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Koopman–von Neumann approach to quantum simulation of nonlinear classical dynamics
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Quantum computers can be used to simulate nonlinear non-Hamiltonian classical dynamics on phase space by
using the generalized Koopman–von Neumann formulation of classical mechanics. The Koopman–von Neumann
formulation implies that the conservation of the probability distribution function on phase space, as expressed
by the Liouville equation, can be recast as an equivalent Schrödinger equation on Hilbert space with a Hermitian
Hamiltonian operator and a unitary propagator. This Schrödinger equation is linear in the momenta because it
derives from a constrained Hamiltonian system with twice the classical phase-space dimension. A quantum
computer with finite resources can be used to simulate a finite-dimensional approximation of this unitary
evolution operator. Quantum simulation of classical dynamics is exponentially more efficient than a deterministic
Eulerian discretization of the Liouville equation if the Koopman–von Neumann Hamiltonian is sparse. Utilizing
quantum walk techniques for state preparation and amplitude estimation for the calculation of observables leads
to a quadratic improvement over classical probabilistic Monte Carlo algorithms.
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I. INTRODUCTION

A. Motivation

In principle, future error-corrected quantum computers
have the power to simulate quantum mechanical systems
exponentially more efficiently [1,2] than computers that are
bound to satisfy the laws of classical physics. The recent
growth in the capabilities of today’s quantum computing de-
vices has spurred great interest in quantum simulation and
they have been used to perform key demonstrations of quan-
tum calculations [3–5]. Yet, for many fields of science and
engineering, including biology, chemistry, and physics, a large
share of today’s computational resources are used for the
simulation of classical dynamics. Hence, it is important to
understand whether quantum computers can provide similar
gains in efficiency for the simulation of classical dynamics.

Classical dynamical systems are typically nonlinear and
many important examples are not Hamiltonian. In fact, they
are often dissipative. Since quantum computers can only per-
form linear unitary operations, it is not clear how nonlinear
nonunitary simulations can be performed efficiently. While
efficient quantum algorithms for linear ordinary differential
equations (ODEs) are known [6,7], an attempt to simulate
nonlinear dynamics by measuring the full state at each time
step and feeding this information into the next time step would
require an exponential amount of resources. The method of
Ref. [8] is logarithmic in the dimension of the system, but
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requires an exponential amount of resources in the number of
time steps and the polynomial degree of the nonlinearity.

B. Comparison of classical and quantum resource requirements

Often one simulates a finite number of trajectories of a
classical dynamical system in order to infer statistics of the
evolution of the probability distribution function (PDF) f .
A probabilistic description of a classical system is actually
similar in complexity to that of a quantum system. If there are
n classical bits, then describing the classical PDF,

f =
∑

j

f j | j〉〈 j| ∈ RN , (1)

over all N = 2n possible states | j〉 requires the specifica-
tion of N − 1 real numbers: the f j subject to the constraint∑

j f j = 1. The wave function for a pure quantum state holds
twice as much information due to the fact that the probability
amplitudes are complex. Specifying the wave function

ψ =
∑

j

ψ j | j〉 ∈ CN (2)

requires the specification of N − 1 complex numbers: the ψ j

subject to the constraint
∑

j |ψ j |2 = 1 and, since the overall
phase does not matter, a constraint on the phase, such as
Im (ψ0) = 0; i.e., 2(N − 1) real numbers. Hence, storing the
memory and performing an operation on each component of a
probabilistic classical system requires half of the resources of
that of a pure quantum state.

Specifying a mixed quantum state via the density matrix

ρ = ρ† =
∑

jk

ρ jk| j〉〈k| ∈ CN2
(3)
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requires specifying N2 − 1 real numbers: the ρ jk subject to
the constraints of Hermiticity, ρ = ρ†, and unit trace, tr ρ = 1
(and ρ must also be positive semidefinite). The diagonal en-
tries of ρ are sufficient to describe f , which implies that a
quantum simulation that experiences decoherence by the end
of the calculation could still potentially generate a useful sim-
ulation of the PDF. On the other hand, a classical Hamiltonian
system is defined on twice the phase-space dimension of the
quantized version of the classical system because it includes
both configuration space coordinates and conjugate momen-
tum (or velocity) coordinates, in which case, representing the
classical system also requires N2 − 1 real numbers. Thus, the
resource requirements for probabilistic classical systems and
quantum systems are quite similar.

A clear example of this fact is that simulating the
Schrödinger equation requires twice as many resources to
store the complex amplitude as simulating the diffusion equa-
tion for a real density. Hence, a “Wick rotation” is often
employed to convert between the Schrödinger equation and
the diffusion equation. For example, this Wick rotation is
used to convert between the temporal propagator of quantum
mechanics and the thermal partition function of statistical
mechanics [9], which is closely related to the propagator
of the diffusion equation. It is also used by a number of
quantum Monte Carlo algorithms [10] that seek to find eigen-
states of the Schrödinger equation by simulating the diffusion
equation.

As another example, consider simulation of the Liouville
equation, also known as the collisionless Boltzmann or Vlasov
equation, which describes the conservation of the classical
probability distribution function on phase space and provides
the foundation for nonequilibrium statistical mechanics. Such
simulations are commonly performed in diverse fields of sci-
ence such as population biology, condensed matter physics,
molecular dynamics, gravitation, and plasma physics. If there
are M particles traveling in d dimensions, then there are
Md classical degrees of freedom, and, for a Hamiltonian
system, the Liouville equation is a D = 2Md dimensional
partial differential equation (PDE). If one employs an Eulerian
discretization of phase space, by using L spatial grid points in
each dimension, then this requires an exponential amount of
memory and computational work, ∼LD, to process the data.

Notably, Ref. [11] devised a quantum algorithm for solving
the linearized Vlasov-Maxwell system that claims to allow
the simulation of Landau damping with exponentially reduced
computational work.

C. Quantization of classical dynamics

There are different strategies that one might potentially
employ to represent classical dynamics via quantum mechan-
ics. Perhaps the most obvious method is to use any valid
quantization that reduces to the classical system in the limit
of vanishing Planck’s constant. The quantum dynamics will
track the semiclassical dynamics for arbitrarily long times in
the limit that h̄ → 0. It is known that simulating the quan-
tized version of a classical system can be used to compute
dynamical quantities, such as the diffusion coefficient and
Lyapunov exponents, more efficiently [12,13]. This approach
has the benefit that the Schrödinger PDE is defined on 1

2 of

the classical phase-space dimension and, hence, is technically
cheaper to simulate than the Liouville PDE. It also shares
similarities with the manner in which quantum walks can be
used to accelerate classical Monte Carlo methods in order to
generically achieve a quadratic speedup [14–16].

However, for finite h̄, it is known that there are impor-
tant differences between the classical and quantum behavior
[17–19]. The wave function is not as localized as the classi-
cal PDF and, due to tunneling, can spread into regions that
are classically forbidden. Thus, the quantized version pro-
vides a natural coarse graining of classical phase space into
units of Planck’s constant h, often included as a normaliza-
tion constant for entropy in classical statistical mechanics.
Moreover, different components of the wave function carry
different complex phase factors which lead to interference
effects that are not present in the classical setting. Yet another
important qualitative difference is the emergence of dynami-
cal Anderson localization [20,21] and many-body localization
[22–24], which prevents the wave function from sampling
the entire classically chaotic region accessible to the classical
trajectories. Finally, while this approach is straightforward for
Hamiltonian systems, it is not trivial to determine a natural
quantization procedure for general non-Hamiltonian dynami-
cal systems.

D. Koopman–von Neumann approach

Nonlinear classical phase-space dynamics can be faith-
fully embedded within a quantum mechanical system, even
for equations of motion that are not Hamiltonian. Just af-
ter the birth of quantum mechanics, Koopman [25] and von
Neumann [26,27] realized that classical mechanics can be
formulated on Hilbert space in a manner that is exactly
analogous to quantum mechanics. The classical Liouville
equation, which expresses the conservation of probability on
phase space, and its space-time adjoint, which expresses the
evolution of a conserved quantity, can be recast as an equiv-
alent Koopman–von Neumann (KvN) Schrödinger equation
[21,28]. The KvN Hamiltonian [Eq. (20)] associated with the
KvN equation [Eq. (17)] is linear in the momentum and results
from the quantization of an associated constrained Hamil-
tonian system [29,30] on twice the classical phase-space
dimension, where the canonical momenta represent Lagrange
multipliers that enforce the classical equations of motions as
constraints [31]. Heisenberg’s uncertainty principle applies to
each of the original variables and its conjugate momentum,
i.e., the Lagrange multiplier, but does not affect any pair of
the original variables. Thus, there is complete fidelity to the
classical phase-space evolution.

Following the KvN approach in Sec. II leads to the simple
derivation of the generalized KvN equation [Eq. (17)], which
applies to arbitrary classical dynamical systems, starting from
the assumption that the probability distribution f is the inner
product of a complex probability amplitude ψ with its adjoint
ψ† [Eq. (12)].

To this author’s knowledge, Chirikov, Izrailev, and Shep-
elyanski [21] were the first to publish the generalized form
of the KvN equation, which applies to arbitrary classical dy-
namical systems, which they attribute to an earlier preprint by
Gorban and Okhonin [28]. These authors clearly appreciated

043102-2



KOOPMAN–VON NEUMANN APPROACH TO QUANTUM … PHYSICAL REVIEW RESEARCH 2, 043102 (2020)

the meaning of the KvN equation as a first-order Hermitian
PDE that exactly preserves the original phase-space dynamics
of the underlying classical system, and, as one which would
display the features of classical chaos rather than of quantum
chaos.

