattice-based models where the links would
have a maximum load before they would fail drawn from some
spatially uncorrelated distribution [8—13].

We summarize the picture that emerged qualitatively in
the following. There are two reasons for a failure to appear
locally in a disordered material. Either it is due to the material
being weak at that local point or it is due to the stress being
high there. Imagine now loading the disordered material. At
the beginning of the breakdown process, the material will
fail where it is weak as there are no—or few—points with
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high stress. When local failures develop, spots with intense
stress appear at the tips of microcracks. As the failure pro-
cess proceeds, these high-stress spots will start dominating.
As it was argued by Roux and Hansen [14] disorder makes
local failures repulsive whereas the stress field makes them
attractive. Imagine that there is a first local failure. Draw a
sphere around this first local failure and identify the weakest
spot within the sphere. The larger the sphere is, the weaker
the weakest spot within it will be. As a result, if the next
local failure is due to the local weakness of the material, it
will occur as far as possible from the first one. Hence, the
failures are repulsive when they are caused by the disorder in
the material strength. The effect of the stress field is opposite.
The closer one is to a local failure, the higher the largest stress
will be. This makes it more likely that the next failure will
be close to the one that just appeared. Hence, local failures
attract each other when they are due to high stress field. The
result of this is that there is a competition between disorder
and stress concentration throughout the failure process. Early
in the failure process, the disorder tends to dominate, resulting
in local failures appearing distributed throughout the material.
However, as the stress field takes over, there is localization
ending with a single growing crack beginning to dominate.
Depending on the disorder, localization may occur early or
later in the process: The wider the disorder, the later on the
onset of localization would occur. In the limit of infinite
disorder [15-17], localization never sets in, and the failure
process is a screened percolation—i.e., a process where links
fail at random given that they are connected in such a way
that they carry stress. When the disorder is weak enough to
cause a competition with the stresses, a phase diagram may
be constructed showing the onset of localization as a function
of the disorder [18-20].

It is the aim of this paper to study the effect of the competi-
tion between disorder and stress enhancement using the fiber
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bundle model [21,22]. The advantage of using this model over
other models is that it is not computationally demanding, lead-
ing to good statistics for large samples. Furthermore, it has a
high level of analytical tractability. We describe the fiber bun-
dle model in detail in Sec. II. It should be noted that Stormo
et al. [23] studied the interplay between disorder and stress
enhancement in the soft clamp model which is a more complex
version of the fiber bundle model than the version we study
here. Their conclusions differ from those we present here; this
is due to a very different way of analyzing the fracture process.
We will discuss it in the concluding section. We implement
a disorder distribution that has one adjustable parameter. By
tuning this parameter, we produce disorders with power law
tails towards either zero strength or infinite strength. We focus
in Sec. III on the localization transition that occurs for some
value of the disorder parameter, see Fig. 2. For the range of the
values of the disorder parameter that produces power-law tails
towards zero strength, we find a second-order phase transition,
whereas for the range of values for the disorder parameter
that produces a power-law tail towards infinite strength, we
find a first-order phase transition. We determine the values
of critical exponents associated with the second-order phase
transition. They are close to those found in percolation. In
Sec. IV, we study the spatiotemporal correlation function first
introduced by Furuberg et al. [24] in connection with invasion
percolation. We determine the scaling exponents characteriz-
ing the correlation function and find them to be close to the
values observed for invasion percolation. We relate the expo-
nents to other exponents characterizing the transition using
theory developed by Roux and Guyon [25], Maslov [26], and
Gouyet [27]. We end by drawing our conclusions in Sec. V.

II. DESCRIPTION OF THE MODEL

The fiber bundle model is a model of fracture where one
can control the range of stress enhancement upon the appear-
ance of a crack. In this model, N fibers (Hookean springs) are
placed between two clamps under external force F. Each fiber
carries a force,

f =«kx, 6}

where « and x, respectively, are the elastic constant and exten-
sion of the fiber. The extension of each fiber has a threshold
(x;), beyond which it fails, and the load it was carrying is
distributed among surviving fibers according to some preset
rule. The stress distribution scheme models the local stress
enhancement whereas the disorder in x; models the local
material heterogeneity. If the load of the failed fibers is dis-
tributed over all the surviving fibers, there is no local stress
enhancement. This is the equal load sharing (ELS) scheme.
The ELS fiber bundle model was introduced by Peirce in
1926 [28] as a simple model for failure in fibrous materials.
Daniels approached the ELS fiber bundle model as a problem
in statistics in a seminal paper in 1945 [29]. If the load is
distributed only to the nearby fibers, we are dealing with the
local load sharing (LLS) model [30,31]. Here, local stress
enhancement competes with the local heterogeneity leading to
localization. Sornette introduced the ELS fiber bundle model
to the statistical physics community in 1992 [32]. Soon, the
focus of this community was on the rich avalanche statistics

that this model offers [33-36], which, in the ELS case, is
analytically tractable.

