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GW study of pressure-induced topological insulator transition in group-IV tellurides
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We calculate the electronic structure of the narrow gap semiconductors PbTe, SnTe, and GeTe in the cubic
phase using density functional theory (DFT) and the G0W0 method. Within DFT, we show that the band ordering
obtained with a conventional semilocal exchange-correlation approximation is correct for SnTe and GeTe but
wrong for PbTe. The correct band ordering at the high-symmetry point L is recovered adding G0W0 quasiparticle
corrections. However, one-shot G0W0 produces artifacts in the band structure due to the wrong orbital character
of the DFT single-particle states at the band edges close to L. We show that in order to correct these artifacts it
is enough to consider the off-diagonal elements of the G0W0 self-energy corresponding to these states. We also
investigate the pressure dependence of the band gap for these materials and the possibility of a transition from
a trivial to a nontrivial topology of the band structure. For PbTe, we predict the band crossover and topological
transition to occur at around 4.8 GPa. For GeTe, we estimate the topological transition to occur at 1.9 GPa in the
constrained cubic phase, a pressure lower than that of the structural phase transition from rombohedral to cubic.
SnTe is a crystalline topological insulator at ambient pressure, and the transition into a trivial topology would
take place under a volume expansion of approximately 10%.
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I. INTRODUCTION

The triad of compounds, GeTe, SnTe, and PbTe, con-
stitute the basis for many materials with applications of
great industrial interest, most notably thermoelectrics [1–3]
and phase-change materials [4,5]. Despite the historically
widespread use of these materials, fundamental properties of
their electronic structure are still receiving a lot of attention.
In particular, SnTe was recently found to be the first realiza-
tion [6,7] of a new class of topological insulators in which
the metallic surface states are protected by the crystal symme-
try instead of the time-reversal symmetry [8]. Interestingly,
the isovalent counterparts, GeTe and PbTe, which share with
SnTe their high temperature rocksalt atomic structure, do not
display the band inversion that gives rise to the nontrivial
topology of the electronic structure in SnTe.

The band ordering in these materials is in fact governed
by a delicate balance of interband interaction and spin-orbit
coupling [9]. They all display a small direct gap at L, with a
second, very anisotropic hole pocket at � very close below
or above the top of the valence band at L. The characteristics
of the band structure of these materials that stand out with
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respect to more conventional semiconductors, namely, the
very small direct gap at L (instead of �) and the possibility of
a topological transition, can be linked to the unusual atomic
character of the bands forming the top of the valence band
(VB) and the bottom of the conduction band (CB) [9,10].
While in most semiconductors these states have a marked sp
character (bonding and antibonding in the case of elemental
semiconductors such as silicon, or anion versus cation in the
case of diatomic semiconductors such as GaAs), in the case of
IV-VI semiconductors the top of the VB is mostly composed
of states with anion p orbital character, while the bottom of
the CB is formed by cation p states [10]. The repulsion of
these states at � pushes the VB down, whereas at L repulsion
from underlying cation s states in the VB pushes the top of
the VB up. This uplift is not counteracted by a repulsion from
CB band states since the two band edges have opposite parity
and therefore their interaction is forbidden by symmetry. It
is precisely this lack of interaction between the band edges
at L that potentially allows the band-gap inversion and there-
fore a nontrivial topology of the band structure. The strong
spin-orbit interaction in these materials further contributes to
closing the gap by splitting the bands just below and above the
top of the VB and the bottom of the CB respectively, pushing
the band-gap edges closer to the crossover point (or beyond in
the case of SnTe).

The effect of pressure on the band structure of these ma-
terials is to enhance the s-p repulsion of bands within the
VB, giving rise to the usual negative sign of the pressure
coefficient ∂Eg/∂P (where Eg is the band gap) [11]. This
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means that, for the conventional narrow-gap semiconductors,
PbTe and GeTe, pressure can be potentially used to close
the gap and induce a topological transition [12,13]. In this
work, we explore this possibility by means of first-principles
electronic-structure calculations and we provide an estimate
of the critical pressures for the transition.