Chruściński [29,30] referred to the KvN Hamiltonian as the
“quantum mechanics of damped systems” because a damped
system can be embedded within the constrained Hamiltonian
discussed in Sec. II E. While this is a valid quantization of
the constrained Hamiltonian, it does not have the physical
meaning of being a “damped” quantum mechanical system,
which would typically be treated using the master equation.
Rather, it is the KvN Hamiltonian for an arbitrary classical
system of ODEs whether damped or not.

Understanding the properties of the unitary KvN evolution
operator, i.e., propagator or transfer operator, corresponding
to the Hermitian KvN Hamiltonian should be quite interesting
from the point of view of of dynamical systems theory. The
closely related Perron-Frobenius operator and Koopman op-
erator have been studied and used extensively to characterize
invariant measures [32] and to develop reduced order models
[33,34] for nonlinear dynamical systems. For divergence-
free, i.e., measure-preserving, flows, these three operators are
equivalent. The recognition that the KvN Hamiltonian for
dissipative systems still leads to unitary evolution has al-
ready found use in the development of high-order conservative
numerical discretizations of the advection operator for fluid
dynamics [35,36] and plasma physics [37].

The KvN approach can be applied to any system of dif-
ferential equations that are explicitly presented as first order
in time. For example, the method of lines can be used to
generate a numerical discretization of a PDE as a finite set
of ODEs that can be treated in an equivalent fashion. Hence,
the KvN approach can also be applied to important PDEs
in classical physics such as the Maxwell’s equations in con-
ducting media, the Navier-Stokes equation, the collisional
evolution of the kinetic PDF, and general N-body problems
in gravitation, plasma physics, and molecular dynamics. Al-
though the probabilistic description of a PDE might appear
to be expensive, this is the necessary setting for understand-
ing the evolution of the PDF over regions of phase space
and provides the essential framework for uncertainty quan-
tification. It is also necessary for describing interactions with
random processes and stochastic forcing terms which are
often used to model effects due “noise” and turbulence. In
fact, these examples are simply the probabilistic classical field
theory and statistical field theory analogs of quantum field
theory.

E. Semiclassical evolution

As far as the classical system is concerned, the dynamics of
the complex phase factor [Eq. (13)] associated with the wave
function is simply a choice of gauge. In fact, there are alternate
action principles that can be used to generate the Liouville
equation [38,39] and these formulations can also be used to
define the dynamics of the phase factor of an associated KvN
system.

Perhaps the most physically relevant dynamics for the
complex phase factor is determined by the semiclassical limit

of the quantum wave function. As is easily seen from Feyn-
man’s path integral formula, in this limit, the phase is given by
the classical action. The semiclassical phase factor, originally
derived by Van Vleck, must satisfy the Hamilton-Jacobi equa-
tion, and, a complete solution of the Hamilton-Jacobi equation
can be considered to be a function on phase space.

Kostant’s study of “prequantization” [40] was the first
work to explicitly propose an equivalence between the clas-
sical action and the complex phase of the KvN wave function,
as a function on phase space. Recently, Klein [41] suggested
that the semiclassical phase might be of some importance and
Bondar, Gay-Balmaz, and Tronci, [42] proposed that, in fact,
it is the semiclassical dynamics that is physically relevant.
These authors showed that the semiclassical KvN approach
could be used to couple a semiclassical KvN system to a quan-
tum system in a self-consistent manner. Note, however, that
both Refs. [41,42] neglected to discuss the importance of the
Maslov index [43–46] for obtaining the correct semiclassical
branch of the phase factor.

The focus in this work is on quantum simulation of
an arbitrary classical system of ODEs, and, developing a
self-consistent framework for the semiclassical dynamics of
Hamiltonian systems of ODEs will be left for future investi-
gations.

F. Quantum simulation

A quantum computer with finite resources can be used
to simulate a finite-dimensional approximation of the KvN
Hamiltonian operator. One must discretize the equations in
a manner that can be represented with a finite number of
qubits, which leads to a quantum mechanical coarse grain-
ing and regularization of phase space that is rather different
than that due to dissipative effects such as particle collisions.
In fact, one should squeeze the initial and final measure-
ment states to achieve the uncertainty limit set by numerical
discretization.

The KvN approach is analogous to the quantum simulation
of the Schrödinger equation, where one obtains an approxi-
mate solution to the wave function at every time step and has
the option of measuring the value of any given observable at
the end of the simulation. Hence, it scales rather differently
than the method of Ref. [8] because the required memory
does not grow exponentially with the number of time steps.
Moreover, because one simulates the evolution of the PDF
on phase space, one is effectively obtaining the solution for
“many trajectories” at once.

If the KvN Hamiltonian is sparse, e.g., local or banded,
then the quantum representation of the classical system leads
to exponential savings in the memory and computational work
[2] required for a deterministic Eulerian discretization of
the Liouville equation. Probabilisitic time-dependent Monte
Carlo (MC) algorithms [10] can also provide a similar sav-
ings, and it is important to compare the complexity of MC
simulation to that of KvN quantum simulation.

The “classical sampling” strategy of averaging the out-
come of multiple repeated measurements generally requires
an amount of computational work that scales as one over
the accuracy squared, i.e., 1/ε2, where ε is the error mea-
sured in units of standard deviations. However, the amplitude
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estimation algorithm [48,51], which is the prototypical “quan-
tum sampling” strategy, achieves a quadratic speedup relative
to classical sampling by amplifying the amplitude of the
desired state (an algorithm that can also be thought of as
a type of quantum walk [15]). By utilizing amplitude es-
timation, a number of quantum algorithms [16,47–51] can
compute numerical approximations to sums and integrals with
a quadratic speedup relative to classical Monte Carlo algo-
rithms, i.e., the accuracy generally decreases as the number of
samples itself so that the computational work scales as 1/ε,
up to polylogarithmic factors. This savings can be substan-
tial because obtaining a three-digit improvement in accuracy
would require 106 repetitions of the classical algorithm vs
103 repetitions of the quantum algorithm. An overview of the
complexity of quantum and classical probabilistic algorithms
for computing sums and integrals can be found in [52]. In the
typical cases of interest, a polynomial quantum speedup can
be achieved that approaches a quadratic speedup in the limit
of large dimensions or nonsmooth integrands.

The KvN approach naturally allows one to utilize the
algorithms specified by Montanaro in Ref. [16] (which com-
bine a number of seminal ideas from [47–50]) to calculate
observables with a quadratic speedup over classical Monte
Carlo algorithms. Efficient preparation of useful initial states
is also an important objective. There are a number of al-
gorithms based on quantum walks [14–16,53] that can be
used to perform the preparation of useful states, such as
Maxwell-Boltzmann and other equilibrium distributions, that
also achieve a quadratic speedup over classical Markov chain
Monte Carlo (MCMC) algorithms. Thus, the combination
of these methods allows the quantum simulation of KvN
classical dynamics to provide a quadratic speedup (up to poly-
logarithmic factors) over classical probabilistic algorithms.

G. Outline

The next section describes the derivation of the gener-
alized Koopman–von Neumann representation of classical
mechanics. Section III discusses the important special case
of Hamiltonian dynamics, including canonical Hamiltonian
systems, generalized Hamiltonian systems, and general varia-
tional systems. Section IV relates the KvN Hamiltonian to an
action principle for the wave function and uses Noether’s the-
orem to derive a number of conservation laws for the system.
Section V discusses the steps necessary to obtain high-fidelity
quantum simulation of a classical system. Finally, estimates of
the complexity of using the KvN approach to classical dynam-
ics are discussed in Sec. V C. A summary of the conclusions
is presented in the final section.

The Einstein summation convention is used throughout.

II. FROM LIOUVILLE TO SCHRÖDINGER

A. Classical dynamics on phase space

Consider the solution of a system of d classical ODEs with
coordinates x = (x1, x2, . . . ) ∈ Rd that evolve in time, t ∈ R,
via

ẋ := dx/dt = v(x, t ), (4)

where v(x, t ) is an arbitrary vector field.

FIG. 1. The probability distribution function (PDF) f (x, t ) is
advected by the flow v(x, t ), as described by the Liouville equation
[Eq. (8)].

There are two different ways to interpret the dynamics
of observables or functions on phase space, as illustrated in
Fig. 1. From the Lagrangian point of view, one can start
with a number of initial conditions and follow the dynamics
forward in time. In this picture, observables evolve via the
“total” time derivative d/dt . From the Eulerian point of view,
one can think of phase space as a manifold with coordinates
given by x. In this picture, observables evolve in time through
partial differential equations (PDEs) on phase space. These
two pictures are related through the equivalence between the
total time derivative and the advection operator

d/dt = ∂t + v · ∇ := ∂t + v j∂ j . (5)

Any constant of the motion ϕ(x, t ) is simply advected
along the flow by the advection operator

ϕ̇ := ∂tϕ + v · ∇ϕ = 0. (6)

The evolution operator, also known as the propagator or
transfer operator, corresponding to this PDE is known as the
Koopman operator [32].

The expectation value of an observable O(x, t ) is given by
integration over the probability distribution function (PDF)
f (x, t ):

〈O〉 =
∫

O f dd x. (7)

Thus, as explained in Appendix A, the PDF is a volume form
or phase-space density. Conservation of phase-space density
is described by the Liouville equation

ḟ + f ∇ · v = ∂t f + ∇ · (v f ) = 0. (8)

The propagator corresponding to this PDE is known as the
Perron-Frobenius operator [32]. The advection of the PDF by
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the flow is illustrated schematically in Fig. 1. The meaning of
the Liouville equation is that the PDF f (x, t ) is an invariant
measure of the velocity field v(x, t ) over space-time.