The sequential—or time—correlation between failure
events in the fiber bundle model makes it possible to explore
the brittle to ductile transition [37] within it, a well-studied
phenomenon in material science. The spatial correlations be-
tween the failures, on the other hand, have not been studied in
detail.

In the LLS fiber bundle model, the load carried by the
failed fibers is distributed equally among their nearest-intact
neighbors. We define a crack as a cluster of s failed nearest-
neighbor fibers. The perimeter of the crack is the set of p
intact fibers that are nearest neighbors to the failed fibers
constituting the crack. These nearest neighbors define the hull
of the cluster [38]. The force on an intact fiber i at any instance
is then given by

f,-=a<1+zm>, @

70 P

where 0 = F /N, the force per fiber. The summation runs over
all cracks J (i) that are neighbors to fiber i. This redistribution
scheme is independent of the lattice topology and also inde-
pendent of the failure history [39], which means, the complete
stress field can be calculated from the present arrangement of
intact and broken fibers without having to take into account
the order in which the fibers failed.

Here, we have adopted a quasistatic failure process where,
at each time step, one single fiber breaks. This is equivalent
to the hypothetical experimental setup where the external
stress is increased from zero until the first fiber that reaches
the equality f; = kx;; breaks, and, then, the external stress
immediately reduced to zero. At the next time step, the stress
is increased again to break the next fiber and then reduced
to zero again. This algorithm provides the complete order of
the fibers that would break during the failure event. In such
a process, a bundle with N fibers will break in N time steps.
Now, suppose ¢ fibers have failed in ¢ steps. We determine
which fiber will fail at time ¢ + 1 in the following way [22].
Let f;! be the force on fiber i if we set the average force on the
fibers o = 1. We, then, calculate

f

k(t+1)=max< d ) 3)
1 Kx,,,'

which denotes the fiber i(z + 1) that fails at time 7 + 1. The

force 0 = o (¢t 4+ 1) at which this fiber fails is given by

ot +1) = @)

AE+1)

The failure thresholds x, of the fibers are assigned by gen-
erating a random number over the unit interval and raising
it to power D which corresponds to the cumulative distribu-
tion [13,20],

xt'/‘Dl, x; € [0, 1], when D > 0,
P(x) = o )
1 —x,

, X €[1,00), whenD < 0.

This threshold distribution allows us to control the disorder by
the value of D, a higher value of |D| implies higher disorder.
Furthermore, D > 0 and D < 0, respectively, correspond to

043108-2



PHASE TRANSITIONS AND CORRELATIONS IN ...

PHYSICAL REVIEW RESEARCH 2, 043108 (2020)

FIG. 1. Growth of cracks in a bundle of 256 x 256 fibers with threshold distribution from Eq. (5). The left and right panels correspond
to D > 0 and D < 0, respectively. The top and bottom rows in each panel correspond to low (|D| = 0.02) and high (|D| = 2.0) disorders,
respectively. The black sites are intact fibers, and the colored sites are broken fibers. The colors represent the breaking sequence (z = ¢/N) as
indicated by the scale at right. The five snapshots in each set show the evolution of cracks at 7 = 0.04, 0.2, 0.4, 0.6, and 0.9.

the distributions with power-law tails towards weaker and
stronger fibers, which, as we will see, make the failure dynam-
ics very different. It might seem overly restrictive to limit the
threshold distributions to power laws either towards zero or
infinity as there are many other classes of distributions, e.g.,
exponentials. However, the fracture process is controlled by
the tails of the threshold distributions, either towards zero or
infinity. In finite-size systems where there is a finite number of
thresholds, these tails turn into the extreme value distributions,
of which there are only three: Weibull, Fréchet, and Gum-
bel [40]. Power-law tails towards zero, including distributions
that approach a constant at zero, produce the Weibull extreme
distribution, and power-law tails towards infinity produce the
Fréchet extreme distribution. Distributions that fall off expo-
nentially or faster produce the Gumbel extreme distribution.
This latter distribution, however, falls off so quickly (the ex-
ponential of an exponential), that it essentially behaves as no
disorder at all. Hence, our choice, Eq. (5), essentially exhausts
the possibilities. We do, however, exclude the possibility to
have a power-law tail towards zero and infinity simultane-
ously.

