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Fragility of spectral clustering for networks with an overlapping structure
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Overlapping communities are commonly observed in real-world networks. This is a motivation to develop
overlapping community detection methods, because methods for nonoverlapping communities may not perform
well. However, deterioration mechanism of the detection methods used for nonoverlapping communities have
rarely been investigated theoretically. Here, we analyze accuracy of spectral clustering, which does not consider
overlapping structures, by using the replica method from statistical physics. Our analysis on an overlapping
stochastic block model reveals how the structural information is lost from the leading eigenvector because of the
overlapping structure.
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I. INTRODUCTION

A graph or a network that represents related data is a
common data structure in multivariate statistics, machine
learning, and statistical mechanics. Identifying densely con-
nected subgraphs—community detection—is useful for graph
analysis. Such subgraphs (or the corresponding node set) are
referred to as communities. Spectral clustering is a popular
community detection algorithm that is efficient yet highly ac-
curate on random graph models [1–4]. Nevertheless, spectral
clustering often fails to identify plausible communities when
it is applied to real-world networks. This is presumably be-
cause of specific features of real-world networks that are miss-
ing in simple random graph models. To fill this discrepancy,
in this paper, we theoretically investigate how overlapping
of communities affects accuracy of spectral clustering. We
will give precise definitions of a community, an overlapping
community, and the accuracy of clustering in Sec. II.

We denote an undirected graph as G = (V, E ), where V
(|V | = N) is a set of nodes and E (|E | = m) is a set of edges.
The graph is represented by the N × N adjacency matrix A,
where Ai j = 1 when a pair of nodes i and j is connected by an
edge and Ai j = 0 otherwise. The adjacency matrix of graphs
with strong [Fig. 1(a)] and weak [Fig. 1(b)] nonoverlapping
community structures are illustrated in Fig. 1.

To identify the community structure, spectral clustering
[5] computes the leading eigenvalues and eigenvectors of a
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regularized adjacency matrix; in this paper, as an example,
we focus on the so-called modularity matrix [6] as the regu-
larized adjacency matrix. When the community structure can
be clearly identified, the isolated leading eigenvectors have
relevant information of the communities, while a bulk of
eigenvalues emerges from the randomness of a graph. For ex-
ample, Fig. 1(c) shows the spectral density of the modularity
matrix corresponding to the adjacency matrix in Fig. 1(a). In
this case, the largest eigenvalue is clearly separated from the
bulk of eigenvalues, and we can extract two communities us-
ing the isolated leading eigenvector. However, Fig. 1(d) shows
the case corresponding to the adjacency matrix in Fig. 1(b).
The eigenvalue correlated to the community structure is buried
in the bulk of eigenvalues, and the spectral density is no
longer distinguishable from that of a uniformly random graph.
The phase transition point that the eigenvalues do not exhibit
community structure at all is referred to as the (algorithmic)
detectability limit [1,7,8] of spectral clustering.

As a tool for theoretical analysis, we use the replica method
that originated from statistical physics. It enables us to calcu-
late the ensemble average over random graph instances. As a
result, we obtain a detectability phase diagram that indicates
the effect of overlapping on spectral clustering.

Several existing studies have investigated the fragility, i.e.,
lack of robustness, of spectral clustering. Owing to the fact
that real-world networks have more complex structures than a
simple random graph, the studies have considered the fragility
in case of, e.g., adversarial perturbations [9], noise pertur-
bations [10,11], tangles and cliques [12], and localization of
eigenvectors [7,8,13]. In this paper, we analyze the effect of
the overlapping structure on the graph spectra. Specifically,
we found that, when the size of the community overlap is
increased, it is the isolated eigenvalue that is mainly affected.
However, it is the bulk of eigenvalues that is mainly affected
when the density of the community overlap is increased.

2643-1564/2020/2(4)/043101(21) 043101-1 Published by the American Physical Society

https://orcid.org/0000-0002-1725-0108
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043101&domain=pdf&date_stamp=2020-10-19
https://doi.org/10.1103/PhysRevResearch.2.043101
https://creativecommons.org/licenses/by/4.0/


CHIHIRO NOGUCHI AND TATSURO KAWAMOTO PHYSICAL REVIEW RESEARCH 2, 043101 (2020)

(a) (b)
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FIG. 1. Adjacency matrices of graphs with a nonoverlapping structure and the corresponding histograms of the bulk of eigenvalues of the
modularity matrix. (a), (c) Nodes in the same communities are more densely connected internally than externally (strong community structure).
(b), (d) All nodes are connected with almost the same probability (weak community structure).

Noted that identifying an overlapping community structure
itself is not a goal of this paper. There are in fact many
algorithms for such a purpose [14–22]. To identify or to assess
an overlapping community structure, one should use a suitable
algorithm. Usually, however, we do not a priori know whether
communities are overlapped. Moreover, even when it is the
case, it is hard to imagine that the spectral clustering becomes
completely useless. Thus, we investigate how the signal of
structural heterogeneity remains in the spectral clustering,
although it may not be the best algorithm to use.

The rest of the paper is organized as follows. In Sec. II,
we introduce the overlapping random graph models that we
consider. In Sec. III, we provide the replica analysis for the
graph spectra of the random graph model. In Sec. IV, we show
the results and their interpretation obtained by the replica
analysis. Finally, Sec. V presents a discussion.

II. OVERLAPPING STOCHASTIC BLOCK MODEL

Throughout this paper, we consider a class of random
graph models called the stochastic block model (SBM). It is a
random graph model that has a preassigned (planted) modular

structure. Here, as a particular case of the SBM, we intro-
duce the overlapping SBM. Although we focus only on the
so-called canonical SBM in the main text, its microcanonical
counterpart [23,24] (see Appendix B for a detailed definition)
is also analyzed in Appendix B 2.

A. Canonical SBM

Before considering the overlapping SBM, we first intro-
duce the (canonical) SBM with a general structure. We define
a block as a node set in which the nodes are statistically
equivalent. A graph with K blocks is generated from the SBM
as follows. For each node of the graph, we preassigned a
block label t = [ti] ti ∈ {1, · · · , K} (i ∈ V ). Then, each pair
of nodes (i, j) is connected by an edge with probability ρtit j

independently and randomly; this probability is provided as an
element of the K × K affinity matrix ρ = [ρkl ], 0 � ρkl � 1.
Therefore, the probability of a graph instance is expressed as

P(A|K, t, ρ) =
∏
i< j

ρ
Ai j
tit j

(
1 − ρtit j

)1−Ai j
. (1)

Here, because we consider undirected simple graphs, we
assume that Aii = 0 and Ai j = Aji. Moreover, we focus on
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FIG. 2. (a) Classification chart of communities and blocks using schematic pictures of adjacency matrices. Communities are classified
into nonoverlapping and overlapping communities, and an overlapping community consists of nodes in community blocks and nodes in
an overlapping block. Each matrix element represents a pair of block labels, i.e., the corresponding set of node pairs. (b) Structure of the
overlapping SBM that we consider. The node sets incident on the (1,1) and (3,3) elements correspond to the community blocks, while the node
set incident on the (2,2) element corresponds to the overlapping block. α, ε, and σ are the fraction of the overlapping block size, the inverse of
the community structure strength, and the density of the overlapping block, respectively. The value of each block corresponds to an element of
affinity matrix Eq. (5) divided by ρin. (c) Adjacency matrices of graph instances of the overlapping SBM with σ = 0.3, 1, and 3.

sparse graphs throughout this paper; i.e., we assume ρrs =
O(1/N ) for all r and s. When every matrix element of ρ is
equal, the model becomes the so-called Erdős–Rényi random
graph model. We also introduce a vector that represents the
block-size distribution as p = [pk] (k ∈ {1, . . . , K}), where
pk =∑N

i=1 δk,ti/N (δa,b represents Kronecker’s δ).
For example, a two-block SBM is parameterized as

p = (p1, p2), (2)

ρ =
(

ρin ρout

ρout ρin

)
=
(1 ε

ε 1

)
ρin. (3)

Here, edges in the (1,1) and (2,2) elements have the same gen-
eration probability ρin. In contrast, edges in the (1,2) and (2,1)
elements have the generation probability ρout; ε = ρout/ρin

is a parameter that controls the strength of the community
structure. We define nonoverlapping communities as node
sets incident on the (1,1) and (2,2) elements, as illustrated in
Fig. 2(a).