Using integration by parts over space-time∫
f (d/dt )ϕdd x dt = −

∫
ϕ(d/dt )† f dd x dt (9)

demonstrates that the the Liouville operator that appears in
Eq. (8) is the anti-Hermitian adjoint of the advection operator

−(d/dt )† = ∂t + ∇ · v := ∂t + ∂ jv
j . (10)

Iff the velocity is divergence free,

0 = ∇ · v := ∂ jv
j, (11)

then the advection operator [Eq. (5)] and the Liouville opera-
tor [Eq. (10)] are anti-Hermitian operators, i.e., Â = −Â†, and
hence identical. In the divergence-free case, the fact that these
operators are anti-Hermitian implies that the corresponding
evolution operator is unitary.

Discussion of the general form of the Liouville equation
on space-time and the corresponding conventions for the di-
vergence operator are discussed in Appendices A–C.

B. Koopman–von Neumann Hamiltonian

The Koopman–von Neumann (KvN) approach to classi-
cal mechanics parallels the development of the postulates of
quantum mechanics. The probability distribution function f
is defined as the inner product of the complex probability
amplitude ψ (x, t ), with its adjoint ψ†(x, t ),

f = ψ†ψ. (12)

Thus, the probability amplitude or wave function

ψ = f 1/2eiϕ (13)

is closely related to notion of the “square root” of f . The
expectation value of any phase-space observable O(x, t ) is
given by integration over the probability distribution function
(PDF) f (x, t ):

〈O〉 =
∫

Oψ†ψ dd x =
∫

O f dd x. (14)

This requires that the PDF is normalized to yield unit proba-
bility after integration over all of phase space.

Assume that the phase ϕ satisfies the general equation of
motion [41]

ϕ̇ = ∂tϕ + v · ∇ϕ = −W (x, t )/h̄. (15)

Then, taking the time derivative of Eq. (13) and using Eqs. (8)
and (16) proves that ψ satisfies the equation

ψ̇ + 1
2ψ∇ · v = ∂tψ + 1

2 (v · ∇ + ∇ · v)ψ = −iW ψ/h̄.

(16)

Simply multiplying this equation by ih̄ yields the generalized
Koopman–von Neumann (KvN) equation

ih̄∂tψ = −ih̄ 1
2 (v · ∇ + ∇ · v)ψ + W ψ. (17)

The relationship between the KvN equation and the
Schrödinger equation and the physical meaning of the W

function, which determines the phase factor ϕ is discussed
further in Sec. II D.

The KvN equation has the form of a Schrödinger equation

ih̄∂tψ = Ĥψ. (18)

As can be proven using integration by parts, the KvN Hamil-
tonian operator Ĥ is Hermitian over the Hilbert space inner
product defined on any two functions of phase space via

〈ϕ|ψ〉 :=
∫

ϕ†(x, t )ψ (x, t )dd x. (19)

Hence, define the usual momentum operator P̂ = −ih̄∇ and
position operator x̂ = x and promote any function of the coor-
dinates to an operator, e.g., v̂ = v(x̂, t ) and Ŵ = W (x̂, t ), via
the formal Taylor series expansion. Thus, one arrives at the
generalized Koopman–von Neumann Hamiltonian operator

Ĥ = 1
2 (P̂ · v̂ + v̂ · P̂) + Ŵ . (20)

Because the KvN Hamiltonian is Hermitian, the correspond-
ing KvN evolution operator is unitary. Koopman and von
Neumann only considered the case of Hamiltonian dynamics,
but the generalized form leads to a unitary evolution operator
for any set of ODEs, even if they are not Hamiltonian.

In contrast to the usual Schrödinger equation, the KvN
Hamiltonian is linear in momentum P̂ because the KvN equa-
tion is a first-order PDE rather than a second-order PDE.
Hence, there are a number of important differences between
the behavior of the KvN equation and the usual Schrödinger
equation as well as in the mathematical analysis of the two
types of equations.

The linear dependence on momentum implies that Heisen-
berg’s equations of motion for the original phase-space
variables are exactly the same as the original classical equa-
tions of motion

d x̂/dt = [x̂, Ĥ]/ih̄ = v(x̂, t ). (21)

Thus, the x̂ operators have the same solution as the original
classical equations of motion. In contrast, Heisenberg’s equa-
tions of motion for the conjugate momenta

dP̂/dt = [P̂, Ĥ]/ih̄ (22)

= −(∇v̂) · P̂ + ∇(
ih̄ 1

2∇ · v̂ − Ŵ
)

(23)

generically receive a “quantum correction” when compared to
the classical limit [Eq. (37)].

If there is a natural volume form on phase space, then
the PDF and the wave function can also be treated as scalar
fields. The Koopman–von Neumann approach for scalar fields
is discussed in Appendix B. The Koopman–von Neumann
equation on space-time is discussed in Appendix C.

C. Koopman–von Neumann evolution operator

The phase-space evolution described by Eqs. (8), (16), and
(17) can be solved using the method of characteristics. The
solution of the ODEs in Eq. (4) has the form x = ξ(x0, t ) for
the initial conditions x0 := x(t0). The inverse relation x0 =
ξ−1(x, t ) allows one to express the solution of these equations
in terms of the determinant

J0(x0, t ) = det
(
∂x j

0/∂xk
)∣∣

x=ξ(x0,t ). (24)
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The PDF is determined by

f (x, t ) = |J0(x0, t )| f (x0, t0) (25)

and, if one defines

W0(x0, t ) := W (ξ (x0, t ), t ), (26)

then the phase is determined by

ϕ(x, t ) = ϕ(x0, t0) −
∫ t

t0

W0(x0, t )dt/h̄. (27)

Thus, the evolution of the amplitude ψ can be determined
from the definition in Eq. (13):

ψ (x, t ) = J 1/2
0 (x0, t )e−i

∫ t
t0

W0(x0,t )dt/h̄
ψ (x0, t0). (28)

The choice of the complex phase of J 1/2
0 is irrelevant for

the classical system; for example, one could formally use
|J0|1/2 instead. However, the phase shift due to the square root
of the Jacobian �ϕ = −νπ/2 is given by the integer Maslov
index ν, which counts the number of zeros of the Jacobian
along the trajectory since the starting point [32,43–46]. This
phase shift must be correctly accounted for in order to obtain
the correct semiclassical phase factor.

The KvN evolution operator Û is defined to satisfy the
operator equation

ih̄∂t Û = ĤÛ . (29)

Using the general solution given above, the KvN evolution
operator can be written as

〈x|Ût,t0 |x0〉 = J 1/2
0 (x0, t )δd (x0 − ξ−1(x, t ))e−i

∫ t
t0

W0(x0,t )dt/h̄

= J −1/2
0 (x0, t )δd (x − ξ(x0, t ))e−i

∫ t
t0

W0(x0,t )dt/h̄
.

(30)

Again, because the generalized KvN Hamiltonian [Eq. (20)]
is Hermitian, the KvN evolution operator is unitary.

D. Semiclassical dynamics and the phase factor

The dynamics of the phase factor ϕ̇ = −W/h̄ has no effect
on the classical dynamics. Within the confines of classical
dynamics, the phase ϕ is not measurable, and, hence, the
choice of W is equivalent to a choice of gauge.

On the other hand, the semiclassical approximation to
quantum dynamics represents the propagator as a sum over
classical paths [9,32,46] and, in this case, the phase factor
is important for describing interference between paths. Sim-
ilarly, when the classical system is coupled to a quantum
system, then the dynamics is also sensitive to the semiclassical
phase factor introduced by the semiclassical system [42]. In
other words, Schrödinger’s cat has rather different semiclassi-
cal phase factors depending on whether it is dead or alive, and,
because the cat is entangled with the quantum part of the sys-
tem, which may be in a superposition of states, this can lead to
measurable interference effects due to the semiclassical phase
of the cat itself.

If the classical system is itself a Hamiltonian system (see
Sec. III), with the Hamiltonian H (q j, p j, t ) specified as a
function of generalized coordinates q j and conjugate mo-
menta p j , then there is a natural choice of phase factor

[40–42]. If the phase velocity is determined by the classical
Lagrangian L,

h̄ϕ̇ = −W = L := p j∂p j H − H, (31)

then the phase factor is equal to the classical action and cor-
responds to the semiclassical phase. The semiclassical phase
factor is related to the momentum through the eikonal approx-
imation

h̄∂q j ϕ|q0,t = p j, (32)

and satisfies the Hamilton-Jacobi equation

h̄∂tϕ|q0,q = −H (q j, p j, t ). (33)

Here, the partial derivatives are taken as constant with respect
to the initial value of the coordinates q j

0 or some other con-
stants of the motion. Taking the total time derivative of ϕ

yields Eq. (31).
For short time intervals, only a single classical path will

generically contribute to the propagator. However, for longer
time intervals, multiple classical paths can contribute, each
with a separate phase. In order to obtain the semiclassical
phase factor for each path, one must take care to ensure
that the Maslov index [43–45] is correctly accounted for, by
choosing the correct phase of the square root of the Jacobian
J 1/2

0 in Eq. (28). This generates an additional −π/2 phase
jump whenever J0 passes through zero and leads to an addi-
tional overall phase shift �ϕ = −νπ/2, where ν counts the
number of times that J0 passes through zero along the trajec-
tory [32,46]. In other words, as the Jacobian passes through
zero, the square root periodically follows the sequence of
branches: (1,−i,−1, i). (This important fact appears to have
been neglected in the discussion of Refs. [41,42].)

It is also possible to give the amplitude additional index
structure ψi jk..., so that the various components transform as a
representation of the Poincaré group under changes of refer-
ence frame. Clearly, this extension is important for describing
the semiclassical evolution of higher spin fields as well as
for describing interactions with gauge fields. While this does
not affect the classical dynamics, the semiclassical dynamics
could certainly be an interesting avenue to pursue in future
work.

