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Density profile of a semi-infinite one-dimensional Bose gas and bound states of the impurity
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We study the effect of the boundary on a system of weakly interacting bosons in one dimension. It strongly
influences the boson density, which is completely suppressed at the boundary position. Away from it, the density
is depleted over the distances on the order of the healing length at the mean-field level. Quantum fluctuations
modify the density profile considerably. The local density approaches the average one as an inverse square of the
distance from the boundary. We calculate an analytic expression for the density profile at arbitrary separations
from the boundary. We then consider the problem of localization of a foreign quantum particle (impurity) in
the potential created by the inhomogeneous boson density. At the mean-field level, we find exact results for the
energy spectrum of the bound states, the corresponding wave functions, and the condition for interaction-induced
localization. The quantum contribution to the boson density gives rise to small corrections of the bound-state
energy levels. However, it is fundamentally important for the existence of a long-range Casimir-like interaction
between the impurity and the boundary.
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I. INTRODUCTION

Boundaries play an important role in one-dimensional
quantum liquids affecting, e.g., correlation and response func-
tions, as well as the ground-state energy [1–8]. The boundary
also has an impact on the density profile of particles n(x),
which is suppressed at the boundary position x = 0. Away
from it, the particle density in fermionic systems shows so-
called Friedel oscillations [9]. They describe an oscillatory
decay of n(x) − n0, where n0 is the average density. The
envelop of Friedel oscillations follows 1/xK law for spinless
fermions [3,10]. Here K is the Luttinger liquid parameter,
which is determined by the interaction between fermions. The
periodicity of oscillations is controlled by the average fermion
density.

Friedel oscillations in fermionic systems are studied within
the harmonic Tomonaga-Luttinger liquid description [3,10].
This is the low-energy theory of both interacting fermions and
bosons in one dimension [11]. It was applied for bosons in
Ref. [12] where the same pattern of density oscillations was
found for separation longer than the inverse mean density of
bosons, 1/n0. Applied to the special case of weakly repulsive
bosons where K � 1, the result of Ref. [12] implies very rapid
saturation of n(x) − n0. Such fast recovery of the density is not
expected to occur in weakly interacting superfluids where the
density should change on the scale comparable to the healing
length ξ ∼ K/n0, which is much longer than 1/n0. Thus, to
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describe the density profile of bosons, one needs to go beyond
the harmonic Tomonaga-Luttinger liquid theory.

In this paper, we study weakly interacting bosons in a semi-
infinite system. We consider the equation of motion for the
field operator. At the mean-field (classical) level, it reduces to
the Gross-Pitaevskii equation [13]. Its solution reveals that the
spatial extent of the depletion of the boson density imposed
by the boundary is controlled by the healing length ξ . At
distances longer than ξ , the mean-field density exponentially
rapidly reaches the constant value n0. Accounting for the
effect of quantum fluctuations around the mean-field solution
within the Bogoliubov-de Gennes formalism, we find that
the density reaches n0 much slower, following 1/x2 law. Our
approach enables us to obtain an analytic expression for the
density profile at all distances.

The nonuniform density profile of the Bose gas determines
the potential for a weakly coupled quantum impurity intro-
duced in the system. For repulsive interaction between the
impurity and the bosons, the impurity can be localized. We
solve the Schrödinger equation and characterize the impurity
by the energy spectrum of the bound states, their wave func-
tions, and the mean position. We find the condition for the
appearance of the bound states, which is a threshold for a
single dimensionless parameter that involves the masses of
the impurity and of the particles of the Bose gas as well as
the interaction strengths. We note that a related phenomenon
of self-trapping, i.e., the localization of a single impurity
in homogeneous Bose-Einstein condensates, was studied in
Refs. [14–19]. Contrary to the case of the self-trapping where
a bound state is created due to the significant distortion of
the density of the host system due to the coupling with the
impurity, in our case it is the boundary that critically modifies
the density. Other related phenomena include the localization
of bosonic atoms by fermionic ones in attractive Bose-Fermi
mixtures examined in Ref. [20]. The formation of bounds
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states of two impurities immersed in one-dimensional liq-
uid has been studied recently in Refs. [21–23], while the
higher-dimensional cases are studied, e.g., in Ref. [24–26].
We eventually mention the study of a ionic impurity in a
condensate [27].

The paper is organized as follows. In Sec. II, we introduce
the model of interacting bosons in a semi-infinite geometry. In
Sec. III, we solve the equation of motion for the single-particle
field operator. We find the mean-field solution and the first two
quantum corrections. This enables us to evaluate the density
of bosons, including its quantum contribution, in Sec. IV. In
Sec. V, we consider the problem of a mobile quantum im-
purity interacting with the system. We solve the Schrödinger
equation for the impurity and study its properties. Section VI
is devoted to discussions, while in Sec. VII we summarize our
results. In the Appendix, we present a simplified procedure
that leads to the density in the regime of large separations from
the boundary.