B. Overlapping canonical SBM

We define the overlapping SBM as the three-block SBM
that has parameters

p = (p1, p2, p3), (4)

ρ =
(

ρin ρin ρout

ρin σρin ρin

ρout ρin ρin

)
=
(1 1 ε

1 σ 1
ε 1 1

)
ρin. (5)

Here, p and ρ are illustrated in Fig. 2(b). As illustrated
in Fig. 2(a), we define the node sets incident on the sets
of elements {(1, 1), (1,2), (2,1), (2, 2)} and {(2, 2), (2,3),
(3,2), (3, 3)} as overlapping communities, respectively; edges
therein have the same generation probability ρin, except for
the (2,2) element. Within the overlapping communities, we
define the node sets incident on the (1,1) and (3,3) elements
as community blocks and the node set incident on the (2,2)
element as an overlapping block. We let the edge genera-
tion probability of the (1,3) and (3,1) elements be ρout (=
ερin). The edge generation probability of the (2,2) element
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is parametrized as σρin; σ is a parameter that controls the
density of the overlapping block. Adjacency matrices with dif-
ferent values of σ are exemplified in Fig. 2(c) (see Appendix E
for the relationship between this overlapping SBM and the
mixed-membership SBM [18]).

We define the average degree of each block c =
(c1, c2, c3), where the degree of a node is the number of edges
connected to the node. The ratio c1/c2 can also be expressed
as (1 + α + ε)/(σα + 2) using the affinity matrix elements,
where we introduced α ≡ p2/p1. Therefore, the parameters
of the overlapping SBM are constrained as

c1(σα + 2) = c2(1 + α + ε). (6)

For simplicity, we assume the symmetry between the com-
munity blocks, i.e., p1 = p3 and c1 = c3. We assume that the
affinity matrix is symmetric, owing to the fact that we consider
undirected graphs.

A technically interesting aspect of the present analysis is
that this is a model-inconsistent scenario; while the over-
lapping SBM that we consider consists of three blocks, we
consider the partitioning into two nonoverlapping communi-
ties.

How to evaluate the accuracy of the spectral clustering
on the overlapping SBM is an arguable issue. In this paper,
we evaluate whether the community blocks are identified
correctly and neglect the partitioning with respect to the over-
lapping block. That is, we define an accuracy of a partition
as

Accuracy ≡ max { f (t̂ ), f (P (t̂ ))},

f (t̂ ) = 1

N (p1 + p3)

(∑
i∈V1

δt̂i,1 +
∑
i∈V3

δt̂i,2

)
. (7)

Here,
∑

i∈Vk
is the sum over the node indices belonging to the

kth block, t̂ = [t̂i] (t̂i ∈ {1, 2}) is the inferred nonoverlapping
community label of node i. The operator P permutes the
inferred labels; namely, t̂i = 1 is replaced by t̂i = 2 and vice
versa. The maximization is required to eliminate the degrees
of freedom by permutation.

III. REPLICA ANALYSIS

We now calculate the spectrum of the overlapping SBM
and show that a phase transition point of the largest eigenvalue
exhibits the detectability limit. It should be noted that the

same result is obtained in the case of the microcanonical SBM
(Appendix B 2).

A. Spectrum and the detectability limit of the overlapping SBM

As an example of a regularized adjacency matrix, we con-
sider the modularity matrix. Each element of the matrix is
defined as

Mi j = Ai j − did j

2m
, (8)

where di (=∑N
j=1 Ai j ) is the degree of a node i and m (= |E |)

is the total number of the edges. Partitioning into two nonover-
lapping communities can be identified by the eigenvector of
the largest eigenvalue. Thus, our goal is to solve the following
maximization problem:

λ(M ) = 1

N
max

x
x�Mx, subject to x�x = N, (9)

where λ(M ) is the largest eigenvalue of M, and x� is the
transpose of a vector x. This problem can be expressed as

f (M, β ) = − 1

βN
log Z (M, β ), (10)

λ(M ) = −2 lim
β→∞

f (M, β ), (11)

Z (M, β ) =
∫

dxe
β

2 x�Mxδ(x�x − N ), (12)

where Z (M, β ) is the partition function. The constraint Eq. (9)
is imposed by the δ function in Eq. (12), and taking β → ∞
in Eq. (11) leads to the maximization of the exponent of the
exponential function in Eq. (12). Because we are interested in
the typical behavior of the graph instances, we analyze

[λ(M )]M = 2 lim
β→∞

1

βN
[log Z (M, β )]M, (13)

where [· · · ]M represents the ensemble average over graph
instances. Unfortunately, it is difficult to calculate the average
[log Z (M, β )]M analytically. To overcome this difficulty, we
use the replica trick, namely,

[log Z (M, β )]M = lim
n→0

∂

∂n
log[Zn(M, β )]M . (14)

Here, the exponent n in [Zn]M is a real value. However, we
treat n as an integer for a moment. In the end, we perform
the analytic continuation to the real value. This treatment is
termed the replica method.

From Eq. (12), the nth moment the partition function is
obtained as

[Zn(M, β )]M =
∫ ( n∏

a=1

dxaδ(x�
a xa − N )

)[
exp

(
β

2

∑
a

x�
a Mxa

)]
M

, (15)

where a ∈ {1, . . . , n} is an index of n identical copies. For further calculations, we introduce several order parame-
ters and approximations. Detailed calculations are described in Appendix A. As a result, the average largest eigenvalue
in the limit of N → ∞ is obtained by the following saddle-point (extremum) condition of nine auxiliary variables
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(φ,�, �̂, m1k, m2k, m̂1k, m̂2k, ak, âk ).

[λ(M )]M = extr
φ,�,�̂,m1k ,m2k ,m̂1k ,m̂2k ,ak ,âk

{
φ + 2�̂� − �2 + 1

2
N
∑
k,k′

Wkk′

(
ak′
(
m2k − 2�̂√

c̄
+ 4�̂2

c̄

)+ 2m1k′
(
m1k − 2�̂√

c̄

)+ akm2k′

akak′ − 1

−
m2k − 2�̂√

c̄
m1k + 4�̂2

c

ak
− m2k′

ak′

)
−
∑

k

pkck

(
m2k + 2m1km̂1k + m̂2k

ak − âk
− m2k′

ak′

⎞
⎠

+ 1

N

∑
k

∑
i∈Vk

∞∑
d=0

Pck (d )

φ − dâk

(
dm̂2k + d (d − 1)m̂2

1k

)}
. (16)

Here, Wkl and c̄ are defined as Wkl ≡ pkρkl pl and c̄ ≡ 2m/N ,
respectively. Pck (d ) is the Poisson probability mass function
of degree d of each node in block k that has expectation
ck . m1k is the the mean of the largest eigenvector elements
that corresponds to the kth block. m1k plays an important
role in the derivation of the detectability limit. Definitions
and interpretations of the other auxiliary variables are omitted
here, because they are not directly relevant to the detectability
limit (see Appendix A for the precise definitions).

The detectability limit is derived by solving the equa-
tions of the nine auxiliary variables. In particular, m11 (=
−m13) plays an important role for the detectability limit.
When m2

11 > 0, the spectral clustering retains the ability to
detect the community structure better than a random guess
(detectable condition). However, when m2

11 = 0, the result of
spectral clustering is uncorrelated to the planted structure (un-
detectable condition). Accordingly, the phase transition point
is derived by the condition m2

11 = 0. This corresponds to the
condition that the largest eigenvalue is buried in the bulk of
the eigenvalues, as we mentioned in Introduction.

IV. ACCURACY OF THE SPECTRAL CLUSTERING
ON THE OVERLAPPING SBM

In this section, using the results obtained by the replica
analysis, we show how the size and density of the overlapping
block affect the spectrum. We also check the validity of our
analytical calculations by comparing them to the results of nu-
merical experiments. Here, we use the microcanonical SBM
in the numerical experiments instead of the canonical SBM.
Here, for a technical reason that we describe in Appendix B 4,
we use the microcanonical counterpart of the SBM. We used
graph-tool [25] to generate graph instances of the microcanon-
ical SBM.