In the more general non-Hamiltonian case considered here,
a natural choice of ϕ̇ is not immediately obvious. The trivial
choice W = 0 corresponds to the constrained classical action
[Eq. (36)] considered in the next subsection.

The general case is also related to the quantum mechanics
of a charged particle in an N-dimensional vector potential
A(x, t ) and scalar potential �(x, t ) in the limit that the canon-
ical momentum is much smaller than the vector potential
|P| � |qA|, where q is the charge of the particle. In this limit,
one can identify the relations

mv = −qA, W = mv2/2 + q�, (34)

where m is the mass of particle. Thus, in this limit, the choice
of h̄ϕ̇ = −W is equivalent to a choice of scalar potential �.
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FIG. 2. The constrained Hamiltonian H [Eq. (35)] is defined
on an extended phase space that includes the original phase-space
coordinates x = (x1, x2, . . . ), as well as the canonically conjugate
momenta P = (P1, P2, . . . ), which act as Lagrange multipliers.

E. Constrained Hamiltonian

In the limit h̄ → 0, the KvN Hamiltonian of Eq. (20) be-
comes the classical Hamiltonian

H(x, P, t ) := P · v(x, t ) + W (x, t ). (35)

Because it is linear in the momentum P, this corresponds
to a constrained Hamiltonian system. Any set of N classical
ODE’s can be generated by using the action principle corre-
sponding to this Hamiltonian [31]

S[x, P; t] :=
∫

[P · (ẋ − v) − W ]dt (36)

which can be interpreted as as a sum over constraints (see
Fig. 2). Variation with respect to the Lagrange multipliers Pj

enforces the classical equation of motion for the coordinates
x j . Variation with respect to the coordinates, generates the
classical equation of motion for the Lagrange multipliers

Ṗ = −(∇v) · P − ∇W (37)

[compare to Eq. (22)]. The equations of motion ensure that
the coordinate transformation between different points in time
always remains symplectic and, in fact, canonical.

The constrained Hamiltonian can be quantized via any ac-
ceptable quantization procedure that reduces to Eq. (35) in the
limit h̄ → 0. The symmetric Weyl quantization rule leads to Ĥ
in Eq. (20). The constrained Hamiltonian in Eq. (35) implies
that the quantized variables x̂i commute with one another.
In contrast, other types of constraints, e.g., holonomic con-
straints, would require modifying the Poisson bracket to the
Dirac bracket [54]. This would lead to nontrivial commutators
and nontrivial uncertainty relations which could potentially
cause deviations from the exact classical dynamics.

F. General examples

Consider a single autonomous ODE in a single variable x,

ẋ = v(x). (38)

The KvN Hamiltonian operator is simply

Ĥ = 1
2 (P̂v̂ + v̂P̂) = −ih̄

(
v∂x + 1

2v′). (39)

The equation of motion can be derived from the constrained
Hamiltonian H = Pv. In addition to Eq. (38), the canonical
momentum satisfies the equation

Ṗ = −Pv′(x). (40)

The classical solution to this equation is simply

P = P0v0/v(x). (41)

Since these equations are symplectic, the phase-space area is
conserved, as can be checked directly from the equations of
motion. Heisenberg’s equation of motion is

dP̂/dt = − 1
2 (P̂v̂′ + v̂′P̂) = −v̂′P̂ + ih̄v̂′′. (42)

A specific instance of this case is given by v = γ x, where
the sign of γ determines whether the motion exhibits ex-
ponential growth or damping. The constrained Hamiltonian
is simply H = Pγ x and the classical solutions on extended
phase space are

x = x0eγ t , P = P0e−γ t . (43)

The corresponding KvN Hamiltonian is

Ĥ = 1
2γ (P̂x̂ + x̂P̂) = −ih̄γ

(
x∂x + 1

2

)
. (44)

Consider the general linear equation set

ẋ = A · x. (45)

The constrained Hamiltonian

H = P† · A · x (46)

leads to the additional equations of motion

Ṗ = −A† · P. (47)

The corresponding KvN Hamiltonian is given by

Ĥ = 1
2 (P̂† · A · x̂ + x̂† · A · P̂) (48)

= −ih̄
(
x̂† · A · ∇ + 1

2 tr A
)
. (49)

Since the last two examples had linear equations of mo-
tion resulting from Hamiltonians that are quadratic forms,
Heisenberg’s equations of motion are the same as the classical
equations. The Hermitian block off-diagonal quadratic form
of the Hamiltonian leads to a symplectic block-diagonal form
for the equations of motion.

III. HAMILTONIAN DYNAMICS

A. Canonical Hamiltonian systems

Hamiltonian systems of differential equations are of fun-
damental importance to physics and mathematics. Canonical
coordinates are defined by pairs of configuration space coor-
dinates q j and the corresponding conjugate momenta p j . In
canonical coordinates, Hamilton’s equations take the canoni-
cal form

q̇ j = ∂p j H, ṗ j = −∂q j H. (50)

Hamilton’s equations are divergence free in canonical
coordinates, which implies that the natural measure is the
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canonical measure dd q dd p. The expectation value of any
phase-space observable O(q j, pk, t ) is given by integration
over the probability distribution function (PDF) f (q j, pk, t ) =
ψ†ψ :

〈O〉 =
∫

Oψ†ψ dd q dd p. (51)

Similarly, the inner product of any two functions is defined via

〈ϕ|ψ〉 =
∫

ϕ†ψ dd q dd p. (52)

Since Hamilton’s equations are divergence free, the Liou-
ville equation

ḟ = ∂t f + { f , H} = 0 (53)

is equivalent to its space-time adjoint, advection by the flow.
Here, the canonical Poisson bracket is defined as

{a, b} = ∂q j a∂p j b − ∂pj a∂q j b. (54)

Let us now introduce a new convention for the Lagrange
multipliers (Pj, Qk ) so that they are conjugate to the (q j, pk )
in the “canonical” manner

{q j, Pk} = δ
j
k , {Q j, pk} = δ

j
k . (55)

The constrained Hamiltonian takes the form

H = (Pj∂p j + Q j∂q j )H. (56)

The equations of motion of the Lagrange multipliers are

Q̇ j = (Pk∂pk + Qk∂qk )∂p j H, (57)

Ṗj = −(Pk∂pk + Qk∂qk )∂q j H. (58)

The usual Dirac quantization procedure for Hamiltonian
systems promotes the classical Poisson bracket to commuta-
tion relations. Instead, the KvN approach only promotes the
Poisson brackets of the Lagrange multipliers [Eq. (55)] to
commutation relations via the definitions

P̂j = −ih̄∂q j , Q̂ j = ih̄∂pj . (59)

Since the canonical equations of motion are divergence free,
the KvN Hamiltonian is simply

Ĥ = P̂j (∂p j Ĥ ) + Q̂ j (∂q j Ĥ ) + Ŵ . (60)

In this formulation, the Heisenberg uncertainty principle only
applies to the pairs (q j, Pj ) and (p j, Q j ), but not to the pairs
of (q j, p j ).

B. Canonical Hamiltonian examples

Consider the classical harmonic oscillator, with Hamilto-
nian

H = ω0(q2 + p2)/2. (61)

The dynamics can be exactly represented by the constrained
Hamiltonian

H = ω0(pP + qQ). (62)

The additional nontrivial equations of motion for the La-
grange multipliers are

Q̇ = ω0P, Ṗ = −ω0Q. (63)

Hence, the dynamics on the extended phase space consists of
two harmonic oscillators which rotate in the same direction.
The quantum Hamiltonian is

Ĥ = ω0(pP̂ + qQ̂) = −ih̄ω0∂θ , (64)

where tan(θ ) = −p/q.
Consider the dynamics of an integrable system of nonlinear

oscillators defined by the Hamiltonian H0(Jj ), where Jj are the
conserved action variables corresponding to each oscillator.
The evolution of the conjugate phases θ j is determined by the
frequencies ω

j
0 := ∂Jj H0. If one defines the number operators

as

N̂j = −i∂θ j , (65)

then, this leads to the KvN Hamiltonian

Ĥ = h̄ω
j
0N̂j . (66)

While the number operators are conserved like the action
coordinates, the angle operators defined by

�̂ j = ih̄∂Jj (67)

satisfy the Heisenberg equations of motion

d�̂ j/dt = N̂k∂Jj h̄ωk
0. (68)

C. Generalized Hamiltonian systems

In general, a Hamiltonian system of equations is defined
both by the Hamiltonian H (x, t ) and by the Poisson bracket
[55,56]

{a, b} = J jk∂ ja∂kb. (69)

The Poisson 2-vector J jk (x, t ) must be an antisymmetric ten-
sor and must satisfy the Jacobi identity

0 = {{a, b}, c} + {{b, c}, a} + {{c, a}, b} (70)

which yields the relation

Jil∂l J
jk + J jl∂l J

ki + Jkl∂l J
i j = 0. (71)

The classical equations of motion generated by the Hamilto-
nian H (x, t ) are

ẋ j = v j = {x j, H} = J jk∂kH. (72)

Following the general procedure outlined previously, the
corresponding constrained Hamiltonian is

H = Pj{x j, H} = PjJ
jk∂kH + W. (73)

This leads to the following dynamics of the Lagrange multi-
pliers:

Ṗi = −Pj∂i(J
jk∂kH ) − ∂ jW. (74)

The KvN Hamiltonian for generalized Hamiltonian systems is

Ĥ = 1
2 (P̂j v̂

j + v̂ j P̂j ) + Ŵ (75)

= 1
2 (P̂jJ

jk∂kĤ + J jk∂kĤ P̂j ) + Ŵ (76)

= 1
2 (P̂j{x̂ j, Ĥ} + {x̂ j, Ĥ}P̂j ) + Ŵ . (77)
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Once again, this form follows the convention for general sys-
tems of differential equations, but does not correspond to the
convention used for canonical Hamiltonian systems used in
Sec. III A.