III. LOCALIZATION TRANSITION

T =1t/N. We see that n. stays close to 0 (N, = 1) for the
whole failure process for small |D| values whereas for large
|D|, n. increases with T and reaches a maximum (n;®*), be-

We implement the model on a square lattice of size N =

L x L fibers. The growth of cracks for L = 256 at different
disorders are shown in Fig. 1 where we see two distinct
regimes, a single crack growth at low disorder (top row) and
random failures at high disorder (bottom row). The color scale
in this figure represents where in the breaking sequence a
given fiber fails, parametrized by t =¢/N, which we will
discuss in detail later. At very low disorder, the stress en-
hancement at the crack perimeter wins over the fiber strengths
and the crack always grows from the perimeter of the existing
crack. The local disorder at the perimeter makes the crack
grow as an invasion percolation cluster [41].

At high disorder, the strength of fibers win over the stress
enhancement, and we see random clusters of failed fibers
appear. These two cases appear to be same for both D > 0
and D < 0, however, a completely different picture emerges
between these two regimes when we observe crack growth at
intermediate disorders. In Fig. 2, we plot the crack density
n. = N./N, where N, is the number of cracks (clusters) when
t fibers have broken for different disorders as a function of
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FIG. 2. Variation of crack densities n,. with fraction of broken
bonds t for L = 256 at different disorders. The |D| values are indi-
cated in the legends. The red dots indicate the peaks at (t,, nj'™*).
For D > 0, we see a gradual increase in 7, with increasing |D|
whereas for D < 0, we first see a discontinuity from zero to a finite
value and, then, it remains almost constant at ~(0.27. The inset
of (a) shows the scaling 7,/ (|D|s) — 7,/ (ID]) ~ |D|™" for D > 0
where y = 0.67 £0.01 and 7,7 (|D|o) = 0.291 £ 0.011. The inset
of (b) shows the convergence of t,; towards |D| — oo for D < 0.
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FIG. 3. Plot of order parameter O" as a function of disorder |D|
for D > 0. Different symbols indicate different system sizes L where
data are averaged over 200 to 100 000 samples depending on L. In
the inset, we plot the scaling relation given in Eq. (8) where we find
ID|}(00) = 0.47 £0.04 and 8 = 0.14 £ 0.05.

yond which, the cracks start to coalesce as more fibers are
broken. The position of the peaks at the v axis, marked by
the red dots in Fig. 2, vary continuously with disorder for
D > 0 whereas the peak stays at almost same position for
D < 0 after a discontinuity between the low and high |D|
values. Moreover, for two disorders with same values of n["®,
the peak appears much earlier for D > 0 compared to D < 0.
This shows that individual cracks appear randomly for D > 0
whereas cracks grow in size together with the appearance of
new cracks for D < 0. Intuitively, when the threshold distri-
bution has a power-law tail towards strong bonds (D < 0),
probability to find weak bonds at existing crack perimeters are
higher, which makes existing cracks to grow. Whereas when
the power-law tail is towards the weak bonds (D > 0), the
probability to find strong bonds at the perimeter is high, and
new cracks appear at different positions than the perimeter.

To characterize this localization transition, we define an
order parameter,

@/ (DI, L)
20/ (1Dl L)

where the plus and minus signs correspond to D > 0 and
D < 0, respectively. Here, 7, / *(ID|, L) is the fraction of bro-
ken fibers at n, = n™ and t, / +(|D|oo, L) is the value of 1,
for |D| — oo, i.e., when the breakdown is an uncorrelated
percolation process. The measurements of 7, / *(|D|ws, L) for
L = 256 are shown in the insets of Fig. 2. For D > 0, we
observe the scaling,

7y (Do) — 7 (ID)) ~ ID| 77, (N

where we have that y =0.67+£0.01 and 7}(|D|w) =
0.291 £ 0.011. For D < 0, ,,(|D|) converges to a maximum
value more abruptly from which we find 7 (|D|) = 0.27 as
shown by the dashed line in the inset.

The transition for D > 0 is explored in Fig. 3 where we
plot O (|D|, L) as a function of disorder for different system
sizes. Here, O" varies continuously from 1 to 0 similar to a
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FIG. 4. Plot of order parameter O~ as a function of disorder
for D < 0 is plotted in (a) which shows abrupt transition with the
increase in system size L. The inset in (a) shows the scaling with dif-
ferent L’s according to Eq. (9). In (b), we plot |D|; (00) — |D| (L) ~
L% where we find |D| (c0) = 1.03 & 0.02 with & = 0.80 £ 0.01.

second-order phase transition. We find the following scaling
for Ot:

0*(IDI. L) ~ ID|(L) — [DIf ()1, ®

where |D|} (0c0) = 0.47 £ 0.04 and B ~ 0.14 £ 0.05. The ex-
ponent S is close to 5/36, the order parameter exponent for
percolation in two dimensions [42,43]. However, 1/8, the
exact value from the Onsager solution of the two-dimensional
Ising model [44] is also within the precision with which we
know 8.