A. Detectability phase diagram and the leading eigenvalue

First, to observe the overall dependency of overlapping
structures, we show the detectability phase diagram. Figure 3
shows the detectability phase diagram of the (ε, α) plane. As
mentioned above, ε is the parameter that controls the strength
of the community structure and α = p2/p1 is the ratio of
the overlapping block and a community block. The boundary
between the blue and orange regions represents the detectabil-
ity limit of the spectral clustering predicted by the replica

analysis. The dots represent the results of the numerical ex-
periments; the color gradient represents the accuracy defined
in Eq. (7). We can see that both boundaries are in a good
agreement. Note that the numerical experiment is possible
only on specific curves in the parameter space because of
constraint Eq. (6), and c2 can take only natural numbers in the
microcanonical SBM. In this experiment, we set c1 = 10 and
σ = 2. Then, the range c2 can take is restricted between 11
and 19 because of the assortative condition 0 � ε � 1. This
phase diagram is the result that shows how fragile the spectral
clustering is against the overlapping structure.

Figure 4 shows the leading eigenvalue and the edge of the
bulk of the eigenvalues,1 which are predicted by the replica
analysis, and the top ten eigenvalues computed in the numer-
ical experiments. We can confirm that the replica analysis
accurately describes the behavior of numerical experiments.
When α is small, the leading eigenvalue is separated from the
bulk of the eigenvalues. As α increases, the leading eigenvalue

1The edge of the bulk of eigenvalue is derived as the largest eigen-
value under the undetectable condition.

FIG. 3. Detectability phase diagram of the (ε, α) plane. The
model parameters are set to c1 = 10 and σ = 2. Along the line of
the results of the numerical experiments determined by constraint
Eq. (6), degree c2 takes a fixed value. The lines in this figure, from
left to right, correspond to the values of c2 from 19 to 11.
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FIG. 4. Eigenvalues derived by the replica analysis as a function
of α. We set c1 = 10, c2 = 18, and σ = 2. The solid and dashed
lines represent the isolated leading eigenvalues and the bulk edges of
eigenvalues, respectively. The boundary between the blue and orange
regions represents the detectability limit. The green dots represent the
top ten eigenvalues computed in the numerical experiments.

approaches the bulk of the eigenvalues. As we described in
Introduction, when it reaches the bulk of the eigenvalues,
the spectral clustering loses ability to detect the community
structure, i.e., the detectability limit. Note the value of ε also
varies according to Eq. (6) as α varies. Thus, the horizontal
axis in Fig. 4 corresponds to the line in Fig. 3 with c2 = 18.

B. Effects of the size of the overlapping structure

We now investigate the effect of the overlapping structure
on the accuracy of the spectral clustering when we increase
the size of the overlapping block. Because the overlapping
block can have denser (or sparser) edge density than the
other blocks, the average degree also increases (or decreases)
accordingly, as the size of the overlapping block increases.
This implies that the width of the bulk of the eigenvalues is
trivially influenced, because the bulk is known to depend on
the average degree [1].

However, it is not trivial if it is the only effect. Namely, the
overlapping structure may affect the isolated eigenvalue or the
bulk in another way. To assess the effect of the overlapping
structure rather than the effect of the average degree, we
compare the overlapping SBM with the model with no over-
lapping structures but that has the same degree distribution
as the overlapping SBM. In the case of the microcanonical
overlapping SBM, the degree distribution is bimodal: all the
nodes in the overlapping block have the same degree, while all
the other nodes have the other degree. Therefore, we consider
the nonoverlapping SBM with a bimodal degree distribution
(see Appendix C for a detailed definition). We assume that the
sizes of the blocks are equal. Hereafter, we refer to this model
as the bimodal SBM.

Figure 5 shows the bulks of eigenvalues and the leading
eigenvalues of the overlapping and bimodal SBMs. We can
confirm that both bulk edges almost coincide. In contrast, the
leading eigenvalue of the bimodal SBM is separated from the

FIG. 5. Comparison between the overlapping and bimodal
SBMs. This figure shows the eigenvalues of bimodal SBM in addi-
tion to those in Fig. 4. The blue dots represent the top ten eigenvalues
of the bimodal SBM computed in the numerical experiments. The
brown solid and dashed lines represent the leading eigenvalue and the
bulk edge of the eigenvalues of the bimodal SBM that are derived by
the replica analysis, respectively. The spectrum of the overlapping
SBM is plotted as in Fig. 4. These models are identical only when
α = 0. However, their bulk edges should coincide when α = 0 and
α = 1. For the value of ε of the bimodal SBM, we used the same
value as the overlapping SBM, which varies as α increases owing to
constraint Eq. (6).

bulk in the whole space, while that of the overlapping SBM
approaches to its bulk as α increases. This indicates that the
increase of the size of the overlapping block mainly affects the
leading eigenvalue instead of the bulk.

The fact that the bulk is not considerably affected is not
very trivial. If we take a closer look, the bulk edges do not
exactly coincide in Fig. 5, although the deviation is very
small. This is because the models are not identical even
when there is no community structure (i.e., ε = 1). When
α = 0, the two models reduce to the c1-regular SBM. Thereby,
their bulk edges become equal to 2

√
c1 − 1. When α = 1,

the overlapping SBM becomes a uniform (one block) model
with (average) degree c2, while the bimodal SBM has the
community structure with (average) degree c2. However, the
bulk edge of the SBM with no overlapping blocks depends
only on its average degree. Thus, although the models are not
identical, their bulk edges are both 2

√
c2 − 1.

C. Effects of the density of the overlapping structure

Next, we investigate how density σ of the overlapping
block affects the detectability. As mentioned in the previous
subsection, the higher density of the overlapping block triv-
ially makes the width of the bulk of the eigenvalues expand
wider.

Figures 6(a) and 6(b) show the detectability phase diagram
derived by the replica analysis and the results of the corre-
sponding numerical experiments for σ = 0.5 and 2. Notably,
the detectable region is wider when σ is small. This indicates
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(a) (b)

FIG. 6. Detectability phase diagram of the (ε, α) plane for σ = 0.5, 2 and c1 = 10. A detailed explanation is provided in the caption of
Fig. 3.

that the higher density deteriorates the detectability more sig-
nificantly.

Let us examine σ dependency. Figure 7(a) shows the α

dependencies derived by the replica analysis of the canon-
ical SBM. They are the isolated leading largest eigenvalues
and the bulk of the eigenvalues for σ = 0, 0.5, 1, 1.5, and 2.
Interestingly, the isolated largest eigenvalue does not depend
on σ considerably. In contrast, the bulk is highly dependent
on σ . This indicates that the deterioration of the detectability
due to σ is caused by the expansion of the bulk rather than
the shrinkage of the isolated leading eigenvalue. Figure 7(b)
similarly shows the ε dependencies. Again, we can see that the
isolated largest eigenvalue does not depend on σ considerably
while the bulk is highly dependent.

Notably, we cannot test the result of Fig. 7(a) directly in
numerical experiments, because α cannot be varied contin-
uously as ε is fixed. This is due to the constraints of the
microcanonical SBM. Similarly, in Fig. 7(b), ε cannot be
varied continuously as α is fixed. Nevertheless, we can draw
smooth curves in the replica analysis, because we consider
the canonical SBM that is not subject to the constraints of

the microcanonical SBM. Importantly, the results of the mi-
crocanonical SBM coincide with those of the canonical SBM
with the regular approximation at the points where the micro-
canonical SBM is realizable. We also note that (Appendix B 2)
the distinction between the canonical and microcanonical
SBMs is invisible in infinite graph size limits.

V. SUMMARY

We investigated the effect of the size and the density of
the overlapping block on the accuracy of spectral clustering
using the replica method. Both larger size and higher den-
sity help the isolated eigenvalue to be buried in the bulk of
the eigenvalues, i.e., deteriorate the detectability. Importantly,
however, their mechanisms are strikingly different. We found
that increasing the size of the overlapping block has a promi-
nent effect on making the isolated eigenvalue smaller (Fig. 5).
In contrast, increasing the density of the overlapping block
makes the bulk width larger, while the isolated eigenvalue
remains almost the same [Fig. 7(a)].

(a) (b)

FIG. 7. (a) Isolated eigenvalues (solid lines) and bulk edges (dashed lines) as a function of α for σ = 0, 0.5, 1, 1.5, 2. Parameters are set
to c1 = 10 and ε = 0.3. The value of degree c2 varies according to (6). (b) Isolated eigenvalues (solid lines) and bulk edges (dashed lines) as a
function of ε. α is fixed as 0.3. Other experimental conditions are identical to those of Fig. 7(a).
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According to our findings, the results of the replica analysis
are consistent with those of the numerical experiments. This
indicates that the detectability phase transition of the spectral
clustering in the present setting is regarded as a phenomenon
that can be understood in the scope of the mean-field theory.