When the generalized Hamilton’s equations of motion are
nonsingular, they have a canonical definition of the volume
form. Thus, as explained in Appendix E, one can also derive
a corresponding KvN equation where the PDF and the wave
function are treated as scalar fields.

D. General variational systems

A general variational system of equations is defined by
extremizing the action principle [55]

S[x; t] =
∫

[α j (x, t )dx j − H (x, t )dt]. (78)

The action is defined in terms of the Poincaré 1-form, α =
α jdx j . (For an introduction differential forms and exterior
calculus, see Refs. [57,58].) This leads to the equations of
motion

� jk ẋk = ∂ jH + ∂tα j, (79)

where the symplectic 2-form � := dα, which defines the
Lagrange bracket, is the exterior derivative of the Poincaré
1-form, i.e., in components

� jk = ∂ jαk − ∂kα j . (80)

These equations can be written in the form of Hamilton’s
equations of motion

ẋ j = v j := J jk (∂kH + ∂tαk ) (81)

with the identification of the Poisson tensor as the inverse of
the Lagrange form J = �−1. The Jacobi identity follows from
the fact that the symplectic 2-form is closed since it is exact
d� = d2α = 0.

The canonical equations of motion result from the Poincare
1-form α = p jdq j . This yields the canonical symplectic 2-
form

� = dp j ∧ dq j (82)

and the canonical Poisson 2-vector

J = ∂q j ∧ ∂p j . (83)

Generalized Hamiltonian systems and general variational
systems are equivalent when the symplectic 2-form � is non-
degenerate. For example, Hamilton’s equations in Eq. (72)
result when ∂tα = 0. Alternatively, the general variational
equations in Eq. (79) can be embedded within Hamilton’s
equations on extended phase space, with the additional co-
ordinates (τ, pτ ) and the Hamiltonian H̄ = H + pτ .

The variational equations of motion [Eq. (79)] result from
the constrained Hamiltonian

H = X j (∂ jH + ∂tα j ) + W = X j� jkv
k + W, (84)

where, now, the X j are the Lagrange multipliers that enforce
the variational equations of motion. The action principle is
now

S[x, X ; t] =
∫

[X j� jk (ẋk − vk ) − W ]dt . (85)

The Hamiltonian form in Eq. (73) and the variational form in
Eq. (84) are equivalent with the definition

X k = PjJ
jk . (86)

Due the fact that the Poisson tensor is conserved by the
equations of motion d�/dt = 0 (proven in Appendix D), the
Lagrange multipliers X j satisfy the equations of motion

Ẋ j = −J jk[X l∂k (∂lH + ∂tαl ) + ∂kW ]. (87)

The analogous quantized operators X̂ j should be given a Her-
mitian form

X̂ k = 1
2 (Ĵ jkP̂j + P̂j Ĵ

jk ). (88)

Thus, the KvN Hamiltonian for general variational systems is

Ĥ = 1
2 (P̂j v̂

j + v̂ j P̂j ) + Ŵ (89)

= 1
2 (X̂ j�̂ jk v̂

k + v̂k�̂ jk X̂ j ) + Ŵ . (90)

The final form corresponds to the convention that was used
for canonical Hamiltonian systems in Sec. III A.

For general variational systems, there is a canonical
volume form induced by the symplectic 2-form. Thus, as
explained in Appendix E, one can also derive a correspond-
ing KvN equation where the PDF and the wave function are
treated as scalar fields.

IV. WAVE ACTION PRINCIPLE
AND CONSERVATION LAWS

A. Action principle for general systems

The Lagrangian that generates the KvN equation for the
wave function (16) as well as the Liouville equation and its
adjoint, Eqs. (6) and (8), is given by

L =
∫

ψ†(ih̄∂t − Ĥ)ψ dd x (91)

= −
∫

f (h̄ϕ̇ + W )dd x, (92)

where integration by parts is used to derive the final expres-
sion. The Hamiltonian that generates these partial differential
equations is then given by

H =
∫

ψ†Ĥψ dd x (93)

=
∫ [

−i
h̄

2
ψ†v · ∇ψ− i

h̄

2
ψ†∇ · vψ+ W ψ†ψ

]
dd x (94)

=
∫

[h̄ f v · ∇ϕ + W f ]dd x. (95)

Again, integration by parts is used to derive the final expres-
sion. The definition of the Hamiltonian also allows one to
derive the expression

H = Im
∫

ψ†ih̄∂tψ dd x = −
∫

f h̄∂tϕ dd x. (96)

There are a number of additional action principles that have
been discussed in the literature [38,39,42]. After conversion to
Koopman–von Neumann form, these action principles can be
interpreted as providing an alternate dynamics of the phase
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factor. Hence, it may be interesting to explore the KvN dy-
namics that is implied using these alternate formulations as
well.

B. Action principle for canonical Hamiltonian systems

For the case of a canonical Hamiltonian system, with
Hamiltonian H (q j, p j, t ), integration by parts allows one to
express the Hamiltonian in the form

H =
∫

[−ih̄{ψ†, ψ}H + W ψ†ψ]dd x (97)

=
∫

[h̄{ f , ϕ}H + W f ]dd x. (98)

With the gauge choice h̄ϕ̇ = −W = 0, the probability den-
sity that determines the KvN Hamiltonian density H fH is

fH = −ih̄{ψ†, ψ} = { f , h̄ϕ}. (99)

This will only be equal to f , iff the phase ϕ is canonically
conjugate to ln ( f )

{ln ( f ), h̄ϕ} = 1. (100)

Due to the Jacobi identity, this condition is preserved by the
dynamics, so that if Eq. (100) is true as an initial condition,
then it is true for all time. The same is true if both f and W
are functions of adiabatic invariants alone, in which case the
Hamiltonian density becomes (H + W ) f .

For example, consider the d-dimensional Maxwellian dis-
tribution function

f = exp (−p2/2mT )/(2πmT )d/2, (101)

where pi = mgi jv
j and T is the temperature. A family of

solutions for the conjugate phase factor is given by

h̄ϕ = (k jq
j/kiv

i )T . (102)

More generally, consider action-angle coordinates (Jj, θ
j ),

where θ̇ j = ω j (J ) = ∂Jj H . If the PDF is a function of the
action alone, then a solution for the phase is

h̄ϕ = k jθ
j/ki∂Ji log ( f ), (103)

and, if the PDF is a function of the Hamiltonian alone, f (H ),
then

h̄ϕ = (k jθ
j/kiω

i )dH/d log ( f ). (104)

In the canonical case, the Poisson bracket can also be
expressed as a divergence, so that

fH = ∂ j ( f J jk h̄∂kϕ), (105)

and this form of fH as a divergence is also correct for gen-
eralized Hamiltonian dynamics. Reference [42] claimed that
Eq. (100) is not compatible with the fact that fH can be written
as a divergence, Eq. (105), and, thus, as a surface integral,
which they assumed can be made to vanish at the boundary.
However, in order to satisfy Eq. (100), the phase function ϕ

must be multiple valued, so that the surface integral does not
vanish.

Alternatively, assume that the semiclassical phase factor is
chosen so that it is equal to the classical action [40–42]

h̄ϕ̇ = −W = L = p jq̇
j − H. (106)

In this case, using integration by parts, the difference between
fH and f is determined to be [42]

fH − f = ∂ j[ f J jk (h̄∂kϕ − αk )]. (107)

As proven in Appendix G, because the semiclassical phase
factor also satisfies the Hamilton-Jacobi equation, the differ-
ence fH − f vanishes identically and the final expressions
for the Hamiltonian in Eqs. (95)and (96), precisely yield the
classical energy. For example, in action-angle coordinates,
where H0(J ) alone, the action is simply

h̄ϕ = Jj
(
θ j − θ

j
0

) − H0(t − t0). (108)

Thus, the final expressions for the Hamiltonian in Eqs. (95)
and (96) precisely yield the classical energy density H0 f . This
condition can be used to simplify a number of the results of
Ref. [42].

C. Symmetries and conservation laws

Noether’s theorem (explained in Appendix F) states that a
symmetry of the equations of motion leads to a conservation
law for a corresponding density Q. For the KvN Lagrangian,
there are a number of conservation laws in the form of a space-
time divergence

∂tQ + ∇ · vQ = 0. (109)

The invariance of the Hamiltonian under a constant change in
phase factor ∂ϕH implies that the KvN number density ψ†ψ =
f is conserved. If the KvN Hamiltonian is invariant in time,
∂tĤ, then the KvN Hamiltonian density ψ†Ĥψ is conserved.
Similarly, if the KvN Hamiltonian is invariant with respect
to coordinate x j so that ∂ jĤ = 0, then the KvN momentum
density ψ†P̂jψ is conserved.

The conservation of probability density f also implies that,
if the system results from a classical Hamiltonian H (q j, p j ),
that is independent of time ∂t H = 0, then the classical energy
density H f is conserved. Similarly, if the classical Hamil-
tonian is independent of one of the coordinates q j so that
∂q j H = 0, then the classical momentum density p j f is con-
served. If W is chosen to be a function of conserved quantities,
e.g., H and/or pj , etc., then the classical Hamiltonian conser-
vation laws imply that the KvN counterparts also hold true.

V. QUANTUM SIMULATION OF CLASSICAL DYNAMICS

A. Heisenberg uncertainty

The only nontrivial commutators in the extended phase
space are

[x̂ j, P̂j] = ih̄. (110)

Hence, the only nontrivial Heisenberg uncertainty relations
are

σx j σPj � h̄/2, (111)

where the uncertainty in quantity A is defined via

σ 2
A = 〈Â2〉 − 〈Â〉2

. (112)

Thus, it is possible to make a simultaneous measurement of all
of the classical phase-space variables x j or all of the Lagrange
multipliers Pj .
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FIG. 3. A numerical discretization of phase space implies fi-
nite numerical widths �x and �P. However, the phase-space area
�x�P = h/L due to the discretization is much smaller than than the
Heisenberg limit allows. Squeezed states can be used to reduce the
uncertainty to the numerical discretization limit, so that σx = �x.