The proximity of these materials to the band crossover, and
the dramatic changes in the band hybridization and topology
that it entails, constitute a challenge for density functional
theory (DFT) within the standard local or semilocal exchange-
correlation approximations. The band-gap underestimation of
local and semilocal functionals in DFT, which is caused by
the overestimated delocalization of occupied states, can pro-
duce for these compounds a spurious inversion of the gap.
Such is the case of PbTe, that local and semilocal DFT ap-
proximations predict to have the same band ordering at L
as SnTe [10,11,13], in contrast with experimental evidence.
Angle-resolved photoemission spectroscopy (ARPES) exper-
iments in PbxSn1−xTe alloys demonstrate that PbTe and SnTe
differ in their band ordering at L, [14,15] in agreement with
infrared spectroscopy measurements of the band-gap variation
with alloy composition [16] and photoluminescence measure-
ments of the sign of the deformation potentials [17].

It has been shown that the correct order of the bands in
PbTe is recovered in DFT electronic structure calculation
using hybrid [10] or meta-GGA [9,18] exchange and corre-
lation approximations, or within a higher level of theory such
as self-consistent quasiparticle GW [11]. In general, hybrid
DFT functionals have been successfully used for the study of
group-IV chalcogenides [10,19], but they have been shown
to sometimes predict the wrong band ordering for materi-
als close to topological transition and require confirmation
from a higher order theory [11,20]. Here, we use the G0W0

approach to correct the DFT electronic structure, including
off-diagonal contributions to the self-energy (Sec. II A), and
perform a comparative study of the effect of this correction on
PbTe, SnTe, and GeTe (Sec. III A). For PbTe, we show that
G0W0 is sufficient to give the correct band ordering at L but
off-diagonal contributions are needed to disentangle [21] the
incorrectly ordered DFT band structure around L. We discuss
the possibility of transitions between a trivial and a nontrivial
topology of the band structure with pressure, and calculate the
value of the critical pressure (Sec. III B).

II. METHODS

A. Quasiparticle corrections

The many-body quasiparticle energies and wave functions
satisfy the equation

[T̂ + Vext (x) + VH(x)]ψkn(x) +
∫

�(x, x′, Ekn)ψkn(x′)dx′

= EQP
kn ψkn(x), (1)

where the variable x contains both space and spin degrees of
freedom. T̂ , Vext (x), and VH(x) are the kinetic energy operator,
the external potential, and the Hartree potential, respectively.

Within the GW approximation, the self-energy [22] is

�(x, x′, ω)= i

2π
lim
η→0

∫
eiηω′

G(x, x′, ω − ω′)W (r, r′, ω′)dω′.

(2)

In the standard G0W0 approximation on top of DFT, the
Green’s function G and the screening W in Eq. (2) are cal-
culated using the DFT energies {εDFT

kn } and wave functions
{φDFT

kn }. Equation (1) is solved to first order in the perturbation
� − Vxc, where Vxc is the exchange-correlation potential from
DFT, giving quasiparticle energies

EQP
kn = εDFT

kn + 〈
φDFT

kn

∣∣�(
EQP

kn

) − Vxc

∣∣φDFT
kn

〉
. (3)

At the first order, the quasiparticle wave functions [Eq. (1)]
are approximated by the DFT ones, which turns to be a sat-
isfactory approximation for many sp systems. However, for
narrow band-gap semiconductors, DFT can give the wrong
band ordering for states close to the Fermi energy, as is the
case for PbTe at L or, e.g., of Ge at � [21]. As a conse-
quence, the corresponding DFT wave functions can have the
wrong orbital character: In this case a diagonal-only G0W0

correction as in Eq. (3) is not sufficient, an issue referred to
as the “band disentanglement problem” in Ref. [21]. Using
a better reference than (semi)local DFT, e.g., hybrid DFT, or
resorting to self-consistent quasiparticle GW , in which both
the quasiparticle energies and wave functions are updated
self-consistently, both solve this issue. Here, we use instead
a relatively inexpensive extension of the diagonal-only G0W0

approximation for which we compute the G0W0 self-energy
corrections over a small subspace of relevant states, including
the off-diagonal elements:

HGW
nm

(
k; EQP

kn

) = εDFT
kn δnm + ��nm, (4)

where

��nm = 〈
φDFT

kn

∣∣�(
EQP

kn

) − Vxc

∣∣φDFT
km

〉
. (5)

The corrections to the DFT eigenvalues are found by diagonal-
ization after linearization and hermitization of the matrix (see
Appendix A). Similar approaches were applied successfully
in systems such as topological insulators [23,24]—for which
small corrections greatly affect the mixing of the bands near
the band-crossing points—and materials with a strong p-d
hybridization [21].

B. Computational details

The starting point for our GW calculations are DFT simu-
lations carried out with the QUANTUM-ESPRESSO suite [25,26].
DFT calculations were performed within the generalized
gradient approximation (GGA) using the Perdew-Burke-
Ernzerhof (PBE) [27] parametrization of the exchange and
correlation functional. We have used fully nonlocal two-
projector norm-conserving pseudopotentials from the PSEU-
DODOJO data base [28] generated with the ONCVPSP code [29].
All pseudopotentials included a full semicore shell. Wave
functions in the DFT calculation were expanded in a basis of
plane waves with cutoffs of 110, 100, and 100 Ry for GeTe,
SnTe, and PbTe, respectively. Brillouin zone sampling was
carried out using a Monkhorst-Pack mesh [30] of 12 × 12 ×
12 for the self-consistent calculations. All calculations are
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FIG. 1. Band structure near the direct band gap at L for (a) PbTe, (b) SnTe, and (c) GeTe in the rocksalt structure, as obtained with GGA
DFT (solid black lines) and G0W0 (dashed red lines). These band structures were obtained at the experimental lattice parameters for the cubic
phase: 6.462, 6.327, and 6.01 Å for PbTe [33], SnTe [33], and GeTe [34,35], respectively.

fully relativistic and therefore include spin-orbit interaction
(SOI); for a discussion about the relativistic contribution to
the GW self-energy, see Appendix B.

The GW corrections were computed using the YAMBO

code [31,32]—modified to calculate the off-diagonal elements
of the self-energy—for the top ten occupied bands (compris-
ing the anion p and the low-lying cation s manifolds) and
six to eight unoccupied ones (capturing the cation p manifold
plus, in some cases, some extra bands necessary for the band
disentanglement performed during the calculation of the Wan-
nier functions). We used a 16 × 16 × 16 grid on the Brillouin
zone. A cutoff of 30 Ry for the G vectors was used for the
computation of the exchange self-energy. The correlation part
of the self-energy was computed summing over 100 bands
(46 occupied), and the screening was calculated within the
plasmon-pole approximation using 120 bands. We use the
standard diagonal-only G0W0 approximation except when oth-
erwise specified.

III. RESULTS

A. Electronic structure at the experimental lattice parameter

We show in Fig. 1 a detail of the band structure near
the direct band gap at L for PbTe, SnTe, and GeTe obtained
at the experimental lattice parameters for the cubic phase:
6.462 [33], 6.327 [33], and 6.01 Å [34,35], respectively. It
should be noted that while for PbTe the NaCl structure con-
stitutes the ground state of the system in ambient conditions,
both SnTe and GeTe present a distorted rhombohedral R3m
structure at low temperature. SnTe may crystallize in the cubic
phase in Te-rich conditions [36]. The rocksalt structure in
GeTe is only stable above 400 ◦C [37]. All three materials
have very similar band structures in the cubic phase.