Although spectral clustering typically deals with nonover-
lapping structures, we showed that it is also possible to
analyze the model-inconsistent case, such as the overlapping
SBM. It is possible, in principle, to investigate even more
complex situations using the replica method. However, for

example, we would need to deal with saddle-point equations
with many variables if we were to analyze a general three-
block SBM. Therefore, we believe that the present model is
an extreme case where the analytical calculation is executable
and the results are interpretable.
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APPENDIX A: DERIVATION OF THE SPECTRUM AND THE DETECTABILITY LIMIT OF THE CANONICAL SBM

The goal of this Appendix is to derive saddle-point expression of the average largest eigenvalue Eq. (16). Note that a similar
calculation using the replica method can be found in Refs. [7,8,26]. We start with the average of nth moment of the partition
function

[Zn(M, β )]M =
∫ ( n∏

a=1

dxaδ
(
x�

a xa − N
))[

exp

(
β

2

∑
a

x�
a Mxa

)]
M

(A1)

=
∫ ( n∏

a=1

dxaδ
(
x�

a xa − N
))[

exp

(
−β

2

∑
a

(
γ�xa

)2)
exp

(
β

2

∑
a

x�
a Axa

)]
A

, (A2)

where γi ≡ di/
√

2m. Introducing order parameters

�a = 1√
N

∑
i

γixia, (a ∈ {1, . . . , n}), (A3)

we can recast exponential factor e− β

2

∑
a(γ�xa )2

in Eq. (A2) as

exp

(
−β

2

∑
a

(γ�xa)2

)
=
∫ ∏

a

d�aδ

(
�a − 1√

N

∑
i

γixia

)
exp

(
−βN

2

∑
a

�2
a

)
(A4)

=
∫ ∏

a

βN

2π
d�ad�̂ae− βN

2

∑
a(�2

a−2�a�̂a )e−β
√

N
∑

ia �̂aγixia (A5)

=
∫ ∏

a

βN

2π
d�ad�̂ae− βN

2

∑
a(�2

a−2�a�̂a )
∏

i j

e− β√
c̄

∑
a �̂aAi j xia . (A6)

We have set c̄ ≡ 2m/N . Moreover, �̂a is the auxiliary variable that is conjugate to �a. To derive this expression, we transformed
the δ function to

δ

(√
N�a −

∑
i

γixia

)
=
∫ +i∞

−i∞

β
√

N

2π
d�̂aeβ

√
N�̂a(

√
N�a−

∑
i γixia ). (A7)

Inserting Eq. (A6) into the exponential factor in Eq. (A2), we obtain[
exp

(
β

2

∑
a

x�
a Mxa

)]
M

=
∫ ∏

a

βN

2π
d�ad�̂ae− βN

2 (�2
a−2�a�̂a )

∏
i< j

∑
Ai j∈{0,1}

ρ
Ai j
tit j

(
1 − ρtit j

)1−Ai j eβ
∑

a Ai j xia(x ja− 2�̂a√
c̄

) (A8)

≈
∫ ∏

a

βN

2π
d�ad�̂ae− βN

2 (�2
a−2�a�̂a )

∏
i< j

exp
[

log
(
1 − ρtit j

)+ ρtit j e
β
∑

a xia (x ja− 2�̂a√
c̄

)]
. (A9)

Here, we took the configuration average over the canonical SBM Eq. (1) and approximated
ρti t j

1−ρti t j
≈ ρtit j by using the fact that

ρtit j = O(N−1).
Let us now introduce the order-parameter functions

Qk (u) = 1

pkN

∑
i∈Vk

∏
a

δ(ua − xia), (k ∈ {1, . . . , K}), (A10)
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where
∑

i∈Vk
is the sum over the node indices that belong to the kth block. Then, the last exponential factor in Eq. (A9) can be

approximated as

exp

(∑
i< j

ρtit j e
β
∑

a xia(x ja− 2�̂a√
c̄

)

)
≈ exp

(
N2

2

∫ ∏
a

duadvaeβua (va− 2�̂a√
c̄

)
∑
kk′

Qk (u)Wkk′Qk′ (u)

)
, (A11)

where we approximated that the contribution from the diagonal elements is negligible, and we defined Wkk′ ≡ pkρkk′ pk′ . Inserting
Eq. (A11) into Eq. (A9), Eq. (A1) is now expressed as

[Zn(M, β )]M =
∫ ∏

a

dxa

∫ ∏
a

βN

2π
d�̂ad�a

∏
a

δ
(
xax�

a − N
)

exp

[
−βN

2

∑
a

(
�2

a − 2�a�̂a
)+

∑
i< j

log
(
1 − ρtit j

)

+ N2

2

∫ ∏
a

duadvaeβua(va− 2�̂a√
c̄ )∑

kk′
Qk (u)Wkk′Qk′ (u)

]
. (A12)

Here, we use the expansion of the δ function

δ
(
x�

a xa − N
) =

∫ +i∞

−i∞

βdφa

4π
e− β

2 φa (
∑

i x2
ia−N ) (A13)

and the identity

1 =
∏

k

pkN
∫

DQk

2π
δ

[∑
i∈Vk

zi

n∏
a=1

δ(xia − μa) − pkNQk (μ)

]
(A14)

=
∏

k

pkN
∫

DQkDQ̂k

2π
exp

[∑
k

∫
dμQ̂k (μ)

(∑
i∈Vk

zi

n∏
a=1

δ(xia − μa) − pkNQk (μ)

)]
. (A15)

Here,
∫

DQk is the functional integral with respect to Qk (μ), and Q̂k (μ) was introduced as the conjugate of Qk (μ). To derive
Eq. (A15), we used the expansion of the δ function. By inserting the identity, we can focus on Qk (μ) corresponding to the
replacement in Eq. (A10). Note that without the insertion of the identity, the replacement of Eq. (A10) becomes invalid. From
these, we can recast Eq. (A12) as

[Zn(M, β )]M =
∫ ∏

a

dφa

4π

∫ ∏
a

βN

2π
d�̂ad�a

∫ ∏
k

pkN

2π
DQ̂kDQk exp

[
−βN

2

∑
a

(�2
a − 2�a�̂a − φa) +

∑
i< j

log
(
1 − ρtit j

)

−
∑

k

pkNLk (Qk, Q̂k ) + K ({Qk}) +
∑

k

∑
i∈Vk

log Mi,k (Q̂k, {φa})

]
, (A16)

where

K ({Qk}) = N2

2

∫ ∏
a

duadvaeβua(va− 2�̂a√
c̄ )∑

kk′
Qk (u)Wkk′Qk′ (v), (A17)

Lk (Qk, Q̂k ) =
∫

duQk (u)Q̂k (u), (A18)

Mi,k (Q̂k, {φa}) =
∫ ∏

a

dxaeQ̂k (xi )− β

2

∑
a φax2

ia . (A19)

Here, we assume the functional form of Qk (u) and Q̂k (u) are restricted to Gaussian mixtures. This indicates that Qk (u) and
Q̂k (u) can be expressed as

Qk (u) = q0
k

∫
dAdHqk (A, H )

(
βA

2π

) n
2

exp

[
−βA

2

∑
a

(
μa − H

A

)2
]
, (A20)

Q̂k (u) = q̂0
k

∫
dÂdĤ q̂k (Â, Ĥ ) exp

[
β

2

∑
a

(
Âμ2

a + 2Ĥμa
)]

, (A21)

where qk (A, H ) is the weight of a Gaussian distribution with the mean and precision parameter equal to H/A and H , respectively.
q̂k (Â, Ĥ ) is defined analogously. q0

k and q̂0
k are the normalization constants; it can be deduced that q0

k = 1 and q̂0
k = ck from the
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saddle-point conditions when n = 0. Inserting Eqs. (A20) and (A21) into Eqs. (A17)–(A19), we have

K ({Qk}) = N2

2

∑
kk′

Wkk′

∫
dAdHqk (A, H )

∫
dA′dH ′qk′ (A′, H ′)

(
AA′

AA′ − 1

)− n
2

× exp

⎧⎨
⎩
∑

a

β

2

⎡
⎣A′(H − 2�̂a√

c̄

)2 + 2
(
H − 2�̂√

c̄

)
H ′ + AH ′2

AA′ − 1
−
(
H − 2�̂a√

c̄

)2
A

− H ′2

A

⎤
⎦
⎫⎬
⎭, (A22)

Lk (Qk, Q̂k ) =
∫

dAdHdÂĤqk (A, H )q̂k (Â, Ĥ )

(
A

A − Â

) n
2

exp

[
nβ

2

(
(H + Ĥ )2

A − Â
− H2

A

)]
, (A23)

Mi,k (Q̂k, {φa}) =
(

2π

β

) n
2

∞∑
d=0

cd
k

d!