II. THE SEMI-INFINITE BOSE GAS

We are interested in the influence of the boundary at x =
0 on the physical quantities in a one-dimensional system of
interacting bosons. We thus study a long system described by
the Hamiltonian

H =
∫ L

0
dx

(
−�̂† h̄2∂2

x

2m
�̂ + g

2
�̂†�̂†�̂�̂

)
. (1)

Here m is the mass of bosons, while the coupling constant g >

0 describes the repulsive contact interaction between them.
The system size is L; however, we will eventually consider the
thermodynamic limit. The bosonic single-particle operators
�̂ and �̂† satisfy the usual equal time commutation relations
[�̂(x, t ), �̂†(x′, t )] = δ(x − x′), while the other commutators
vanish. The model (1) is characterized by the dimensionless
parameter [28] γ = mg/h̄2n0, where n0 is the mean particle
density. The boundary of the system imposes the nullification
of the single-particle operator at its position:

�̂(x = 0, t ) = 0. (2)

The condition (2) implies that the boson density also vanishes
at x = 0.

Our first goal in this paper is to calculate the density profile
of the bosons

n(x) = 〈�̂†(x)�̂(x)〉, (3)

where the average is with respect to the ground state of the
Hamiltonian (1). For simplicity, we introduce the dimension-
less coordinates for the position and the time, respectively,
defined as

X = x

ξμ

, T = t

h̄/μ
. (4)

Here ξμ = h̄/
√

mμ denotes the healing length, while μ is the
chemical potential. Assuming the single-particle operator in
the form

�̂(x, t ) =
√

μ

g
ψ̂ (X, T )e−iT , (5)

its equation of motion ih̄∂t �̂ = [�̂, H] in the dimensionless
units becomes

i∂T ψ̂ (X, T ) =
[
−∂2

X

2
− 1 + ψ̂†(X, T )ψ̂ (X, T )

]
ψ̂ (X, T ).

(6)

We will solve Eq. (6) at γ � 1, corresponding to the regime
of weak interaction. In this case, one can expand the field
operator as [13,29]

ψ̂ (X, T ) = ψ0(X ) + αψ̂1(X, T ) + α2ψ̂2(X, T ) + . . . , (7)

such that [ψ̂ (X, T ), ψ̂†(X ′, T )] = α2δ(X − X ′). Here the
small parameter is α = (γ gn0/μ)1/4 ≈ γ 1/4 � 1. In the latter
estimate, we used the expression μ = gn0, which is valid at
weak interaction, γ � 1.

The function ψ0(X ) describes the time-independent wave
function of the system in the absence of fluctuations. The
field operators ψ̂1 and ψ̂2 account for its first and the second
quantum correction. Note that the Bose-Einstein condensate
does not exist in one dimension in the thermodynamic limit
due to strong effect of long-wavelength fluctuations. How-
ever, in finite-size systems, the inverse system size provides
an infrared cutoff. The perturbative expansion (7) is justified
as long as [29,30] ln(L/ξμ) � 1/

√
γ , where L is the length

of the system. The latter inequality shows that for weakly
interaction bosons (i.e., at γ � 1) the system size can actually
be huge. We point out that the density n(x) [see Eq. (3)] which
is to be calculated, is well defined (i.e., cutoff independent) in
the thermodynamic limit [31].

III. SOLUTION OF THE EQUATION OF MOTION

A. Wave function in the absence of fluctuations

The form (7) substituted into (6) leads to a hierarchy of
equations controlled by the small parameter α � 1. The equa-
tion of motion for ψ0(X ) is obtained at order α0. It reads

L̂1(X )ψ0(X ) = 0, (8)

where we have introduced the operator

L̂ j (X ) = −∂2
X

2
+ j|ψ0(X )|2 − 1. (9)

The expression (8) is known as the Gross-Pitaevskii equation
[13]. This second-order differential equation should be sup-
plemented by two boundary conditions. One of them follows
from Eq. (2) and becomes ψ0(0) = 0. The other condition
arises from the physical requirement that the density, which
is proportional to |ψ0(X )|2, is unaffected by the boundary at
long separations from it and thus becomes a constant. The real
solution [32] of Eq. (8) satisfying such boundary conditions is

ψ0(X ) = tanh X. (10)

At weak interaction, the chemical potential of the Bose gas is
μ = gn0. This gives the density Eq. (3) at the mean-field level
to be

n(x) = n0 tanh2(x/ξ ), ξ = 1/n0
√

γ . (11)

This expression shows that the density quickly saturates at
distances beyond the healing length ξ (which is ξμ in the limit
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γ � 1), provided one takes only the leading order term from
the expansion (7).