B. Numerical discretization

In this section, the Einstein summation convention is not
used.

In order to represent the classical phase-space dynam-
ics with a finite number of qubits, one must construct
a finite-dimensional numerical approximation of the KvN
Hamiltonian. Assume that each coordinate x j is periodic on
the length X j

max, and is represented with an integer number of
levels Lj , so that the level spacing is �x j = X j

max/Lj . Then,
the Fourier representation of the conjugate momenta implies
that these coordinates are also periodic and have Lj levels with
level spacing �Pj = h/X j

max and the range Pj,max = hLj/X j
max.

Thus, as illustrated in Fig. 3, the phase-space uncertainty due
to the discreteness of the representation �x j�Pj = h/Lj is
much smaller than the Heisenberg limit allows.

Often, one considers coherent states to be the analog of
classical states. However, a coherent state, which saturates the
Heisenberg bound, will have a width that is large compared
to the classical level spacing, i.e., σx j /�x j = (Lj/4π )1/2 and
σPj /�Pj = (Lj/4π )1/2. Since one is only interested in the
dynamics of the original phase space, one can use squeezed
states to reduce the uncertainty in the x j coordinates of interest
and increase the uncertainty in the Pj coordinates. Squeezing
the uncertainty in x j by the factor of L−1/2

j reduces the quan-
tum uncertainty to the limit set by numerical discretization
σx j = �x j . This increases the uncertainty in Pj by the fac-
tor L1/2

j so that σPj = h̄L j/X j
max = (Lj/4π )�Pj . This implies

that the relative uncertainty satisfies σx j /X j
max = 1/Lj while

σPj /Pj,max = 1/4π . Thus, one can use squeezed states as ini-
tial conditions and as final measurement states in order to
perform measurements that saturate the uncertainty limit set
by numerical discretization.

C. Complexity estimates

It is already known that there are quantum algorithms that
can speed up the solution of a linear system of ordinary dif-
ferential equations [6] and linear partial differential equations,

such as wave equations [7]. Can this be extended to nonlinear
systems?

The KvN representation of classical dynamics implies that
Lloyd’s proof [2] that a quantum computer can be used to
accelerate quantum simulation can also be applied to classical
dynamics, even for non-Hamiltonian systems. If the quantum
Hamiltonian in Eq. (20) is sufficiently sparse, e.g., because it
is local, then one can break the operator into a small num-
ber m of noncommuting parts Ĥ = ∑m

j=1 Ĥ j , where m is
independent of the number of states N . Application of the
Trotter-Suzuki product formula can be used to generate an
efficient simulation of the unitary evolution with error propor-
tional to

∑
j 
=k 〈[Ĥ j, Ĥk]〉. Recent results for general s-sparse

Hamiltonian simulation [59] using n qubits imply that the
quantum simulation complexity, neglecting polylogarithmic
factors, is proportional to snT where T = ||Ĥt ||max can be
interpreted as the number of required time steps. This implies
large gains over an Eulerian discretization of the Liouville
equation.

For example, consider the case of M particles that experi-
ence s-sparse local interactions between them, traveling in 2d
phase-space dimensions, including both configuration space
and momentum (or velocity) space, so that the total phase-
space dimension is D = 2dM. If an Eulerian discretization is
employed on a grid of L = 2� points in each direction, then
this requires LD = 2�D degrees of freedom, and n = �D qubits
to represent the PDF. If the kinetic energy is quadratic in
velocity, then the maximum kinetic energy scales as T ∼ dL2,
so that

snT ∼ s�DdL2 = 2s�Md2L2. (113)

Thus, as compared to a classical Eulerian discretization of the
Liouville equation, this implies an exponential speedup in D
and a polynomial speedup in L. If the number of dimensions
D is large, then the degree of the polynomial speedup D/2 is
also large. Similar estimates can also be obtained for the max
norm of the commutator. Note, however, that some important
calculations can require a large number of time steps [13],
potentially scaling as a power of D, and this would reduce the
expected savings to polynomial at best.

However, the more interesting comparison is between the
quantum simulation and the best probabilistic classical al-
gorithm. For high-dimensional PDEs, the best probabilistic
classical algorithms that are known are typically some form
of generalized time-dependent Monte Carlo (MC) algorithm,
broadly including particle-based techniques such as particle-
in-cell (PIC) and molecular dynamics within the framework
of Markov chain Monte Carlo (MCMC). With appropriate
assumptions, classical MC algorithms can also provide a large
speedup over Eulerian discretization [10,52] because the ac-
curacy of the results will scale as the square root of the
number of samples, i.e., the computational work scales as
∼ε−2, where ε is the required accuracy. However, for quantum
algorithms based on quantum walks, the accuracy generically
decreases as the number of samples itself [14,16,52], which
leads to a quadratic improvement in computational work,
∼ε−1, for a given accuracy.

The computational complexity of an MC algorithm is sim-
ilar in form to the estimate above for the quantum KvN
algorithm. Since one must simulate K trajectories in D =
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2dM dimensions for a number of time steps T , with r-sparse
interactions in the equations of motion per dimension, the
complexity is

KrDT = K2rdMT . (114)

The key point is that the number of trajectories required to
achieve a given accuracy ε scales as K ∼ O(1/ε2), so that the
overall complexity is O(rDT/ε2).

In order to estimate the value of an observable with a given
specified accuracy ε, the quantum simulation of the KvN
Hamiltonian must also be repeated multiple times. If one sim-
ply averages the result of multiple trials, then the number of
trials required to achieve a given accuracy follows the classical
sampling law O(1/ε2), and the overall complexity would be
similar to a classical MC algorithm [47]. However, quantum
algorithms based on amplitude amplification and estimation
[16,47–52] are able to compute numerical approximations
to sums and integrals with a quadratic speedup relative to
classical probabilistic algorithms, i.e., the accuracy generally
decreases as the number of samples itself so that the number
of times that the quantum simulation must be repeated typi-
cally follows the “quantum sampling law” K ∼ O(1/ε), up to
polylogarithmic factors.

The expectation value of an observable 〈O〉 is determined
by the sum

〈O〉 =
∑

x

O(x) f (x). (115)

For any function on phase space φ(x), define the state |φ〉 via

|φ〉 =
∑

x

φ(x)|x〉
/√∑

x

|φ|2, (116)

where |x〉 is an element of the computational Hilbert space
of dimension N . The KvN simulation computes the state |ψ〉
where ψ = f 1/2eiϕ . In order to compute an observable 〈O〉,
append an ancillary qubit to the Hilbert space and compute
the state [16,47,50]

R̂φ|ψ〉|0〉 = N−1/2
∑

x

|x〉(φ′(x)|0〉 + φ(x)|1〉) (117)

defined by

φ(x) := O1/2ψ, (118)

φ′(x) := (1 − |φ|2)1/2eiϕ′
. (119)

Given |ψ〉, this state can readily be computed by using a quan-
tum computer to simulate a reversible classical computation of
φ. The reversible calculation requires two KvN simulations:
one to compute φ = O1/2ψ and one to uncompute φ, which
requires running the KvN simulation backward in time. Am-
plitude estimation [48] of the amplitude of the ancillary |1〉
state then yields an efficient estimate of the value of 〈O〉. This
is easily seen after rewriting the operation R̂φ as a rotation of
the target space

R̂φ

(|ψ〉|0〉
|ψ〉|1〉

)
=

(
cos (θ ) sin (θ )

− sin (θ ) cos (θ )

)(|φ′〉|0〉
|φ 〉|1〉

)
(120)

by the angle sin (θ ) = 〈O/N〉1/2. Since each evaluation of R̂φ

and R̂†
φ uses two evaluations of |ψ〉, the amplitude amplifica-

tion algorithm requires four KvN simulations to be performed
per step. Therefore, in order to achieve accuracy ε, the KvN
simulation must be repeated 4K ∼ O(1/ε) times and the over-
all complexity is O(sDT/ε).

A number of useful quantum algorithms that can be di-
rectly applied to compute the value of an arbitrary bounded
observable with a desired accuracy and a desired probability
of success, as well as their complexity including polylogarith-
mic factors, are given by Montanaro in Ref. [16]. In order to
compute the value of an observable with either fixed abso-
lute accuracy or fixed relative accuracy, one can use either
Algorithm 3 or 4 of [16], respectively. If the observable is
non-negative, O(x) � 0, such as an even moment of the PDF,
then another choice is to apply Algorithm 2 of [16] directly.
If the observable is bounded between 0 and 1, then one can
use either Algorithm 1 of [16] or algorithms mean1 or mean2
of [50]. The probability that a subset of phase space V is
occupied is an excellent example of the latter because, in this
case, the observable O(x) is simply the indicator function that
returns 1 if x ∈ V and 0 otherwise, and 〈O〉 = ∑

x∈V f (x).
Other algorithms in the literature can also be employed

with minor modifications of the general procedure outlined
above. For example, the first algorithm discussed in [47] relies
instead on performing a rotation by |φ|2 = O f . The second
algorithm discussed in [47], and used to prove Theorem 1
of [49], uses the standard quantum counting algorithm [48]
by digitizing the computation of the value of O f within an
ancillary space of qubits. As above, these algorithms can be
performed by simulating a reversible classical computation
of φ.