∫ d∏
g=1

[dÂgdĤgq̂k (Âg, Ĥg)]
∏

a

(
φa −

∑
g

Âg

)− 1
2

exp

[
β

2

(∑
g Ĥg

)2
φa −∑g Âg

]
. (A24)

To derive Eq. (A24), we expanded the exponential as eQ̂k (xi ) =∑∞
d=0

1
d! Q̂

d
k (xi ).

Hereafter, let us assume no distinction among the variables with different replica indices, i.e., φa = φ, �a = �, and �̂a = �̂.
This is referred to as the replica symmetric assumption. We insert Eqs. (A22)–(A24) into Eq. (A16) under this assumption. Then,
we obtain the following saddle-point equation for the average largest eigenvalue from Eqs. (10), (11), and (14) as

[λ(M )]M = 2 lim
β→∞

1

βN
lim
n→0

∂

∂n
log[Zn]M (A25)

= extr
φ,�,�̂,{qk ,q̂k}

{
φ + 2��̂ − �2 + 1

2

∑
kk′

NWkk′

∫
dAdHqk (A, H )

∫
dA′dH ′qk′ (A′, H ′)

×
⎡
⎣A′(H − 2�̂√

c̄

)2 + 2
(
H − 2�̂√

c̄

)
H ′ + AH ′2

AA′ − 1
−

(H − 2�̂√
c̄
)2

A
− H ′2

A′

⎤
⎦

−
∑

k

pkck

∫
dAdHdÂdĤqk (A, H )q̂k (Â, Ĥ )

[
(H + Ĥ )2

A − Â
− H2

A

]

+
∑

k

pk

∞∑
d=0

Pck (d )
∫ d∏

g=1

[dÂgdĤgq̂k (Âg, Ĥg)]

(∑
g Ĥg

)2
φ −∑g Âg

}
. (A26)

Here, Pck (d ) is the probability mass function of degree d of each node in block k that has expectation ck . From the saddle-point
condition in Eq. (A26), we obtain the functional equations with respect to qk (A, H ) and q̂k (Â, Ĥ ) as

qk (A, H ) =
∞∑

d=0

Pck (d )d
∫ d−1∏

g=1

[dÂgdĤgq̂k (Âg, Ĥg)]δ

(
H −

d−1∑
g=1

Ĥg

)
δ

(
A − φ +

d−1∑
g=1

Âg

)
, (A27)

q̂k (Â, Ĥ ) = 1

ck

∑
k′

Nρkk′ pk′

∫
dA′dH ′qk′ (A′, H ′)δ

(
Â − 1

A′
)
δ

(
Ĥ −

H ′ − 2�̂√
c̄

A′

)
. (A28)

To derive Eq. (A27), we used the fact that the expectation of H2/A becomes 0, which is derived by substituting Ĥ = Â = 0.
Moreover, the saddle-point condition with respect to φ yields

∑
k

pk

∫
dAdHQk (A, H )

(
H

A

)2

= 1, (A29)

where

Qk (A, H ) =
∞∑

d=0

Pck (d )
∫ d∏

g=1

[dÂgdĤgq̂k (Âg, Ĥg)]δ

(
H −

d∑
g=1

Ĥg

)
δ

(
A − φ +

d∑
g=1

Âg

)
. (A30)

Equation (A29) corresponds to the normalization constraint in Eq. (9). Equations (A27) and (A28) constitute functional equations
under constraint Eq. (A29), and solving these equations yields the distribution of the largest eigenvector elements. Note that
qk (A, H ) was introduced as the weight in the Gaussian mixture, which approximates the empirical distribution of the largest
eigenvector elements in Eq. (A10). This indicates that qk (A, H ) exhibits the probability density of the eigenvector-element
distribution.
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Unfortunately, solving the functional form of equations is still not analytically tractable. Thus, we introduce further approxi-
mations that qk (A) = δ(A − ak ) and q̂k (Â) = δ(Â − âk ), i.e., we ignore the fluctuation of the precision parameters. This is called
the effective medium approximation (EMA) [26,27]. Performing the EMA for Eq. (A26), we arrive at

[λ(M )]M = extr
φ,�,�̂,m1k ,m2k ,m̂1k ,m̂2k ,ak ,âk

⎧⎨
⎩φ + 2�̂� − �2

+ 1

2
N
∑
k,k′

Wkk′

[
ak′
(
m2k − 2�̂√

c̄
+ 4�̂2

c̄

)+ 2m1k′
(
m1k − 2�̂√

c̄

)+ akm2k′

akak′ − 1
−

m2k − 2�̂√
c̄
m1k + 4�̂

c̄

ak
− m2k′

ak′

]

−
∑

k

pkck

(m2k + 2m1km̂1k + m̂2k

ak − âk
− m2k′

ak′

)
+ 1

N

∑
k

∑
i∈Vk

∞∑
d=0

Pck (d )

φ − dâk

[
dm̂2k + d (d − 1)m̂2

1k

]⎫⎬⎭, (A31)

where m�k and m̂�k stand for the �th moments of H and Ĥ , respectively, i.e., m�k = ∫ dHH �qk (H ) and m̂�k = ∫ dĤĤ �q̂k (Ĥ ).

The saddle-point conditions from Eq. (A31) lead to the
equations for the auxiliary variables φ,�, �̂, m�k, m̂�k, ak ,
and âk . Here, we focus on a model with the symmetry be-
tween the community blocks: p1 = p3 and c1 = c3. Due to
this assumption, we can apply the same assumptions to the
physical quantities ak, âk, m2k, m̂2k , that is, a1 = a3, â1 = â3,
m21 = m23, and m̂21 = m̂23. This is because these quantities
are the second-order statistics and do not depend on the signs.

Further, we assume m12 = 0. This assumption stems from
the fact that the overlapping block does not contain nodes
in the community blocks. Thus, the corresponding elements
of the eigenvector come from a random structure of the
graph. Moreover, we classify the solution into the cases of
m11 = 0 and m11 
= 0. For the solution with m11 = 0, we can
assume m13 = 0 owing to the symmetry. However, for the
solutions with m11 
= 0, we can assume m11 = −m13 due to
the symmetry and the fact that the eigenvector elements of x
tend to have the same signs in the same block. In summary,
we have two types of solutions: m11 = −m13 
= 0, m12 = 0
and m11 = m12 = m13 = 0. In fact, the former corresponds
to the detectable condition and the latter corresponds to the
undetectable condition. The leading eigenvalue is calculated
for each of the two conditions, and the detectability limit is
derived as the boundary between these two conditions. We
further simplify the problem using the regular approximation
with respect to the degree, namely the random variables fol-
lowing the Poisson distribution d in Eq. (16) are fixed as their
means ck .

First, under the detectable condition, we can derive the
equations for a1, a2, â1, and â2 from the saddle-point condi-
tions as

a1 + (c1 − 1)â1 = a2 + (c2 − 1)â2, (A32)

1

a1 − â1
= 1 + ε

1 + α + ε

a1

a2
1 − 1

+ α

1 + α + ε

a2

a1a2 − 1
,

(A33)

1

a2 − â2
= σα

σα + 2

a2

a2
2 − 1

+ 2

σα + 2

a1

a1a2 − 1
.