B. First quantum correction

We now consider the effects of quantum fluctuations and
determine ψ̂1. Its equation of motion is

i∂T ψ̂1(X, T ) = L̂2(X )ψ̂1(X, T ) + ψ0(X )2ψ̂
†
1 (X, T ). (12)

We seek a solution for ψ̂1(X, T ) as a superposition of exci-
tations of energy εk using the ansatz based on Bogoliubov
transformation [13]:

ψ̂1(X, T ) =
∑
k>0

Nk
[
uk (X )b̂ke−iεk T − v∗

k (X )b̂†
keiεkT

]
. (13)

Since Eq. (12) is linear and homogeneous, we must account
for the normalization factor Nk in Eq. (13), which should
be determined in such a way to satisfy the proper commu-
tation relations between ψ̂1 fields. This is discussed further
below. The bosonic operators b̂k and b̂†

k satisfy the standard
commutation relations [b̂k, b̂†

k′ ] = δk,k′ and [b̂k, b̂k′ ] = 0. The
boundary condition (2) at order α is given in terms of uk and
vk by

uk (0) = vk (0) = 0. (14)

Substitution of Eq. (13) into Eq. (12) leads to two coupled
equations for uk and vk . They are known as the Bogoliubov-de
Gennes equations and are given by

εkuk (X ) = L̂2(X )uk (X ) − ψ2
0 (X )vk (X ), (15a)

−εkvk (X ) = L̂2(X )vk (X ) − ψ2
0 (X )uk (X ). (15b)

To simplify them, we introduce the functions S(k, X ) =
uk (X ) + vk (X ) and D(k, X ) = uk (X ) − vk (X ). This enables
us to decouple the equations and lead to the fourth-order
differential equation:

ε2
k S(k, X ) = L̂3(X )L̂1(X )S(k, X ). (16a)

Note that D is given in terms of S as

D(k, X ) = 1

εk
L̂1(X )S(k, X ). (16b)

Four independent solutions of the fourth-order Eqs. (16)
are [33]

Sn(X ) = (−ikn + 2 tanh X )eiknX , (17a)

Dn(X ) = − ikn

εkn

1

cosh2 X
eiknX + k2

n

2εkn

Sn(X ), (17b)

where n ∈ {1, 2, 3, 4}, while εk =
√

k2 + k4/4 is the energy
dispersion. The four roots entering Sn are k1,2 = ±k and

k3,4 = ±i
√

4 + k2 in terms of k = √
2

√√
ε2

k + 1 − 1. The

general solution of Eqs. (16) is a linear combination:

S(k, X ) = AS1(k, X ) + S2(k, X ) + BS3(k, X ), (18a)

D(k, X ) = AD1(k, X ) + D2(k, X ) + BD3(k, X ). (18b)

Note that S4 and D4 do not appear since they diverge at large
X . The two unknown coefficients A and B are determined

using the boundary condition (14), that is, terms of S and
D become S(k, 0) = D(k, 0) = 0. We find A = 1 and B = 0.
Therefore the general solution of Eqs. (15) that satisfy the
boundary condition (14) are the real functions

uk (X ) = k

(
1 + k2 + 2 cosh−2 X

2εk

)
sin(kX )

+ 2

(
1 + k2

2εk

)
cos(kX ) tanh X, (19a)

vk (X ) = k

(
1 − k2 + 2 cosh−2 X

2εk

)
sin(kX )

+ 2

(
1 − k2

2εk

)
cos(kX ) tanh X. (19b)

The normalization in Eq. (13) is obtained by requiring [13]

NkNq

∫ L
ξμ

0
dX [uk (X )uq(X ) − vk (X )vq(X )] = δk,q. (20)

This leads to Nk = (ξμ/4Lεk )1/2 at L � ξμ. One can then ver-
ify the equal time commutation relation [ψ̂1(X ), ψ̂1(Y )] = 0.
The evaluation of the other commutation relation is more
involved,

[ψ̂1(X ),ψ̂†
1 (Y )] =

∑
k>0

N2
k [uk (X )uk (Y ) − vk (X )vk (Y )]

= ξμ

L

∑
k>0

[cos (k(X − Y )) − cos (k(X + Y ))]

= δ(X − Y ), (21)

since δ(X + Y ) always equals zero for X,Y > 0. The second
equality in Eq. (21) is obtained after performing the inte-
gral over k of the function [uk (X )uk (Y ) − vk (X )vk (Y )]/4εk −
2 sin(kX ) sin(kY ), which turns out to be zero. The remaining
part after integration over k then gives the delta function in
Eq. (21). There we use

∑
k>0(· · · ) = (L/πξμ)

∫ ∞
0 dk(· · · ).

C. Second quantum correction

The first quantum contribution to the density (3) is propor-
tional to α2 and thus is determined by the first two corrections
of the field operator in Eq. (7). We thus now consider the
second quantum correction to the field operator ψ̂ denoted
by ψ̂2. Its equation of motion is obtained from Eq. (6) at
order α2. Since ψ0(X ) is real [see Eq. (10)], it is sufficient
to consider the real part of the expectation value 〈ψ̂2〉 which
enters into n(x). For this purpose, we introduce the notation
ψ2 = Re〈ψ̂2〉. The equation of motion for ψ2 is

L̂3(X )ψ2(X ) = f (X ), (22)

where

f (X ) = −2ψ0〈ψ†
1 ψ1〉 − ψ0〈ψ2

1 〉. (23)

At zero temperature, one has

〈ψ†
1 ψ1〉 =

∑
k>λ

N2
k v2

k , 〈ψ2
1 〉 = −

∑
k>λ

N2
k ukvk. (24)

Note that the source term f (X ) in Eq. (22) is time independent
and thus ψ2 is only a function of X . We note that evaluation of
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f (X ) requires a small-k cutoff (λ ∼ ξμ/L) since it is divergent
at k → 0.