The transition for D < 0 is presented in Fig. 4 where we
plot O~(|D|, L) as a function of disorder. Similar to a first-
order phase transition, O~ shows sharp transition from O to 1
as the system size L is increased. The plots for different L’s
can be scaled as [45]

O~ (IDI, L) ~ ®{[IDI(L) — |DI; (L)IL"}, (€))

with n = 0.7. This is shown in the inset of Fig. 4(a). The tran-
sition disorder |D|; (L) is observed to be a decreasing function
of L. To find the value of |D|; as L — oo, we use the scaling
ID|; (c0) — DI (L) ~ L™ with | D|; (00) = 1.03 £ 0.02 and
0 = 0.80 £ 0.01. This is shown in Fig. 4(b).
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FIG. 5. (a) Plot of the largest crack size sp,x (red symbols) and the largest perimeter size pnax (blue symbols) as a function of the system
size L. From the slopes, we find d; = 1.82 +0.02 and d;, = 1.74 £ 0.02. In (b) and (c), we plot the pair correlation function [Eq. (10)] for
D = +0.05 and —0.05, respectively, where we used z = dy obtained from (a). The different plots correspond to different values of Az as
indicated in the figures. From the two power-law scalings, we find the exponents a = 1.44 £ 0.04 and b = 0.47 £ 0.06.

IV. SPATIOTEMPORAL CORRELATIONS

We will now explore the spatial and temporal correlations
during the breakdown process. First, we measure the frac-
tal dimension of single cracks at low disorder, defined as
Smax ~ L% where smax is size of the largest incipient infinite
cluster. This is shown in Fig. 5(a). We find df = 1.82 £ 0.02
which is close to the fractal dimension of invasion percolation
cluster with trapping [41,46]. The colors in Fig. 1 represent
the sequence of fiber breaking and together with the positions
of broken fibers, they show the spatiotemporal map of the
failure process. For random failures at high disorder (bottom
row), the pixels (each representing a fiber) of different colors
are randomly mixed, whereas for the single crack growth (top
row), the different colors are clustered, indicating localization
and, hence, spatial and temporal correlations. To quantify this
correlation, we measure pair correlation function G(r, At),
defined as follows: If a fiber at position r¢ breaks at a time
t, then, G(r, At) provides the probability that another fiber
at ry will break at time ¢ + Af, where r = |r; — ro|. Here,
time ¢ is measured in terms of the number of broken fibers.
This correlation function was first introduced by Furuberg
et al. [24] for invasion percolation. We assume in the follow-
ing that G(7, At) has the scaling form [24]

G(r, At) = r*1g<£—1), (10)

where z is a dynamic exponent. In Fig. 5, we plot rG(r, At) for
the single crack growth regime as a function of r*/ At for D >
0 (b) and D < 0 (c). For z = dy, the single-parameter function
g(u) shows power-law behavior in both the large- and small-
argument limits,

u®, u < 1 (long time range),

u) ~ 11
8u) {u”, u > 1 (short time range), an

with a peak at u =1 or at At = r% as we observe in the
figure. This implies that the most probable growth of the crack
after time At occurs at a distance r%, or the most probable
growth at a distance r occurs after a time At'/%. The expo-
nent ¢ in the long time range is found to be 1.44 4 0.04 as
shown in Fig. 5. This matches the exponent for invasion per-
colation dynamics [24]. Recently, this spatiotemporal scaling
was observed experimentally for two-phase flow in a porous

medium during slow drainage [47] where the exponent a was
found ranging between 1.4 and 1.73. For the power law in
the small-argument limit, we obtain the exponent b = 0.47 +
0.06, which is different from 0.68 obtained by Furuberg et al.
for invasion percolation dynamics [24].

The exponents and the errors mentioned above were ob-
tained by least-squares fitting of the numerical data. For the
plots with multiple data sets, such as in the Fig. 3 inset,
Figs. 5(b) and 5(c), the indicated error is the average of all
the errors for each individual set.