For PbTe our band structure calculated with the PBE func-
tional displays the spurious inverted band gap (L−

6 − L+
6 < 0),

in agreement with previous reports with local and semilocal
DFT functionals [10,11].

We use G0W0 to obtain the corrected electronic band struc-
tures. We have found that the conventional diagonal-only
G0W0 is sufficient to correct the order of the bands at L, where
any spurious mixing of the L−

6 and L+
6 states is forbidden

by symmetry and therefore, other than the wrong ordering
of the eigenvalues, the DFT wave functions are a good rep-
resentation of the real wave functions of the states. On the
other hand, we have observed that the diagonal-only G0W0

band structure presents artifacts for k points close but different
from L when the G0W0 correction involves a change in sign
of the L−

6 − L+
6 gap. For the band structure of PbTe at the

experimental cell volume, these are shown in Fig. 2. In fact,
the spurious inversion of the gap produced by DFT causes a
mixing of the orbital character of the bands that is virtually
nonexistent in the case of a noninverted gap [10]. Since it
relies on the DFT wave functions (Sec. II A), conventional
diagonal-only G0W0 is then unable to disentangle the DFT
band structure and this results in the artifacts at the band edges
close to L.

Figure 2 shows how these artifacts are corrected after
calculating the off-diagonal matrix elements from Eq. (4)
and diagonalizing over a subspace comprising just the four
bands forming the edges of the conduction and valence bands
(taking into account spin degeneracy). Diagonalizing a larger
subspace, comprising up to 12 bands has no further effect on
the correction.

We now turn our attention to SnTe, a system in which,
according to ARPES experiments [7,38] and ab initio simula-
tions [6,39,40] the inversion of the band gap does occur. Our
DFT band structure, shown in black in Fig. 1(b), displays an

FIG. 2. Band structure near the direct band gap at L for PbTe.
In black we plot results obtained with the PBE functional of DFT,
in blue those obtained with conventional diagonal G0W0, and in red
those calculated after diagonalizing the G0W0 Hamiltonian. For the
GW bands, symbols correspond to k points for which the correction
was computed, while lines were obtained by Wannier interpolation.
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TABLE I. Effective masses for cubic PbTe, SnTe, and GeTe at
the experimental volumes as obtained with DFT and G0W0 (including
off-diagonal corrections). The reason for not reporting the values for
electrons in the case of SnTe is explained in the text. We compare
with the experimental values for PbTe [41], the only material for
which the corresponding data could be found in the literature.

DFT G0W0 Expt.

PbTe mh
‖ −0.69 −0.37 −0.31

mh
⊥ −0.047 −0.034 −0.022

me
‖ 0.52 0.24 0.24

me
⊥ 0.035 0.034 0.024

SnTe mh
‖ −0.34 −0.46

mh
⊥ −0.075 −0.12

me
‖ n/a n/a

me
⊥ n/a n/a

GeTe mh
‖ −0.39 −0.39

mh
⊥ −0.022 −0.014

me
‖ 0.49 0.45

me
⊥ 0.024 0.019

inverted band gap (L−
6 − L+

6 < 0), in agreement with previous
reports. In this case the G0W0 correction, shown in red in
Fig. 1(b) increases the size of the negative gap bringing it
closer to the low temperature experimental value. In the case
of SnTe, DFT gives the correct band ordering, changes in
the bands hybridization are not expected to be as significant
as in PbTe, and we find indeed that the correction from the
off-diagonal elements is negligible in this case (the absolute
value of the off-diagonal elements of the self-energy matrix
are smaller than 1% of the values of the diagonal ones).