The solution of the linear Eq. (22) can be expressed as

ψ2(X ) =
∫ ∞

0
dY G(X,Y ) f (Y ), (25)

where G is the Green’s function of the operator L̂3(X ). It
satisfies

L̂3(X )G(X,Y ) = δ(X − Y ). (26)

Moreover, the Green’s function is symmetric G(X,Y ) =
G(Y, X ) and satisfies

G(Y +,Y ) = G(Y −,Y ), (27a)

∂XG(X = Y +,Y ) − ∂XG(X = Y −,Y ) = −2, (27b)

to account for the δ(X − Y ) on the right hand side of Eq. (26).
Here Y ± = limδ→0+ Y ± δ. Also, the Green’s function obeys
G(0,Y ) = 0 due to the boundary condition imposed by the
end of the system, i.e., ψ2(0) = 0. For the solution of Eq. (26),
we find

G(X,Y ) = g(Y )θ (X − Y ) + g(X )θ (Y − X )

cosh2 X cosh2 Y
, (28a)

where

g(Y ) = 12Y + 8 sinh(2Y ) + sinh(4Y )

16
. (28b)

Therefore, the solution of Eq. (22) for ψ2(X ) is obtained from
Eq. (25), where one should substitute the Green’s function
and the source function (23). Since the latter depends on the
infrared cutoff, ψ2 has also this feature. In the Appendix, we
derive ψ2(X ) in the regime X � 1.

IV. LOCAL DENSITY

Having solved the equation of motion for the terms ψ0,
ψ̂1, and ψ̂2 of the single-particle operator (7), we are now
in position to evaluate the spatial density profile of the semi-
infinite Bose gas. It is given by the expansion

n(x) = μ

g

[
n(0)(X ) + α2n(1)(X ) + O(α3)

]∣∣∣∣
X= x

ξμ

. (29)

Here the mean-field contribution is

n(0)(X ) = |ψ0(X )|2 = tanh2 X, (30)

while the quantum contribution to the density has the form

n(1)(X ) = 〈ψ̂†
1 (X, T )ψ̂1(X, T )〉 + 2ψ0(X )ψ2(X ), (31)

or more explicitly,

n(1)(X ) =
∫ ∞

0

dk

4πεk

{
vk (X )2 − 2 tanh X

×
∫ ∞

0
dYG(X,Y )vk (Y )[2vk (Y ) − uk (Y )] tanh Y

}
. (32)

In Eq. (32), one should use Eqs. (19) and (28), while we recall
εk =

√
k2 + k4/4. Unlike ψ2 that requires an infrared cutoff,

the density contribution (32) does not. Each of the two terms
in Eq. (31) is divergent, however, their sum is finite. This
should be the case since the density fluctuations are expected
to be finite unlike the fluctuations of the phase of the single
particle operator [34].

The evaluation of Eq. (32) is rather tedious. We first
perform the integration over Y using various trigonometric
identities and the integration by parts. As a result, we obtain
a cumbersome expression involving several hypergeometric
functions. Such expression is an integrable function of k. To
perform the integration, we split the integrand into several
summands. We should stress that, unlike the whole integrand,
the summands can be nonintegrable due to singularities and
one should regularize them by adding and subtracting some
functions. As a result of such a procedure, we obtain the local
density that can be expressed in the form

n(x) = μ

g

{
tanh2(x/ξμ) + α2

[
tanh2(x/ξμ)

π
+ (x/ξμ) tanh(x/ξμ)

π cosh2(x/ξμ)
+ h(x/ξμ)

]}
, (33)

where ξμ = h̄/
√

mμ and

h(z) = 2

π
− 3 − z tanh z

π cosh2 z
+ πz(2 − cosh 2z)

8 cosh4 z

[ 8z

π2 2F3
(
1, 1; 1/2, 3/2, 2; 4z2

) − I1(4z)L0(4z) + I0(4z)L1(4z)
]

+ tanh z(1 − 4z tanh z)[I0(4z) − L0(4z)] − 1

2
[1 − z tanh z(3 + 5 tanh2 z)][I1(4z) − L−1(4z)]. (34)

Here 2F3 is the hypergeometric function while Iν (z) and Lν (z)
are the modified Bessel function of the first kind and the
modified Struve function, respectively.

The density (33) is obtained for a fixed value of the chemi-
cal potential. We eliminate μ by using the mean density n0 that
is given by n0 = ∫ L

0 dx n(x)/L. In the thermodynamic limit,
the mean density of the Bose gas is n0 = (μ/g)(1 + α2/π +

. . .). Inverting this relation, one obtains the chemical potential
as a function of the mean density [28], μ = gn0(1 − √

γ /π +
. . .), where γ = mg/h̄2n0 � 1. Substituting μ as a function
of n0 in Eq. (29) yields the density profile of the weakly
interacting semi-infinite Bose gas,

n(x) = n0
[
tanh2(x/ξ ) + √

γ h(x/ξ )
]
, (35)
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FIG. 1. Density deviation from the mean density [n0 − n(x)]/n0

of the Bose gas for three values of the dimensionless interaction
parameter γ . The dashed curve denotes the mean-field result.

where ξ = 1/n0
√

γ , while h is given by Eq. (34).
We now analyze the behavior of the local density (35).