We may relate the exponents a and b to the exponents
controlling the avalanche structure of the failure process fol-
lowing Roux and Guyon [25], Maslov [26], and Gouyet [27].
The minimum force applied to the fiber bundle for fiber num-
ber t 4+ 1 to fail is o(t 4+ 1) given in Eq. (4). We define a
forward avalanche (or burst) of size ® starting at time ¢ to
be [26,33]

oit+k)<o(@)fork<® and o(t+0O)=>o(t). (12)
A backwards avalanche (or burst) we define as
o(t—k)<o(@)fork<® and o(t —0®)=>0o(). (13)

Roux and Guyon [25] define two distributions P, and
Qo(r). The first one Pa, gives the distribution of the smallest
avalanches © that pass through o (¢) and o (t — Atr) averaged
over o (¢). It obeys the power law,

1 O\
Pa(©) o (=) HO = A, 14
A (©) A\ A7 ( ) (14)
where H(x) is the Heaviside function which is one when
x > 0 and zero otherwise. The second one Qg gives the distri-
bution of distances between failing fibers within an avalanche
of size ®. Roux and Guyon assume it to follow the power law:

1 .
0o(n) o i (i) - (15)

The spatiotemporal correlation function G(r, At) may then be
constructed from these two probability distributions,

G(r, At) = /Oo Pri(©)Q0(r)dO, (16)
0
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which integrates to

(Z—d;)(lﬂ)/df, if 1 < At,
rG(r, At) « e (17)
(%) b if > At.

Hence, we have in Eq. (11) that a = (14 ¢)/dy and b =
¢y — 1. Roux and Guyon suggest { = df — 1 making a = 1.
We propose, here, that { = dj,, the fractal dimension of the
hull [48], defined as the set of the sites that are connected to
the cluster and at the neighbor to the surroundings. In the LLS
fiber bundle model, the stress of a crack is re-distributed to
its perimeter, the neighboring unbroken fibers of the crack. In
Fig. 5, we plot this largest perimeter size py,x With the system
size L, and from the slope, we find d, = 1.74 £ 0.02. This
value matches with the value of dj, for percolation hull, known
to be 7/4 by the relation with v by dy, =1+ 1/v, where v
is the correlation length exponent which is equal to 4/3 in
two-dimensional percolation [49,50]. Hence, we find that

1+4dy
a=——.
dr
With df = 1.82 £ 0.02 and d, = 1.74 +0.02, we find a =
1.51 £ 0.04, which is close to the observed value.

Maslov [26] related the backwards avalanche exponent
¢p to the exponent ¢, that governs the probability to find a
forward avalanche of size ® when the stress is oy via the
expression,

(18)

Cb=3—Cf. (19)
Furthermore, Goyuet, in turn, related ¢y to dy, dr, and v,
dy, — 1
cp=1+ h 1y (20)
dy
so that
dh - l/l)
b=1— ——, 21
@ (21)

which leads b = 0.46. This is also in accordance with the
value we observe b = 0.47.

V. CONCLUSION

We have here studied the effect of the competition be-
tween disorder and stress enhancement using the local load
sharing fiber bundle model. We have performed this by

varying the disorder using a threshold distribution controlled
by a single-parameter D. When D is positive, the threshold
distribution is a power law towards infinitely weak ele-
ments, and when D is negative, the distribution is a power
law towards infinitely strong elements. By defining an or-
der parameter distinguishing between the localized and the
nonlocalized phases, we find two phase transitions, one at
D =D} =047 +0.04and one at D = D_ = —1.03 £ 0.02.
The transition for D > 0 is second order, and the transition for
D < 0 is first order. The second-order transition is governed
by critical exponents that are consistent with percolation but
also close to those found for the two-dimensional Ising model.
We, then, studied the spatiotemporal correlation function,
finding the same behavior as first seen by Furuberg et al. [24]
in an invasion percolation context. Some numerical values
for the exponents controlling the correlation function are dif-
ferent than found by Furuberg et al., which, by following
the scaling analysis of Roux and Guyon [25], Maslov [26],
and Gouyet [27], we successfully related to other exponents
describing the geometry of the cracks.

The conclusions we present here differ from those that
Stormo et al. [23] presented. In that paper, based on the soft-
clamp fiber bundle model, the threshold distribution was the
uniform one on the unit interval, i.e., D = 1. The parameter
that was varied, was the elastic constant of the clamps to
which the fibers are connected. For a given value of this
parameter, the breakdown process would proceed in the be-
ginning as an uncorrelated percolation process up to a certain
point at which localization would set in. From this point on,
the breakdown process would continue through the growth of
a single cluster of broken fibers. This transition would not be
a phase transition but a crossover.

It would be of great interest to repeat the analysis we have
presented here using the soft-clamp fiber bundle model by
varying the disorder. Only, then, we will be able to distinguish
what is model dependent in our conclusions and what is not.
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