For the sake of completeness we have also performed the
same analysis for cubic GeTe. For GeTe we have not been
able to find any experimental evidence for the sign of the
L−

6 − L+
6 band gap. Whereas the pioneering electronic struc-

ture calculations of Cohen and co-workers using empirical
pseudopotentials predicted for GeTe the same band ordering
as for SnTe [42], contemporary DFT simulations using meta-
GGA functionals suggest a noninverted scenario [9,18]. Our
calculations, both with GGA DFT and including the G0W0

correction, agree with the latter result, giving a trivial topol-

ogy of the band structure, similar to that of PbTe. In this
case too the off-diagonal correction is negligible, as expected,
since the GW correction does not reverse the order of the
bands at L.

In Table I we compile the effective masses for the three
materials computed using the band structures obtained with
both DFT and G0W0. For PbTe, the only material for which
experimental data could be found, the overestimation of the
effective masses by DFT due to the spurious hybridization of
valence and conduction bands near L is fixed by G0W0, pro-
ducing values in much better agreement with the experiment.
For SnTe we only report values for the valence band, since
the proximity of the band-gap inversion crossover makes the
dispersion of the conduction band very nonparabolic near the
L point, and therefore a value of the effective mass cannot
be determined. G0W0 tends to slightly increase the effective
masses of holes. In the case of GeTe, the corrections of G0W0

over the values obtained with DFT are much smaller than for
SnTe and especially PbTe. We were not able to find experi-
mental reports of the effective masses for either SnTe or GeTe.

B. Evolution of gap with volume and topological crossover

It has been previously suggested that, because of (i) the
lack of interaction between the L−

6 and L+
6 states at L and

(ii) the unusual negative sign of the pressure coefficients,
∂Eg/∂P, it should be possible to drive the electronic structure
of some of these materials through a topological transition
with pressure [11–13].

We plot in Fig. 3 the evolution of the direct band gap
at L with the volume for PbTe, SnTe, and GeTe, calculated
both at the level of DFT and G0W0 approximation. As already
discussed, SnTe is on the nontrivial topology side of the
crossover at ambient pressure, therefore by applying positive
pressure (reducing the volume of the unit cell) one increases
the magnitude of the already negative gap, as shown by the
dashed lines in Fig. 3(b). Instead, according to our G0W0 cal-
culations, inducing the transition to a trivial insulator would
require a volume expansion of the material by 10%. One of the
effects of alloying SnTe with PbTe is in fact the volume expan-
sion of the material, which contributes to the observed band
crossover in this alloy [14]. Thermal expansion would also
bring this material closer to the topological transition. Consid-

FIG. 3. Band gap as a function of lattice parameter for (a) PbTe, (b) SnTe, and (c) GeTe in the rocksalt structure. Solid lines represent the
apparent band gap (lowest unoccupied state minus highest occupied state) at L as obtained with GGA DFT (black) and G0W0 (red). Dashed lines
show the band gap calculated as the energy difference between L−

6 − L+
6 , again as obtained with GGA (black) and G0W0 (red). Experimental

values of the band gap are shown in blue; when available we also display the experimental error bar or the derivative with volume.
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TABLE II. Structural parameters obtained from fits to a Mur-
naghan equation of state, used to obtain the pressures in Table III
from the transition volumes. The listed parameters are the bulk
modulus K , the linear coefficient of the expansion K (P), K ′, the
equilibrium lattice parameter obtained from the fits, and the exper-
imental lattice parameter used to obtain the band structure presented
in Sec. III A.

K (GPa) K ′ aeq (Å) aexpt. (Å)

PbTe 43.6 4.6 6.43 6.46 [33]
SnTe 40.0 4.5 6.42 6.33 [33]
GeTe 43.5 4.2 6.07 6.01 [34]

ering the critical volume obtained from Fig. 3(b) and the ther-
mal expansion coefficient of SnTe, αV ∼ 6 × 10−5 K−1 [33],
would yield a temperature for the band gap closing of
∼1700 K; however, this gross estimate is neglecting the band-
gap renormalization from electron-phonon interaction which
may significantly reduce this temperature [43–45].