At short separations, x � ξ , the quantum fluctuation con-
tributions to the density can be neglected and the leading
contribution is given by

n(x) = n0 tanh2(x/ξ ). (36)

This classical result originates from the mean-field contribu-
tion (30) to the density. At longer separations, x � ξ , the
classical result (36) quickly saturates to a constant n0. How-
ever, the approach of the local density toward n0 is actually
much slower than one obtains from the mean-field result (36).
At x � ξ , the quantum contribution (31) is the dominant term
in the density deviation n(x) − n0 since it decays algebraically
with the distance. This follows from the asymptotic expan-
sion:

h(z) = − 1

16πz2

[
1 + 1

z
+ 15

16z2
+ O(z−3)

]
. (37)

Therefore, at x � ξ , the leading correction to the local density
is given by

n(x) = n0

(
1 −

√
γ

16π

ξ 2

x2

)
. (38)

The crossover distance xc between the two regimes can be
estimated by equating the two expressions (36) and (38). As a
result, we get

xc ≈ ξ ln

(
8
√

π

γ 1/4

)
. (39)

Note that the crossover distance depends only logarithmically
on γ and practically is on the order of a few ξ . This is
illustrated in Fig. 1 where the density profile of the Bose gas
is shown as a function of the distance from the end of the
system at several values of γ . The density in the crossover
regime between the classical and the quantum one is given
by Eq. (35). A simplified derivation of n(1)(X ) at X � 1 is
given in the Appendix. We finally notice that the ground-state
energy calculation of Ref. [35] leads to the limiting forms (36)
and (38).

V. INTERACTION-INDUCED LOCALIZATION
OF A SINGLE IMPURITY

In this section, we study the problem of a quantum impurity
in the semi-infinite Bose gas. We consider the impurity that is
locally coupled to the boson density (35). In the case of re-
pulsion, the density profile of the Bose gas forms an attractive
potential for the impurity, which can lead to the bound states
in the spectrum. In that case, the particle becomes localized
by the surrounding medium.

In the case of a weakly coupled impurity, one can find
its wave function in the approximation of unperturbed Bose
gas density (as further discussed in Sec. VI). The impurity
wave function is a function of x ant t and is governed by the
Schrödinger equation. After separation of variables, it reduces
to the eigenvalue problem on the positive semi-axis x > 0:[

− h̄2

2M

d2

dx2
+ Gn(x) − E

]
ψimp(x) = 0, (40a)

ψimp(0) = 0. (40b)

Here M is the impurity mass, G > 0 denotes the coupling
constant, while the density of the Bose gas n(x) is given by
Eq. (35). An alternative formulation of the eigenvalue problem
(40) is to consider unrestricted x with the symmetric potential
Gn(|x|) and to account only for odd eigenfunctions. They have
a node at x = 0 and thus automatically satisfy the boundary
condition (40b).

To simplify the notations, we rewrite Eqs. (40) in the form[
− d2

dz2
− λ(λ − 1)

cosh2 z
+ √

γ λ(λ − 1)h(z) + κ
2

]
f (z) = 0,

(41a)

f (0) = 0,

(41b)

where we have introduced

f (z) = ψimp(zξ ), (42)

λ = 1

2
+ 1

2

√
1 + 8GM

gm
, (43)

κ
2 = 2GM

gm

(
1 − E

Gn0

)
. (44)

In the following we will find the bound state spectrum for the
eigenvalue problem (41).

A. Bound states of Pöschl-Teller potential

In the limit where the quantum correction to the density
h(z) is neglected, the potential of Eq. (41a) describes a hole
of modified Pöschl-Teller type which admits an exact solu-
tion [36,37]. We now derive the bound states for this special
eigenproblem defined by[

− d2

dz2
− λ(λ − 1)

cosh2 z
+ κ

2

]
f (z) = 0, (45a)

f (0) = 0. (45b)

From the definition (43), follows λ > 1 and thus the potential
−λ(λ − 1)/ cosh2 z in Eq. (45a) is negative. We also notice
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that for unrestricted z, the eigenstates in such symmetric po-
tential can be even or odd functions of z. For the problem (45),
only odd solutions have a node at z = 0. They are of the form
[37]

f (z) = coshλ z sinh z

× 2F1

(λ − κ + 1

2
,
λ + κ + 1

2
;

3

2
; − sinh2 z

)
, (46)

where 2F1 is the Gauss’s hypergeometric function.
To discuss the appearance of bound states, we consider the

asymptotic expansion of Eq. (46) in the limit z → ∞, which
is given by

f (z) � 2−κ�(κ)�(3/2)eκz

�
(

λ+κ+1
2

)
�

(
2−λ+κ

2

) + 2κ�(−κ)�(3/2)e−κz

�
(

λ−κ+1
2

)
�

(
2−λ−κ

2

) .