In the typical case of quantum simulation and in the typ-
ical case of linear evolution, one can often argue that if the
state of interest is smooth, e.g., because it is a ground state
or a low-lying excited state, then the max norm may be a
severe overestimate of the errors involved in computing the
measured expectation values. If the solution is well resolved,
then Fourier harmonics of the probability distribution should
decay exponentially with increasing L. This can potentially
reduce the actual expectation value of the error to become
exponentially small and can potentially imply an exponential
speedup [60]. However, for nonlinear classical dynamics, the
PDF generically develops finely mixed phase-space structure
that approaches a singular and potentially fractal distribution
in the infinite time limit [61]. This implies that this kind of
argument is not likely to apply in the setting of nonlinear
classical dynamics.

There are also additional restrictions on the ability of
quantum algorithms to speed up the calculation. A general
quantum simulation program must have initialization, simu-
lation, and output (measurement) subprograms. Care must be
taken to ensure that the complexity of the initialization and
output stages are less than or equal to the simulation stage.
This implies that it is not desirable to set each initial condition
individually or to measure the entire PDF over all states. The
input states should be relatively easy to construct so that the
initialization step is “sparse.” For example, it is often desirable
initialize the PDF with a value that is close to an equilibrium,
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e.g. Maxwell-Boltzmann, distribution. There are a number
of algorithms based on quantum walks [15,16,53] that ap-
proximate useful partition functions with a quadratic speedup
over classical MCMC algorithms. Similarly, the output should
consist of a relatively small number of measurements, e.g.,
low-order moments of PDF, so that the measurement step is
also “sparse.” As explained above, the measurement of a given
physical observable as an average over phase space can also
be performed with a quadratic speedup. Thus, quantum sim-
ulation using the KvN approach to classical dynamics leads
to a quadratic improvement in computational cost relative to
classical time-dependent MC algorithms.

Finally, note that, if the underlying system is Hamiltonian
and simulating the quantized Hamiltonian system is sufficient
for the intended calculation, then, because the KvN approach
leads to a system with twice the phase-space dimension,
simulating the quantized Hamiltonian is the more efficient
computational approach. If the computational gains versus
classical Monte Carlo are only quadratic, then doubling the
phase space dimension would effectively eliminate the ad-
vantage. Moreover, while quantizing the Hamiltonian clearly
yields self-consistent semiclassical dynamics, the standard
semiclassical approximation to the evolution operator [9,32]
is not guaranteed to be unitary when multiple classical paths
contribute to the result. Thus, a consistent approach to approx-
imating the semiclassical evolution operator using the KvN
framework has yet to be developed.

VI. CONCLUSION

In conclusion, quantum computers can be used to simulate
nonlinear non-Hamiltonian classical dynamics on phase space
by using the generalized Koopman–von Neumann formula-
tion of classical mechanics. The Koopman–von Neumann
formulation implies that the classical phase-space dynamics
expressed by the Liouville equation can be recast as an equiv-
alent Schrödinger equation for the wave function on Hilbert
space. The wave function completely specifies the probability
distribution function and its dynamics is generated by a Her-
mitian Hamiltonian operator and a unitary evolution operator.
Thus, a quantum computer with finite resources can be used
to simulate a finite-dimensional approximation of this unitary
evolution operator.

The conservation of probability on phase space can be ex-
pressed as an equivalent Schrödinger equation that is linear in
momenta. The equivalent Schrödinger equation corresponds
to the quantization of a constrained Hamiltonian system with
twice the dimension of the original phase space, where the
conjugate momenta act as Lagrange multipliers that enforce
the equations of motion on the original phase space. Heisen-
berg’s uncertainty principle applies between each variable and
the corresponding Lagrange multiplier, but not between any
of the variables of the original phase space. Squeezing the un-
certainty of the original phase-space variables and enhancing
the uncertainty of the conjugate Lagrange multipliers allows
the quantum uncertainty to be reduced to the limit set by
numerical discretization. Hence, there is complete fidelity to
the classical phase-space dynamics.

Quantum simulation of the KvN representation of classical
dynamics is exponentially more efficient than a determin-
istic Eulerian discretization of the Liouville equation if the

Koopman–von Neumann Hamiltonian is sparse. Quantum
simulation of the KvN representation is quadratically more
efficient than a classical time-dependent Monte Carlo (MC)
simulation. Many useful initial states can be prepared quadrat-
ically faster than classical MC by utilizing strategies based on
quantum walks. Utilizing quantum algorithms for computing
sums and integrals leads to a quadratic speedup in the com-
plexity of calculating observables with a fixed accuracy. Thus,
up to polylogarithmic factors, the quantum simulation of the
KvN Hamiltonian leads to an overall quadratic improvement
in complexity relative to classical probabilistic algorithms.

Exploring the advantages and disadvantages of the
Koopman–von Neumann representation for specific exam-
ples of classical dynamical systems and developing quantum
simulation algorithms for an accurate approximation to the
semiclassical evolution operator are important directions for
future work.
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APPENDIX A: PROBABILITY DISTRIBUTION
FUNCTION AS A VOLUME FORM

In the main body of the text, the probability distribu-
tion function (PDF) f (x, t ) is defined as a volume form on
the phase-space manifold M (see Refs. [57,58] for an in-
troduction to the exterior calculus of differential forms on
manifolds). For any system of coordinates x = (x j ), defined
within a region of the manifold, the probability density mea-
sure is defined by the probability density form (PDF)

μ := f dx1 ∧ dx2 ∧ · · · ∧ dxd . (A1)

The probability satisfies the normalization condition that inte-
gration over the manifold M yields unit probability

1 =
∫
M

μ =
∫
M

f dd x (A2)

where the final version sums over the coordinate charts of the
manifold. In any other coordinate system y(x, t ), the trans-
formed PDF g(y, t ) must satisfy

g(y, t )dd y = f (x, t )dd x. (A3)
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Hence, the two PDFs are related by

g(y, t ) = |J | f (x(y, t ), t ), (A4)

where J is the Jacobian, the determinant of the matrix of
partial derivatives

J = det (∂x j/∂yk ). (A5)

The Liouville equation states that the PDF is an invari-
ant volume form for the space-time velocity. In coordinates
X μ = (t, x), where the space-time velocity is V μ = (1, v), the
Liouville equation can be expressed as

∂μ( f V μ) := ∂t f + ∂ j ( f v j ) = 0. (A6)

This is proportional to the space-time divergence of V μ with
respect to the PDF f , defined by f −1∂μ( f V μ).

In order to simply the notation used in the main body of the
text, for any coordinate system x = (x j ), the gradient operator
∇ is simply defined through the one-form of partial derivatives

∇ := dx j∂ j (A7)

and the divergence symbol ∇ · v is simply defined by the
expression

∇ · v := ∂ jv
j . (A8)

The convention that yields the usual divergence operator ap-
pears when the PDF is treated as a scalar field, as discussed in
Appendix B.

APPENDIX B: PROBABILITY DISTRIBUTION
FUNCTION AS A SCALAR FIELD

When there is a natural phase-space volume form ν, de-
fined via

ν := J dx1 ∧ dx2 ∧ · · · ∧ dxd , (B1)

then the volume density J accounts for coordinate trans-
formations. For example, if Jx is the volume density
in x coordinates, then after transforming to coordinates
y(x, t ), the volume density becomes Jy = JxJ x

y where J x
y =

det (∂x j/∂yk ) is the Jacobian of the transformation.
The Hilbert space inner product is now defined by the

volume form

〈ϕ|ψ〉 :=
∫

ϕ†ψν =
∫

ϕ†ψ |J |dd x. (B2)

In this case, the probability density form can be defined as

μ := Fν = FJ dx1 ∧ dx2 ∧ · · · ∧ dxd , (B3)

where F is a scalar function on phase space. The Liouville
equation can then be written as

∂μ( f V μ) := ∂t (FJ ) + ∂ j (FJ v j ) = 0. (B4)

If the wave function � is defined as a scalar field via

� := F 1/2eiϕ (B5)

so that F = �†�, then it satisfies the KVN equation

�̇ + 1
2�J −1(∂tJ + ∂ jJ v j ) = i�W/h̄. (B6)

Although P̂ is no longer Hermitian over the inner product
given by Eq. (B2), a Hermitian momentum operator can still
be defined as

�̂ := J −1/2P̂J 1/2 = J −1 1
2 (P̂J + J P̂). (B7)

Similarly, the Hamiltonian operator that is Hermitian over the
space-time measure J dd x dt can be defined as

K̂ = J −1/2ih̄∂tJ 1/2 = J −1 1
2 ih̄(∂tJ + J ∂t ). (B8)

Thus, the Hermitian Koopman–von Neumann Hamiltonian
for � is

K̂ = 1
2J

−1(P̂ · J v̂ + J v̂ · P̂) + Ŵ (B9)

= 1
2J

−1/2(�̂ · J v̂ + J v̂ · �̂)J −1/2 + Ŵ . (B10)

This should be compared to Eq. (20).
Consider the transformation from Cartesian coordinates to

another coordinate system such as cylindrical or spherical
coordinates. Iff the Jacobian is independent of time, then one
can divide the Liouville equation through by the Jacobian to
find

∂t F + J −1∂ j (FJ v j ) = 0. (B11)

In this case, the equations in the main body of the text are also
correct if one makes the replacement f → F , ψ → �, and
uses the usual definition of the divergence symbol

∇J · v := J −1∂ j (J v j ). (B12)

Note, however, that for time-dependent coordinate transfor-
mations, the Jacobian is generically time dependent and one
cannot divide through by the Jacobian.