(A34)

1

a1 − â1
= 1 − ε

1 + ε + α

c1 − 1

a2
1 − 1

. (A35)

We let the solutions of Eqs. (A32)–(A35) as adet
1 , adet

2 , âdet
1 , and

âdet
2 . Then, we obtain the average leading eigenvalue as

[λ(M )]M = φ = adet
k + (ck − 1)âdet

k (k = 1, 2) (A36)

and the condition of the detectability limit as
D
(
adet

1 , adet
2 , âdet

1 , âdet
2

) = 0, (A37)
where

D(a1, a2, â1, â2) = M11M22 − M12M21, (A38)

M11 = (1 + ε)
a2

1 + 1(
a2

1 − 1
)2 + α

a2
2

(a1a2 − 1)2

− (1 + α + ε)
1

(a1 − â1)2

c1

c1 − 1
, (A39)

M12 = α

(a1a2 − 1)2
, (A40)

M21 = 2

(a1a2 − 1)2
, (A41)

M22 = 2a2
1

(a1a2 − 1)2
+ σα

a2
2 + 1

(a2
2 − 1)2

− (σα + 2)
1

(a2 − â2)2

c2

c2 − 1
. (A42)

The detectability limit Eq. (A37) is derived by condition
m̂2

11 = 0, because D(a1, a2, â1, â2) is proportional to m̂2
11.

Second, under the undetectable condition, we can derive
the equations for a1, a2, â1, and â2 from the saddle-point con-
ditions as

a1 + (c1 − 1)â1 = a2 + (c2 − 1)â2, (A43)

1

a1 − â1
= 1 + ε

1 + α + ε

a1

a2
1 − 1

+ α

1 + α + ε

a2

a1a2 − 1
,

(A44)
1

a2 − â2
= σα

σα + 2

a2

a2
2 − 1

+ 2

σα + 2

a1

a1a2 − 1
, (A45)

D(a1, a2, â1, â2) = 0. (A46)

These equations are analogous to those for the detectable
conditions Eqs. (A32)–(A35). A crucial difference is that we
have condition m̂2

11 = 0 instead of Eq. (A35). We let the so-
lutions of these equations be aund

1 , aund
2 , âund

1 , and âund
2 . Using
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this solution, we obtain the average leading eigenvalue in the
undetectable conditions as follows:

[λ(M )]M = φ = aund
k + (ck − 1)âund

k (k = 1, 2). (A47)

APPENDIX B: MICROCANONICAL OVERLAPPING SBM

In this Appendix, we discuss the microcanonical SBM. In
Sec. B 1, we introduce the definition of the microcanonical
overlapping SBM. In Sec. B 2, we provide the replica analysis
to derive its spectrum and the detectability limit. In Sec. B 3,
we derive the saddle-point conditions for normalization con-
stant NG, from which we can derive crucial relations used
in Sec. B 2. Finally, in Sec. B 4, we discuss the distinction
between the canonical and microcanonical SBMs and discuss
the reason of their use in our numerical experiments.

1. Model definition

Microcanonical SBM is an SBM that is formulated on
the basis of different constraints from its canonical model.
Although the canonical SBM specifies the expected number
of edges within the blocks, the microcanonical SBM specifies
the number of edges within the blocks as well as the degree
sequence as hard constraints. The microcanonical SBM gen-
erates a graph uniformly and randomly from all realizable
graphs under these constraints. We denote the sequence of
node degrees as d = [di]. We let ekl be the number of edges
between blocks k and l; we denote the corresponding matrix
as e = [ekl ]. Moreover, t = [ti] ti ∈ {1, · · · , K} (i ∈ V ) are
the planted block labels of the nodes. An instance of the
microcanonical SBM is generated according to the following
probability distribution:

P(A|d, e, t ) = 1

�(d, e, t )
, (B1)

where �(d, e, t ) is the number of all realizable graphs under
given d, e, and t .

We consider a microcanonical SBM with an overlapping
structure with the following parametrization:

p = (p1, p2, p3) = (p1, αp1, p1), (B2)

e =
(1 α ε

α σα2 α

ε α 1

)
e11, (B3)

di = cti . (B4)

Although we can provide an arbitrary degree sequence, for
simplicity, we assume the nodes belonging to the same block

k have equal degree ck . As in the canonical SBM, the model
parameters must satisfy constraint Eq. (6).

2. Derivation of the spectrum and the detectability limit of the
microcanonical SBM

Here, we conduct an analysis analogous to Appendix A for
the microcanonical SBM. As a result of the present analy-
sis, we obtain the same average largest eigenvalues as those
of the canonical case in Eqs. (A36) and (A47). However, a
different technique is required to impose the microcanonical
constraints. The calculations in this Appendix are extensions
of those in Refs. [7,8]. We start with the nth moment of the
partition function Eq. (15):

[Zn(M, β )]M =
∫ [ n∏

a=1

dxaδ(x�
a xa − N )

]

×
[

exp

(
β

2

∑
a

x�
a Mxa

)]
M

. (B5)

As defined in Appendix B 1, we assume the three blocks
model. Then, the exponential factor in Eq. (B5) can be recast
as

x�
a Mxa =

∑
i j∈V1

ui jxiax ja +
∑
i j∈V2

yi jxiax ja

+
∑
i j∈V3

ui jxiax ja + 2
∑
i∈V1

∑
j∈V2

vi jxiax ja

+ 2
∑
i∈V2

∑
j∈V3

vi jxiax ja + 2
∑
i∈V1

∑
j∈V3

wi jxiax ja

− (γ�xa)2, (B6)

where ui j, yi j, vi j , and wi j are the adjacency matrix elements.
These parameters were introduced to distinguish blocks that
obey different statistics. Again, the summation

∑
i∈Vk

is taken
over indices of the nodes that belong to block k.

To calculate the ensemble average over the microcanonical
SBM, we take the sum over all possible graph configurations
as imposing the microcanonical constraints by δ functions.
Thus, the configuration average of the exponential factor in
Eq. (B5) is

[
exp

(
β

2

∑
a

x�
a Mxa

)]
M

= 1

NG

∑
{ui j},{wi j},{vi j },{wi j}

∏
i∈V1

δ

(∑
l∈V1

uil +
∑
m∈V2

vim +
∑
n∈V3

win − c1

)∏
j∈V2

δ

(∑
l∈V1

u jl +
∑
m∈V2

v jm +
∑
n∈V3

w jn − c2

)

×
∏
k∈V3

δ

(∑
l∈V1

ukl +
∑
m∈V2

vkm +
∑
n∈V3

wkn − c3

)
δ

(
σ p2

∑
i∈V1

∑
j∈V2

vi j − p1

∑
i, j∈V2

yi j

)
δ

(
σ p2

∑
i∈V2

∑
j∈V3

vi j − p3

∑
i, j∈V2

yi j

)
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× δ

(
p2

∑
i, j∈V1

ui j − p1

∑
i∈V1

∑
j∈V2

vi j

)
δ

(
p2

∑
i, j∈V3

ui j − p3

∑
i∈V2

∑
j∈V3

vi j

)
δ

(
ε
∑

i, j∈V1

ui j −
∑
i∈V1

∑
j∈V3

wi j

)

× δ

(
ε
∑

i, j∈V3

ui j −
∑
i∈V1

∑
j∈V3

wi j

)
exp

(
β

2

∑
a

x�
a Mxa

)
. (B7)

Here, NG is the number of all realizable graphs that satisfy the constraints. The first three δ functions in Eq. (B7) represent
Kronecker’s δs that impose the degree constraints, while the remaining ones represent Dirac’s δs that impose the constraints
with respect to the number of edges between blocks, as specified by matrix e.