(47)

We notice that there are two exponential terms ∝ e±κz at
z → ∞. Taking into account the definition of κ given by
Eq. (44), we conclude that a bound state can be realized only
if κ

2 > 0, i.e., if Gn0 > E . In the opposite case, Gn0 < E ,
the solution at long separations from the boundary is an os-
cillating trigonometric function since κ is purely imaginary.
In the following, we focus on the localized (bound) states
and derive their energy spectrum. We assume without loss
of generality that κ > 0. Thus, the coefficient in front of the
term eκz must vanish to obtain a nondivergent (normalizable)
wave function at large z. This occurs when the arguments of
the gamma functions in the denominators are 0 or negative
integers. Since λ > 1 and by assumption κ > 0, only the
argument of �( 2−λ+κ

2 ) matters. This yields

κ = λ − 2 − 2η, (48)

where η = 0, 1, 2, . . .. From the condition κ > 0, we obtain
that integer η satisfies

0 � η <
λ

2
− 1. (49)

Equation (49) determines the condition λ > 2 necessary for
the appearance of the first bound state [38]. The number η

denotes the number of nodes of the odd bound-state eigen-
function in the region of interest z > 0. Thus, the localized
solutions of the eigenvalue problem (45) are given by Eq. (46)
where κ satisfies Eq. (48), while η is a nonnegative integer
satisfying the condition (49). The latter enables us to reexpress
the eigenfunction (46) in the form

fη(z) = η! �(λ − η − 1)
sinh z

coshλ−1 z

×
η∑

j=0

(−4) j sinh2 j z

(2 j + 1)! (η − j)! �(λ − η − 1 − j)
, (50)

using 2F1(c − a, c − b; c; z) = (1 − z)a+b−c
2F1(a, b; c; z).

The preceding expressions enable us to find the spectrum
of bound states of the impurity defined by Eqs. (40) in the case
when the quantum fluctuations of the density are neglected.
The eigenfunctions are ψimp,η(x) = fη(x/ξ ) [see Eq. (50)],
where one should substitute Eq. (43) for λ. The corresponding

FIG. 2. The first five bound-state energies Eη/Gn0 as a function
of the dimensionless parameter GM/gm. They occur, respectively, at
ratios GM/gm = 1, 6, 15, 28, 45. Notice that the energies start from
Gn0, which is the value of the potential at infinity.

energies [cf. Eq. (48)] are

Eη = gn0
m

M

[(3

4
+ η

)√
1 + 8GM

gm
− 5

4
− 3η − 2η2

]
, (51)

provided the system has bound states. The condition for that
is sufficiently strong coupling between the impurity and the
Bose gas, which should satisfy

GM

gm
> (η + 1)(2η + 1). (52)

The latter follows from Eq. (49). The set of allowed values for
η (non-negative integers) in the spectrum (51) are determined
by the inequality (52). In particular, the first bound state (cor-
responding to η = 0) occurs for GM/gm > 1. The second one
(corresponding to η = 1) exists for GM/gm > 6, etc. Let us
introduce an important quantity

Eb
η = Gn0 − Eη, (53)

which denotes the binding energy, Eb
η > 0.

In Fig. 2, we show the bound-state energies for the first
five levels. We notice that the specific bound-state energy
expressed in units of Gn0, which is the value of the potential
at infinity, is a function of the single parameter GM/gm. In
Fig. 3, we show the normalized wave functions for the bound-
state levels for the specific value GM/gm = 30. We notice that
the wave functions for energies near the top of the potential,
Gn0, are weakly localized as their spatial extension increases.
The level (quantum) number η corresponds to the number of
nodes of the wave function. For a given wave function, its
spatial extension decreases with increasing GM/gm, since in
that case the potential becomes deeper. This is reflected in the
mean distance of the particle from the origin,

〈x〉η = ξ

∫ ∞
0 dxx| fη(x)|2∫ ∞
0 dx| fη(x)|2 . (54)

We plot this dependence in Fig. 4. Close to the threshold for
the appearance of the bound state, the mean distance diverges
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FIG. 3. Normalized wave functions for the first four states at
GM/gm = 30. Notice that the wave function corresponding to η = 3
is spatially less localized since the value of GM/gm is close to the
threshold for its appearance.

according to the law

〈x〉η
ξ

= 1

2κ

= η + 3
4

GM
gm − (η + 1)(2η + 1)

+ O(1). (55)

The denominator of Eq. (55) denotes the distance from the
threshold for the appearance of the bound state fη measured
from the “localized” side where the particle is in the bound
state. Equation (55) can be also expressed as function of the

binding energy 〈x〉η/ξ =
√

mμ/8MEb
η using Eqs. (44) and

(53). Indeed, 〈x〉η determines the localization length. This
easily follows from the asymptotic expansion of the wave
function fη(z) ∝ exp (−κz) [cf. (47)], where the localiza-
tion length is 1/κ close to the transition. The localization
length diverges with the first power of the distance from the
transition, which physically denotes the disappearance of the
bound state as GM/gm is decreased (and the binding energy
approaches zero). More generally, the universal form of the
wave function enables us to find any moment as 〈x j〉η/ξ j =
j!/(2κ) j close to the threshold.