More interesting is the case of PbTe. Figure 3(a) shows the
dependence of its gap with volume. According to the DFT
calculations this material already possesses a topologically
nontrivial band structure, and thus, like in SnTe it would have
only been possible to induce the topological transition by
the application of negative pressure, expanding its volume by
7%. Instead, the G0W0 corrections to the band structure puts
this material on the other side of the transition, as a trivial
insulator, in agreement with the experiments. Taking into ac-
count this correction the transition would occur for a positive
pressure, at a volume compression of 9%. From this volume
compression an estimate for the crossover pressure can ob-
tained using the Murnaghan equation of state [46,47] fitted to
a series of calculations of total energy values as a function of
volume. The parameters of these fits can be found in Table II
for all three materials. For PbTe this yields an estimate for the
transition pressure from trivial insulator to a topological one
of around 4.8 GPa. It should be noted that due to the inverted
gap obtained by the DFT calculations, within this approach
one would obtain a topological transition at a negative pres-
sure of −2.5 GPa. The critical pressures obtained with both
DFT and G0W0 are collected in Table III for all three materials.

We show in Fig. 4 the band structure of PbTe at the vol-
ume of the transition from trivial to nontrivial topology (as
obtained with G0W0). At the 9% compressed volume, DFT
predicts a topological material well past the transition point,
with a relatively large inverted gap of around 0.4 eV. Instead,
the G0W0 band structure shows a vanishing gap. Nevertheless,
Fig. 4 shows that obtaining the linear dispersion characteristic
of the topological transition requires the diagonalization of
the G0W0 Hamiltonian. After taking into account the off-

TABLE III. Crystalline topological insulator transition pressures
in GPa. Critical pressures have been obtained from the critical lattice
constants in Fig. 3 using the Murnaghan equation of state.

PbTe SnTe GeTe

DFT −2.5 −2.7 3.0
G0W0 4.8 −3.2 1.9

FIG. 4. Band structure for compressed PbTe at the topological
transition volume (9% compression). Figure depicts the band struc-
tures obtained with DFT (black solid lines), diagonal G0W0 (blue
solid), and G0W0 including off-diagonal corrections (red dashed).
Results are compared with those obtained with quasiparticle self-
consistent GW [11].

diagonal contribution we obtain a band structure in good
agreement with the more sophisticated—and computationally
demanding—quasiparticle self-consistent GW [11].

Finally, for GeTe the situation is similar to PbTe, with
the exception that for this material both DFT and G0W0 give
the same qualitative result, i.e., a band crossover at positive
pressures. Using the band structure as a function of volume
calculated with G0W0 we obtain a critical pressure of 1.9 GPa.
DFT overestimates the critical pressure, yielding a value of
3.0 GPa.

Data in Fig. 3 can also be used to obtain the deformation
potential ∂Eg/∂ ln V , collected in Table IV. For PbTe we
can see that, in addition to correcting the spurious negative
sign obtained within DFT, G0W0 accurately reproduces the
experimental value. Similar results were obtained before for
PbTe using hybrid DFT [19]. For either GeTe or SnTe we
were not able to find previous reports of this coefficient, but
since the ordering of the bands obtained within DFT is the
correct one we observe that the correction from G0W0 is only
quantitative. For all three materials we find that G0W0 tends
to increase the absolute value of the deformation potential
with respect to the DFT result.

IV. DISCUSSION

Since we are suggesting here the prospect of a topological
transition with pressure of the electronic structure for both

TABLE IV. Deformation potentials in eV for GeTe, SnTe, and
PbTe, calculated with both DFT and G0W0. Experimental data for
PbTe from Refs. [48,49].

∂Eg/∂ ln V (eV)

PbTe SnTe GeTe

DFT −2.3 −3.08 3.22
G0W0 2.8 −3.51 3.92
Expt. 2.9–3.0
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PbTe and GeTe, the possibility of structural phase transitions
that may interfere with the band crossover deserves some
discussion. According to synchrotron x-ray diffraction ex-
periments, PbTe presents a phase transition from the cubic
rocksalt phase to orthorhombic Pnma at 6.7 GPa [50,51].
Therefore, according to our results the transition from a trivial
to a nontrivial topology of the band structure would occur
before the structural phase transition.