We use the integral expression of the δ functions as follows:

δ(x) =
∮

dz

2π
zx−1, (B8)

δ(x) =
∫ i∞

−i∞

dη

2π
e−ηx. (B9)

Here, Eqs. (B8) and (B9) correspond to the Kronecker’s and Dirac’s δs. Then, Eq. (B7) can be recast as follows:
1

NG

∮ ∏
k=1,2,3

∏
i∈Vk

dzi

2π
z−(1+ck )

i

∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π
e− β

2

∑
a (γ�xa )2

×
∏
i < j

i, j ∈ V1

∑
ui j∈{0,1}

(ziz je
β
∑

a xiax ja−2τ p2−2ηε )ui j
∏
i < j

i, j ∈ V2

∑
yi j∈{0,1}

(ziz je
β
∑

a xiax ja+2ξ p3+2ζ p1 )yi j

×
∏
i < j

i, j ∈ V3

∑
ui j∈{0,1}

(ziz je
β
∑

a xiax ja−2κ p2−2θε )ui j
∏
i∈V1

∏
j∈V2

∑
vi j∈{0,1}

(ziz je
β
∑

a xiax ja−σζ p2+τ p1 )vi j

×
∏
i∈V2

∏
j∈V3

∑
vi j∈{0,1}

(ziz je
β
∑

a xiax ja−σξ p2+κ p3 )vi j
∏
i∈V1

∏
j∈V3

∑
wi j∈{0,1}

(ziz je
β
∑

a xiax ja+η+θ )wi j , (B10)

where parameters ζ , ξ , τ, κ, η, and θ are the auxiliary variables provided by the integral representation of the δ function. Because
variables ui j, yi j, vi j , and wi j only take binary values, their summations in Eq. (B10) can be calculated straightforwardly. For
example, ∏

i < j
i, j ∈ V1

∑
ui j∈{0,1}

(
ziz je

β
∑

a xiax ja
)ui j =

∏
i < j

i, j ∈ V2

(1 + ziz je
β
∑

a xiax ja ) ≈
∏
i < j

i, j ∈ V3

exp(ziz je
β
∑

a xiax ja ). (B11)

To derive the last equation in Eq. (B11), we assume that |zi| and |z j | are sufficiently small.
Here, we introduce the order-parameter functions,

Qk (μ) = 1

pkN

∑
i∈Vk

zi

n∏
a=1

δ(xia − μa), (k = 1, 2, 3), (B12)

which is similar but not completely equivalent to Eq. (A10). Using the order-parameter functions Eq. (B12), when N � 1,
Eq. (B11) can be approximated as∏

i < j
i, j ∈ V1

exp(ziz je
β
∑

a xiax ja ) ≈ exp

(
(p1N )2

2

∫ n∏
a=1

dμadνaQ1(μ)Q1(ν)eβ
∑

a μaνa

)
, (B13)

where we approximated that the contribution from the diagonal elements is negligible. Using the similar calculations, Eq. (B5)
is now written as

[Zn(M, β )]M = eNTn(Q)+NSn , (B14)

where

NTn(Q) = (p1N )2

2

∫ n∏
a=1

dμadνaQ1(μ)Q1(ν)eβ
∑

a μaνa−2τ p2−2ηε

+ (p2N )2

2

∫ n∏
a=1

dμadνaQ2(μ)Q2(ν)eβ
∑

a μaνa+2ξ p3+2ζ p1
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+ (p3N )2

2

∫ n∏
a=1

dμadνaQ3(μ)Q3(ν)eβ
∑

a μaνa−2κ p2−2θε

+ p1 p2N2
∫ n∏

a=1

dμadνaQ1(μ)Q2(ν)eβ
∑

a μaνa−σζ p2+2τ p1

+ p2 p3N2
∫ n∏

a=1

dμadνaQ2(μ)Q3(ν)eβ
∑

a μaνa−σξ p2+2κ p3

+ p1 p3N2
∫ n∏

a=1

dμadνaQ1(μ)Q3(ν)eβ
∑

a μaνa+η+θ (B15)

and

eNSn =
∫ N∏

i=1

n∏
a=1

dxia

n∏
a=1

δ

(
N∑

i=1

x2
ia − N

)∫ √
N

n∏
a=1

d�aδ

(√
N�a −

∑
i

γixia

)
e− β

2 �2
a

× 1

NG

∮ ∏
k=1,2,3

∏
i∈Vk

dzi

2π
z−(1+ck )

i

∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π
. (B16)

Here, �a is the order parameter defined in Eq. (A3). As in the case of the canonical SBM in Eq. (A14), for Eq. (B16), we insert
the identity

1 =
∏

k=1,2,3

pkN
∫

DQk

2π
δ

[∑
i∈Vk

zi

n∏
a=1

δ(xia − μa) − pkNQk (μ)

]
(B17)

=
∏

k=1,2,3

pkN
∫

DQkDQ̂k

2π
exp

{ ∑
k=1,2,3

∫
dμQ̂k (μ)

[∑
i∈Vk

zi

n∏
a=1

δ(xia − μa) − pkNQk (μ)

]}
. (B18)

In Eq. (B17), we perform the functional integration over the space of function Qk (μ). It is required to insert identity Eq. (B17),
because it indicates that we performed the replacement of a function in Eq. (B12) by Qk (μ). Furthermore, using the integral
representation of the δ functions Eqs. (A7) and (A13), we obtain

eNSn =
∫ ∏

k=1,2,3

pkN
DQkDQ̂k

2π

∫ ∏
a

βdφa

4π

∫ ∏
a

βNd�a�̂a

2π

∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π

× exp

[
− log NG − N

∑
k

Kk (Qk, Q̂k ) + βN

2

∑
a

(
2�a�̂a − �2

a + φa
)−

∑
k

log ck! +
∑

k=1,2,3

log Lk (Q̂k, {�̂a}, {φa})

]
,

(B19)

where

Kk (Qk, Q̂k ) = pk

∫
dμQk (μ)Q̂k (μ), (B20)

Lk
(
Q̂k, {�̂a}, {φa}

) =
∫ ∏

i∈Vk

∏
a

dxia

∏
i∈Vk

{
Q̂ck

k (xi ) exp

[
−β
∑

a

(√
N�̂aγixia + 1

2
φax2

ia

)]}
. (B21)

Here, we used the relation ∮
dzi

2π
z−(1+ck )

i eziQ̂k (xi ) =
∮

dzi

2π
z−(1+ck )

i

∞∑
m=0

1

m!
[ziQ̂k (xi )]

m (B22)

=
∞∑

m=0

1

m!
Q̂k (xi )

∮
dzi

2π
zm−(1+ck )

i (B23)

= 1

ck!
Q̂ck

k (xi ). (B24)

Now, the variable depending on the node index i only appears as xi. Hence, after the integral with respect to xi is carried out in
Lk (Q̂k, {�̂a}, {φa}), Eq. (B19) can be expressed only with integrals over the auxiliary variables φa, �a, �̂a, ζ , ξ , τ , κ , η, θ and
functional integrals over Qk (μ) and Q̂k (μ).
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For further calculations, as in the case of the canonical SBM [Eqs. (A20) and (A21)], we assume the functional form of Qk

and Q̂k are restricted to the Gaussian mixtures as follows.

Qk (μ) = Tk

∫
dAdHqk (A, H ) ×

(
βA

2π

) n
2

exp

[
−βA

2

∑
a

(
μa − H

A

)2
]
, (B25)

Q̂k (μ) = T̂k

∫
dÂdĤ q̂k (Â, Ĥ ) exp

[
β

2

∑
a

(
Âμ2

a + 2Ĥμa
)]

, (B26)

where Tk and T̂k represent the normalization constants. With these functional forms, we can calculate the integrals over μ in
Eq. (B20) and x in Eq. (B21). Then, we obtain the following expressions:

Kk (qk, q̂k ) = ck pk

∫
dAdH

∫
dÂdĤqk (A, H )q̂k (Â, Ĥ ) ×

(
A

A − Â

) n
2

exp

{
nβ

2

[
(H + Ĥ )2

A − Â
− H2

A

]}
, (B27)

Lk (q̂k, {�̂a}, {φa}) = T̂ ck
k

(
2π

β

) n
2
∫ ck∏

g=1

[dÂgdĤgq̂k (Âg, Ĥg)]
n∏

a=1

(
φa −

ck∑
g=1

Âg

)− 1
2

exp

[
β

2

∑
i∈Vk

(√
N�̂aγi −∑ck

g=1 Ĥg
)2

φa −∑ck
g=1 Âg

]
.

(B28)

In Appendix B 3, we solve for normalization constants Tk and T̂k . By using Eq. (B54), we can replace TkT̂k with ck . This is how
we eliminated the normalization constants in Eq. (B27). By inserting Eqs. (B25) and (B26) into Eq. (B15), we can calculate the
integrals over μ and obtain

Tn = N
∫

dAdH
∫

dA′dH ′
(

AA′

A − A′

) n
2

exp

[
nβ

2
�(A, A′, H, H ′)

][
c1

2

p2
1

p1 + p2 + εp1
q1(A, H )q1(A′, H ′)

+ c2

2

σ p2
2

p1 + σ p2 + p3
q2(A, H )q2(A′, H ′) + c3

2

p2
3

p3 + p2 + εp3
q3(A, H )q3(A′, H ′) + c2

p1 p2

p1 + σ p2 + p3
q1(A, H )q2(A′, H ′)

+ c2
p2 p3

p1 + σ p2 + σ p3
q2(A, H )q3(A′, H ′) + c1

εp2
1

p1 + p2 + εp1
q1(A, H )q3(A′, H ′)

]
, (B29)

where

�(A, A′, H, H ′) = A′H2 + AH ′2 + 2HH ′

AA′ − 1
− H2

A
− H ′2

A′ . (B30)

Here, we used the relations between T1, T2, and T3 Eqs. (B55)–(B61). From the calculations so far, we have performed all the
integrals over z, x, and μ. The functional integrals over Qk (μ) and Q̂k (μ) in Eq. (B19) have been replaced by the integral over
the functions qk (A, H ) and q̂k (Â, Ĥ ). In summary, the nth moment of the partition function Eq. (B14) is now represented by
the integrals with respect to auxiliary variables φa, �a, and �̂a and the functional integrals over qk (A, H ) and q̂k (Â, Ĥ ). Note
that the other variables ζ , ξ , τ , κ , η, and θ can be erased when inserting the relations between the normalization constants
Eqs. (B55)–(B61).