FIG. 4. Mean distance 〈x〉η/ξ of the impurity from the origin for
the first four bound states as a function of GM/gm. At the threshold
value for a given η, the mean distance diverges according to Eq. (55),
signaling the disappearance of the bound state.

FIG. 5. Quantum correction to the bound state energies
δEη/

√
γ Gn0 for different η as a function of GM/gm for the first

five levels.

In the preceding part, we considered a localized impurity,
i.e., its bound states which exist when the eigenenergies are
smaller than Gn0 (corresponding to the value of the potential
at infinity). We should stress that the impurity has a continuum
of scattering states with energies higher than Gn0. They are
characterized by the oscillating wave functions [cf. Eq. (47)].

B. Quantum correction to the potential

In the previous subsection, we solved the eigenproblem for
the impurity using the mean-field contribution to the poten-
tial. We now account for the quantum correction h(z), see
Eqs. (41). We were not able to solve analytically the whole
eigenproblem, since the form of h(z) is very complicated.
However, we can take advantage of the small parameter

√
γ

that controls it and find the corrections of the bound state
energy (51) using perturbation theory. The energy correction
is given by

δEη = √
γ Gn0

∫ ∞
0 dx| fη(x)|2h(x)∫ ∞

0 dx| fη(x)|2 , (56)

where h is defined in Eq. (34), while fη by Eq. (50). The
quantum correction

√
γ Gn0h(x/ξ ) to the effective potential

[see, e.g., Eq. (40a)] becomes practically important at dis-
tances x � ξ (see Fig. 1) with respect to the classical one
−Gn0/ cosh2(x/ξ ). Contrary to the function h(x/ξ ) that has
a long-range tail ∝ −1/x2, the wave function is localized and
exponentially small at x � ξ . As a result the numerator in
Eq. (56) is small thus the quantum correction to the bound
state energy is negligible. Notice that very near the threshold
for the bound-state appearance (see, e.g., the curve for η = 3
in Fig. 3) the wave function may have some overlap with the
tail of h(x/ξ ), and the correction δEη can be somewhat impor-
tant with respect to Eη − Gn0. Nevertheless, δEη is negative
since the quantum correction to the potential broadens the
well. The quantum corrections to the different energy levels
of the bound states are numerically evaluated using Eq. (56)
and shown in Fig. 5 [39].
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VI. DISCUSSION

We have calculated the bound states of the impurity in
a semi-infinite Bose gas. We assumed that the density of
the Bose gas it not affected by the presence of the impurity
[cf. Eq. (40)]. This approach is valid in cases of weak coupling
G between the impurity and the particles of the Bose gas. A
more general model would be the Hamiltonian (1) supple-
mented by the impurity part:∫ L

0
dx

(
−�̂imp

h̄2∂2
x

2M
�̂imp + G�̂

†
imp�̂imp�̂

†�̂

)
. (57)

From the solution of the whole problem, one could obtain
the spectrum of the bound states at any G. However, this is
in practice difficult to do analytically. The parameter region
where our approach applies can be obtained by calculating
the correction to the Bose gas density (35) due to the coupling
with the impurity. For a heavy impurity, such correction is
small at G � g/

√
γ [35]. In this regime, it is therefore jus-

tified to study the simplified problem (45). Notice that for
weakly interacting bosons, we have γ � 1 and thus our paper
covers a big range of values for G.

The quantum contribution to the boson density that uni-
versally behaves as 1/x2 at x � ξ [see, e.g., Eq. (38)] leads
to a small energy correction to the bound-state levels of the
localized particle. However, the knowledge of such spatial
dependence of the density of particles far from the boundary
is fundamentally important for quantities where the density
gradient matters. An example is the Casimir-like interaction
[31,40–43] between the impurity and the boundary of the
system mediated by density fluctuations of the medium. In
the regime x � ξ its form was found in Ref. [35], while our
result (35) determines the interaction law at all distances. It
takes the form

U (x) = G[n(x) − n0]

= − Gn0

[
1

cosh2(x/ξ )
− √

γ h(x/ξ )

]
. (58)

It is expected that under the influence of the long-range poten-
tial (58), a heavy impurity immersed in the system far from the
boundary slowly drifts toward it and eventually get localized.
During this process, the impurity energy that equals Gn0 at
long distances is dissipated by exciting the Bose gas.

The boundary in our system can exist naturally as the sys-
tem’s end. Alternatively, it can be created by a heavy impurity
strongly coupled to the Bose gas that creates impenetrable
potential and leads to the complete depletion of the boson
density at its position. Thus the effective interaction between
the boundary and the impurity can also be interpreted as the
Casimir-like interaction between two very different impuri-
ties. We notice two related very recent experimenal works
[44,45], which have demonstrated the existence of the induced
interaction between quantum particles mediated by the sur-
rounding quantum gas.