The case of GeTe is more complex, since at ambient con-
ditions its structure presents a rhombohedral distortion with
respect to the high temperature cubic phase analyzed in this
work. The rhombohedral distortion consists in a relative dis-
placement of the two sublattices along the pseudocubic [111]
direction, accompanied with an elongation of the cell along
the same direction. High pressure Raman-scattering measure-
ments show that the off-centering disappears at ∼3 GPa, and
the complete transition to cubic occurs for P < 6 GPa [52].
Since our constrained calculations for the cubic phase predict
the electronic topological transition to occur at a lower pres-
sure than the structural one, we expect GeTe to be a crystalline
topological insulator for pressures higher than the structural
transition pressure of ∼6 GPa.

V. CONCLUSIONS

We have performed a comparative study of the G0W0

corrections, including off-diagonal contributions to the self-
energy, to the DFT band structure of PbTe, SnTe, and GeTe,
three narrow-gap semiconductors with a band structure sitting
very close to the crossover between a trivial and a nontrivial
topology. We have shown that, for PbTe, the conventional
diagonal-only G0W0 produces artifacts near the band-gap
edges due to the inability of the method to disentangle the
DFT band structure, which presents a wrong ordering at
L. These artifacts disappear when the G0W0 corrections are
calculated for the subspace of the entangled DFT states,
including off-diagonal contributions, and the quasiparticle en-
ergy is obtained by diagonalization of the resulting matrix.

The evolution of the gap with the volume of the unit
cell reveals that both PbTe and cubic GeTe may undergo
a transition from a narrow-gap semiconductor with a trivial
topology of the band structure into a topological insulator.
In the case of PbTe this transition occurs at around 4.8 GPa,
below the pressure for the first structural phase transition into
a rhombohedral phase. GeTe crystallizes in the cubic phase for

pressures above 6 GPa, higher than the critical pressure for
the band crossover, and therefore should display topological
insulator characteristics.
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APPENDIX A: QUASIDEGENERATE G0W0 APPROACH

The eigenvalues of Eq. (4) cannot be obtained straight-
forwardly since (i) the set of equations is nonlinear and (ii)
HGW

nm is non-Hermitian and, in general, does not have real
eigenvalues.

As a remedy to the latter issue, we propose a G0W0-like
approach which works when there are few non-negligible
��knm = 〈φDFT

kn |�(EQP
kn ) − Vxc|φDFT

km 〉 and the corresponding
Kohn-Sham states are quasidegenerate.

Let us call D the manifold of quasidegenerate Kohn-Sham
(KS) states and define (in what follows, we drop the k index
for simplicity)

�̂ =
∑
i∈D

|φi〉(ε̄ − εi )〈φi| (A1)

as the scissor operator that makes all i ∈ D degenerate with an
energy ε̄. We define a new independent-particle system with a
Hamiltonian

ĥs = ĥ + �̂,

where ĥ is the KS Hamiltonian. The many-body perturbation
to that system is �̂(ω) − v̂xc − �̂.

Provided that ε̄ − εi are small, perturbation theory should
provide the same results (within the desired accuracy) starting
either with ĥ and ĥs. We choose a convenient definition of
ε̄ as the average (

∑
i∈D εi )/ dim D. For ĥs, we can apply

degenerate perturbation theory to D,

[��(ω) − δωI]c = 0, (A2)

FIG. 5. GW quasiparticle energies as a function of DFT independent-particle eigenvalues calculated with SOI (solid symbols) and without
SOI (empty symbols) for PbTe (a), SnTe (b), and GeTe (c).