APPENDIX C: PROBABILITY DISTRIBUTION
FUNCTION ON SPACE-TIME

For a completely general space-time coordinate trans-
formation from X μ = (t, x) to Y μ = (s(x, t ), y(x, t )) the
space-time velocity is

V μ = (V 0,V j ) = V 0(1, v) := (ṡ, ẏ), (C1)

the full space-time Jacobian is J = det (∂X μ/∂Y ν ), and the
space-time divergence is ∂μ(JV μ). Thus, the Liouville equa-
tion becomes

∂μ( f V μ) := ∂0(FJV 0) + ∂ j (FJV j ) = 0. (C2)

The PDF, f = FJ , is a d + 1 form that represents the
probability distribution function over space and time. How-
ever, the conserved probability distribution function over
phase space alone, f V 0 = FJV 0, is the spatial component
of a d form. If one defines the wave function via

ψ = ( f V 0)1/2eiϕ, � = (FV 0)1/2eiϕ, (C3)

then one arrives at the KvN equations in Eqs. (17) and (B6).
The KvN Hamiltonian operators in Eqs. (20) and (B9) are
Hermitian with respect to the corresponding Hilbert space
inner products.

Alternatively, if one defines the wave function via

ψ = f 1/2eiϕ, (C4)
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then the KvN equation is

ψ̇ + 1
2ψ∂μV μ = 1

2 (∂μV μ + V μ∂μ)ψ = iψW/h̄. (C5)

The Hamiltonian operator

Ĥψ := ih̄
[
∂0ψ + 1

2 (V 0)−1∂0V
0] (C6)

= −ih̄
[
v j∂ j + 1

2 (V 0)−1(∂ jV
j )
] + W (C7)

is Hermitian with respect to the Hilbert space inner product
defined by

〈ϕ|ψ〉 =
∫

ϕ†ψV 0dd x. (C8)

If the wave function is defined as a space-time scalar

� = F 1/2eiϕ, (C9)

then the KvN equation is

�̇ + 1
2�J −1∂μJV μ = 1

2J
−1(∂μJV μ + JV μ∂μ)�

= −i�W/h̄. (C10)

The Hamiltonian operator

K̂� := ih̄
[
∂0� + 1

2 (JV 0)−1∂0(JV 0)
]

(C11)

= −ih̄
[
v j∂ j + 1

2 (JV 0)−1(∂ jJV j )
] + W (C12)

is Hermitian with respect to the Hilbert space inner product
defined by

〈ϕ|ψ〉 =
∫

ϕ†ψV 0J dd x. (C13)

APPENDIX D: CONSERVATION OF THE SYMPLECTIC
FORM, POINCARÉ FORM, AND POISSON TENSOR

For generalized Hamiltonian and variational systems, the
equations of motion ẋ = v, defined implicitly via

� · v = dH + ∂tα, (D1)

preserve the symplectic form

d�/dt = 0. (D2)

Using Cartan’s formula for the action of the Lie derivative Lv
on the symplectic form yields

d�/dt = ∂t� + Lv� (D3)

= ∂t� + d(v · �) + v · d�. (D4)

The final term vanishes due the fact that the symplectic form
is closed, d� = d2α = 0. The first two terms cancel due to
the equations of motion.

The time derivative of the Poincaré form is

dα/dt = ∂tα + v · � + d(v · α). (D5)

Due to the equations of motion, the time derivative is the
differential of the Lagrangian

dα/dt = d(v · α − H ) = dL. (D6)

Since d2L = 0, this yields an alternate derivation of the con-
servation of the symplectic form.

Conservation of the symplectic 2-form also implies conser-
vation of the Poisson 2-vector, due to the definition J = �−1.

APPENDIX E: SYMPLECTIC VOLUME
FORM FOR GENERALIZED HAMILTONIAN

AND VARIATIONAL SYSTEMS

The velocity defined by Hamilton’s equations is divergence
free in canonical coordinates. For generalized Hamiltonian
and variational equations of motion, the velocity is divergence
free with respect to a preferred canonical volume form.

The symplectic 2-form � defines the canonical symplectic
volume form via

ν := (�∧)d = J dx1 ∧ dx2 ∧ · · · ∧ dxd . (E1)

Due to the conservation of the symplectic 2-form derived in
Appendix D, the symplectic volume form is also conserved.
This implies that symplectic volume density is conserved by
the flow

dJ /dt = ∂tJ + ∇J · v = ∂tJ + ∂ j (J v j ) = 0 (E2)

and, hence, that the space-time divergence of the velocity with
respect to the canonical volume form vanishes.

Thus, let the Hilbert space inner product be defined via
Eq. (B2) so that wave function �, defined in Eq. (B5), and
the PDF F = �†� are treated as scalar fields. For generalized
Hamiltonian mechanics, the Koopman–von Neumann Hamil-
tonian for the scalar wave function � is

Ĥ = J −1P̂ · v̂J + Ŵ (E3)

= J −1/2�̂ · v̂J 1/2 + Ŵ (E4)

and should be compared to Eq. (77). This Hamiltonian is
Hermitian with respect to the canonical measure J dd x which
is used in the definition of the inner product above. Here,
�̂ = J −1/2P̂J 1/2 is the Hermitian analog of the P̂ operator
defined in Eq. (B7).

The Hermitian analog of the X̂ operator can be defined as

Ẑ = 1
2 (�̂ · Ĵ − Ĵ · �̂) (E5)

= 1
2J

−1/2(P̂ · Ĵ − Ĵ · P̂)J 1/2 (E6)

= 1
2J

−1(P̂ · J Ĵ − J Ĵ · P̂). (E7)

For general variational systems, the Koopman–von Neumann
Hamiltonian for the scalar wave function � is

Ĥ = J −1P̂ · �̂ · v̂J + Ŵ (E8)

= J −1/2Ẑ · �̂ · v̂J 1/2 + Ŵ (E9)

and should be compared to Eq. (90).
Note, however, that the generalized form of Hamiltonian

mechanics is often used in cases where the symplectic 2-form
is degenerate [55,56]. In addition, while PDEs can be often
be presented naturally in Hamiltonian form, closed-form ex-
pressions for the symplectic 2-form may either be unknown
or rather difficult to construct. In such cases, the conventions
used in the main body of the paper may be preferable.

APPENDIX F: SYMMETRIES
AND NOETHER’S THEOREM

The variational equations of motion can also be written as

V · dA = 0, (F1)
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where they are generated by the space-time 1-form

A = α − Hdt = α jdx j − Hdt . (F2)

The derivation of Noether’s theorem begins from the def-
inition that a symmetry of the equations of motion is defined
to leave dA invariant. If the symmetry is generated by the
space-time vector U = (U 0,U j ), then LU dA = 0 implies
that, locally,

dS = LU A = U · dA + d (UA) (F3)

for some scalar function S. Thus, taking the inner product
with the solution to the equations of motion V yields the
conservation law

dQ/dt = LV Q = 0, (F4)

where

Q = V · A − S. (F5)

APPENDIX G: HAMILTON-JACOBI EQUATION

In order to determine a complete solution to the Hamilton-
Jacobi equation, begin with the solution to the equations of
motion in action-angle coordinates (θ j, J j ). In action-angle
coordinates, the Hamiltonian H0(J ) is a function of the action
variables alone and the equations of motion

θ̇ j = ω
j
0 := ∂J j H0, J̇ j = 0 (G1)

can be solved explicitly. In these coordinates, the action inte-
gral is simply

h̄ϕ = Jj,0
(
θ j − θ

j
0

) − H0(J0)(t − t0). (G2)

This satisfies the Hamilton-Jacobi equation and yields the
canonical transformation between the action-angle coordi-
nates and the initial conditions (θ j

0 , Jj,0).
Consider a canonical transformation to any other set of

canonical coordinates (q j, p j ), generated by the mixed vari-
able generating function S(q, J, t ), that is defined by the
relations

∂S/∂q j |J,t = p j, (G3)

∂S/∂Jj |t,q = θ j − θ
j

0 , (G4)

∂S/∂t |q,J = H0(J ) − H (q, p, t ). (G5)

This yields the action integral

h̄ dϕ = dS − (
θ j − θ

j
0

)
dJj − H0(J )dt (G6)

= d (S − H0t ) − (
θ j − θ

j
0 − ω

j
0t

)
dJj . (G7)

Due to the fact that the action coordinates Jj are constants of
the motion, this can be integrated to yield

h̄ϕ = h̄ϕ0 + S(q, J, t ) − H0(J )t . (G8)

The choice ϕ0 = 0 implies that the action integral satisfies the
Hamilton-Jacobi equation

h̄∂ϕ/∂q j |J,t = p j, (G9)

h̄∂ϕ/∂t |q,J = −H (q, p, t ) (G10)

as well as the relation

h̄∂ϕ/∂Jj |t,q = θ j − θ
j

0 − ω
j
0t . (G11)

Hence, the partial derivatives ∂ϕ/∂Jj = 0 vanish when eval-
uated along the trajectory and, when evaluated along the
trajectory, the solution to the Hamilton-Jacobi equation also
satisfies the partial differential equations

h̄∂ϕ/∂q j |p,t = p j, (G12)

h̄∂ϕ/∂t |q,p = −H (q, p, t ). (G13)

Thus, the choice ϕ0 = 0 implies that the final expressions
for the Hamiltonian in Eqs. (95) and (96) precisely yield the
classical energy density H f . This can be used to simplify a
number of the results of Ref. [42].

One can also prove that, if fH − f , as given by Eq. (107),
vanishes as an initial condition, then it vanishes for all time.
Equation (107) can be written as the constraint

C = d f · J · (h̄dϕ − α) = 0. (G14)

The fact that, for any scalar S,

LV dS = d (V · dS) (G15)

implies that LV df = 0. Combining this with the rela-
tions dJ/dt = LV J = 0 and dα/dt = LV α = dL, proven in
Appendix D above, yields

dC/dt = LV C = d f · J · (h̄dϕ̇ − dL). (G16)

This vanishes due to the identification of the semiclassical
phase factor with the classical action h̄ϕ̇ = L.
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