The Hamiltonian (1) can be studied within the dual model
of attractive fermions [46,47]. The density of bosons in the
original model is equal to the density of fermions in the dual
one. Such mapping is particularly useful in the regime of
strong interaction between bosons, corresponding to γ � 1

and the Luttinger liquid parameter K � 1 + 4/γ . In this case,
the fermions are weakly attractive, which enables one to
study their density, obtain the characteristic form with Friedel
oscillations, and go beyond the Tomonaga-Luttinger liquid
description. It is interesting to study the density and the fate
of Fridel oscillations as the value of K increases and find a
connection with our result (35). A numerical study of finite
number of bosons [48] also suggests the above picture. Note
that the model (1) is integrable in the box geometry [5] and
thus it is in principle possible to use the exact Bethe ansatz
solution to find the exact density profile in the thermodynamic
limit and answer the above question. We are not aware of such
a study in the literature.

Recent experimental realizations of cold bosons trapped
in a box potential [49–52] provide a possibility to observe
our results. To see the characteristic long-range tail of the
density [cf. Eq. (38)], the system length has to be much longer
than the crossover distance (39). In addition, the constraint on
the temperature comes from the fact that the thermal length
�T = h̄v/2πT has to be longer than the the crossover dis-
tance (39). Here v = √

gn0/m denotes the sound velocity of
weakly interacting bosons. Thus we obtain T/μ � log (γ −1).
Concerning the observation of the bound states, the condition
(52) could be realized for a given mass ratio M/m by tuning
the interaction strengths using the Feshbach resonance. Tem-
perature should be sufficiently small to avoid smearing of the
energy levels.

VII. SUMMARY

In this paper, we first calculated the density profile of the
weakly interacting semi-infinite one-dimensional Bose gas.
We solved the equation of motion for the field operator. At the
mean-field level, it leads to the density profile (11). Taking
into account the effect of quantum fluctuations around the
mean-field solution we calculated the quantum contribution
to the density, see Eqs. (34) and (35). It shows the universal
1/x2 behavior at long distances.

We then studied the spectrum of the bound states of a
quantum impurity which experiences the potential created by
the surrounding Bose gas. We were able to exactly solve this
problem accounting for the mean-field boson density. The dis-
crete spectrum is given by Eq. (51), while the corresponding
wave function are written in Eq. (50). Bound states exist for
sufficiently strong repulsion between the impurity and parti-
cles of the Bose gas, see Eq. (52). We also found how the mean
particle distance from the boundary behaves, and in particular
its divergence (55) as one approaches the threshold for the
appearance of the bound-state levels. We showed that the
quantum contribution to the density gives rise to the negligible
corrections of the bound state levels. However, the quantum
contribution to the density is important since it leads to the
long-range Casimir-like interaction between the impurity and
the boundary.
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APPENDIX: THE DENSITY CONTRIBUTION AT LONG
DISTANCES

Here we present derivation of the quantum contribution to
the density at long separation from the boundary. We begin
with the expression for ψ2(X ) that simplifies at X � 1. To
obtain it, we first notice that Eq. (25) leads to the first-order
differential equation:

dψ2(X )

dX
= − 2 tanh Xψ2(X )

+ 2 cosh2 X
∫ ∞

X
dY

f (Y )

cosh2 Y
. (A1)

In the regime X � 1, one can set tanh X to 1 and cosh−2 X to
0 in Eqs. (19), such that the source term becomes

f (Y ) = −
∑
k>λ

N2
k

(
1 − 2k2

εk
+ 3k4

4ε2
k

)
× [k sin(kY ) + 2 cos(kY )]2. (A2)

One can then perform the integration in Eq. (A1) for which
it suffices to approximate cosh2 Y by e2Y /4 and solve an
elementary integral. Solving the differential equation, we then
find

ψ2(X ) = − 1

4

∑
k>λ

N2
k

(
1 − 2k2

εk
+ 3k4

4ε2
k

)[
4 + k2

+ 4 − k2

1 + k2
cos(2kX ) + 4k

1 + k2
sin(2kX )

]
(A3)

at X � 1 (corresponding to x � ξ ).

The quantum contribution to the density (31) can now be
found more easily using Eq. (A3). It leads to

n(1)(X ) =
∫ ∞

0

dk

2π

{
1 − k√

4 + k2
+

[
5

3(4 + k2)

− 2

3(1 + k2)
− k

(4 + k2)3/2

]
×

[(
1 − k2

4

)
cos(2kX ) + k sin(2kX )

]}
. (A4)

The fist two terms in braces give a constant after the inte-
gration. The next two terms contain poles in the complex
plane and (after proper regularization) lead to exponentially
small result. Finally, the term with the denominator with the
power exponent 3/2 is responsible for the power-law decay of
n(1)(X ). The actual evaluation yields

n(1)(X ) = 3

π
+ 3

2
e−2X − 10

3
e−4X

+ (1 − 4X )[I0(4X ) − L0(4X )]

− 1

2
(1 − 8X )[I1(4X ) − L−1(4X )]. (A5)

Equation (A5) can be recognized in the density correc-
tion given by Eqs. (33) and (34). Apart from the ex-
ponential terms that are negligible at X � 1, the last
two terms in Eq. (A5) correspond to the second line of
Eq. (34) taken at large argument. They lead to the power-
law decay of the density correction at long separations
[cf. Eq. (37)].
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