043105-6



GW STUDY OF PRESSURE-INDUCED TOPOLOGICAL … PHYSICAL REVIEW RESEARCH 2, 043105 (2020)

where δω is ω − ε̄ and c is the vector of overlaps between
the KS states in D and the corresponding QP states, 〈φn|ψl〉.
Next, we linearize Eq. (A2) similarly to what is customary in
the diagonal-only case [22] and we get

(��̄ − δωC)c = 0. (A3)

This is a generalized eigenvalue problem in which ��̄ is the
matrix of ��mn(ε̄) and the matrix of Cmn = δmn − ∂ω�mn|ω=ε̄

(please note the relation between Cnn and the renormaliza-
tion factor, Zn, usually introduced in the linearization of the
diagonal-only case, Zn = C−1

nn [22]). Both matrices are Her-
mitian and Eq. (A3) can be solved by Schur decomposition:

Q(��̄ − δωC)Q = (S − δωT), (A4)

where Q is orthogonal and S and T are upper triangular
matrices which have the same eigenvalues as ��̄ and C,
respectively. From the properties of triangular matrices we can
then find the quasiparticle corrections,

δωl = T −1
nn Snn, (A5)

which are ensured to be real.
For the case of PbTe we simplified the above approach.

First, we avoid the direct calculation of the self-energy matrix
elements at ε̄. For the off-diagonal elements we observe that
for a pair of quasidegenerate states i and j,

�i j

(εi + ε j

2

)
≈ �i j (εi ) + �i j (ε j )

2
. (A6)

For the diagonal elements, �ii(ε̄) ≈ �ii(εi ). Second, we ob-
served that the off-diagonal elements of C are negligible,
i.e., Cmn ≈ Cmmδmn, and therefore T −1

mm ≈ C−1
mm = Zm. Then,

we first obtained the eigenvalues of ��̄, i.e., λm = Ēm − ε̄,
and multiply them by Zm.

At L, we have a manifold of four quasidegenerate KS
states: two spin-up and two spin-down. Then, we have two
2 × 2 eigenproblems for which we evaluate �(ε̄) as above.
Finally, we also considered the original eigenvalue problem
and verified that the quasiparticle corrections have a very
small imaginary part while the real part is very close to the
eigenvalues from the hermitized eigenproblem.

APPENDIX B: RELATIVISTIC CONTRIBUTION
TO THE GW SELF-ENERGY

As we point out in the Introduction, spin-orbit interaction
is very strong in all three materials studied in this work and

FIG. 6. GW correction of the band gap in PbTe calculated using
a DFT electronic structure that either does not include SOI (squares,
dashed line), or does include SOI (circles, solid line).

constitutes a fundamental ingredient to get the correct features
of their band structure. Within DFT, the effect of SOI in
group-IV tellurides has been discussed in detail before (see
Ref. [9], for example). Within GW it has been observed [53]
that the relativistic contribution to the GW self-energy is
generally small, except when the GW correction produces or
reverts a band crossing. For this reason, it is worthwhile to
discuss in more detail the SOI contribution to the GW self-
energy in these materials. While it is difficult to disentangle
relativistic effects on the self-energy from the changes SOI
induces in the DFT band structure that is used as the starting
point for the GW corrections, the analysis in Fig. 5 reveals that
relativistic effects in the GW correction are in general small.
While band-gap energies from the fully relativistic calculation
are, of course, shifted to lower values with respect to the
scalar relativistic one, the slope of the self-energy correction
is practically the same for all three materials; that is, except
for PbTe near the band edges, for which there is a significant
deviation from the linear trend. This can be best appreciated in
Fig. 6, where we compare the GW correction calculated with
and without SOI for the band gap of PbTe along the � → X
path. Here we can see that relativistic effects tend to slightly
increase the self-energy correction, except near the crossing
of the bands, where there is a qualitative difference between
the fully and scalar relativistic corrections. Since the focus of
this work is the band crossover, where relativistic effects are
critical, all simulations reported in this paper (except those
discussed in this Appendix) are fully relativistic.
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