Again, as we assumed in the canonical SBM, we impose the replica symmetric assumptions for the parameters φa,�a, and
�̂a, i.e., φa = φ, �a = �, and �̂a = �̂ in Eqs. (B27)–(B29). Inserting Eqs. (B27)–(B29) under the assumptions into Eq. (B14)
and taking the limit N → ∞, the average largest eigenvalue can be expressed as follows:

[λ(M )]M = 2 lim
β→∞

1

βN
lim
n→0

∂

∂n
log[Zn]M (B31)

= extr
qk ,q̂k ,φ,�,�̂

{∫
dAdH

∫
dA′dH ′�(A, A′, H, H ′)

⎡
⎣c1

2

p2
1

p1 + p2 + εp1
q1(A, H )q1(A′, H ′)

+ c2

2

σ p2
2

p1 + σ p2 + p3
q2(A, H )q2(A′, H ′) + c3

2

p2
3

p3 + p2 + εp3
q3(A, H )q3(A′, H ′)

+ c2
p1 p2

p1 + σ p2 + p3
q1(A, H )q2(A′, H ′) + c2

p2 p3

p1 + σ p2 + p3
q2(A, H )q3(A′, H ′)

+ c1
εp2

1

p1 + p2 + εp1
q1(A, H )q3(A′, H ′)

⎤
⎦
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−
∑

k=1,2,3

ck pk

∫
dAdH

∫
dÂdĤqk (A, H )q̂k (Â, Ĥ )

[
(H + Ĥ )2

A − Â
− H2

A

]
+ 2��̂ − �2 + φ

+ 1

N

∑
k=1,2,3

∫ ck∏
g=1

[dÂgdĤgq̂k (Âg, Ĥg)]
∑
i∈Vk

(√
N�̂γi −∑ck

g=1 Ĥg
)2

φ −∑ck
g=1 Âg

⎫⎬
⎭. (B32)

From Eq. (B32), we obtain the saddle-point conditions as

q̂1(Â, Ĥ ) =
∫

dA′dH ′ p1q1(A′, H ′) + p2q2(A′, H ′) + εp1q3(A′, H ′)
p1 + p2 + εp1

δ

(
Â − 1

A′

)
δ

(
Ĥ − H ′

A′

)
, (B33)

q̂2(Â, Ĥ ) =
∫

dA′dH ′ p1q1(A′, H ′) + σ p2q2(A′, H ′) + p3q3(A′, H ′)
p1 + σ p2 + p3

δ

(
Â − 1

A′

)
δ

(
Ĥ − H ′

A′

)
, (B34)

q̂3(Â, Ĥ ) =
∫

dA′dH ′ p3q1(A′, H ′) + p2q2(A′, H ′) + εp3q3(A′, H ′)
p3 + p2 + εp3

δ

(
Â − 1

A′

)
δ

(
Ĥ − H ′

A′

)
, (B35)

and

qk (A, H ) = 1

pkN

∫ ck−1∏
g=1

[dÂgdĤgq̂k (Âg, Ĥg)]δ

(
H −

ck−1∑
g=1

Ĥg +
√

N�̂γi

)
δ

(
A − φ +

ck−1∑
g=1

Âg

)
. (B36)

Moreover, the saddle-point conditions with respect to φ yield

∑
k

pk

∫
dAdHQk (A, H )

(
H

A

)2

= 1, (B37)

where

Qk (A, H ) = 1

pkN

∑
i∈Vk

∫ ck∏
g=1

[dÂgdĤgq̂k (Âg, Ĥg)] × δ

(
H −

ck∑
g=1

Ĥg +
√

N�̂γi

)
δ

(
A − φ +

ck∑
g=1

Âg

)
. (B38)

Equations (B33)–(B36) constitute functional equations under the constraint Eq. (B37). This constraint corresponds to the
normalization constraints in Eq. (9). By solving these equations, we obtain the distribution of the largest eigenvector elements.

As in the canonical case, solving the functional form of equations is still not analytically tractable. Thus, we again introduce
the EMA, i.e., the precision parameters of the Gaussian mixtures A and Â are fixed as constants, i.e., qk (A, H ) = q(H )δ(A − ak )
and q̂k (Â, Ĥ ) = q̂k (Ĥ )δ(Â − âk ). Performing the EMA for Eq. (B32), we have

[λ(M )]M = extr
φ,�,�̂,m1k ,m2k ,m̂1k ,m̂2k ,ak ,âk

⎧⎨
⎩ c1 p2

1

p1 + p2 + εp1

a1m21 + m2
11

a2
1 − 1

+ c2σ p2
2

p1 + σ p2 + p3

a2m22 + m2
12

a2
2 − 1

+ c3 p2
3

p3 + p2 + εp3

a3m23 + m2
13

a2
3 − 1

+ c2 p1 p2

p1 + σ p2 + p3

a2m21 + a1m22 + 2m11m̂11

a1a2 − 1

+ c2 p2 p3

p1 + σ p2 + p3

a3m22 + a2m23 + 2m12m13

a2a3 − 1
+ c1εp2

1

p1 + p2 + εp1

a3m21 + a1m23 + 2m11m13

a1a3 − 1

−
∑

k

ck pk
m2k + 2m1km̂1k + m̂2k

ak − âk
+ 2��̂ − �2 + φ

+ 1

N

∑
k

∑
i∈Vk

1

φ − ckâk

[
(
√

N�̂γi )
2 − 2

√
N�̂γickm̂1k + ckm̂2k + ck (ck − 1)m̂2

1k

]⎫⎬⎭, (B39)

where m�k and m̂�k represent the �th moments of H and Ĥ , respectively, i.e., m�k = ∫ dHH �qk (H ) and m̂�k = ∫ dĤĤ �q̂k (Ĥ ).
As in the canonical case, we introduce further assumptions. First, we assume the symmetry between the community blocks,

namely p1 = p3 and c1 = c3. Hence, a1 = a3, â1 = â3, m21 = m23, and m̂21 = m̂23. Second, we think of two types of solutions:
m11 = −m13, m12 = 0 and m11 = m12 = m13 = 0. Under these assumptions, we obtain the same solutions as those of the
canonical SBM with the regular approximation. When m11 = −m13 and m12 = 0, the average largest eigenvalue is obtained
as in Eq. (A36). When m11 = m12 = m13 = 0, the average largest eigenvalue is obtained as in Eq. (A47). The detectability limit
is given by Eq. (A37).
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3. Saddle-point conditions for NG

The goal of this subsection is to derive the relations of the normalization constants of the Gaussian mixtures Tk and T̂k in
Eqs. (B25) and (B26). They can be derived using saddle-point conditions for the number of all realizable graphs NG. This can be
calculated by taking the sum over all possible graph configurations as imposing the microcanonical constraints by δ functions.
Thus, we have

NG =
∑

{ui j},{wi j},{vi j},{wi j}

∏
i∈V1

δ

(∑
l∈V1

uil +
∑
m∈V2

vim +
∑
n∈V3

win − c1

)∏
j∈V2

δ

(∑
l∈V1

u jl +
∑
m∈V2

v jm +
∑
n∈V3

w jn − c2

)

×
∏
k∈V3

δ

(∑
l∈V1

ukl +
∑
m∈V2

vkm +
∑
n∈V3

wkn − c3

)
δ

(
σ p2

∑
i∈V1

∑
j∈V2

vi j − p1

∑
i, j∈V2

yi j

)
δ

(
σ p2

∑
i∈V2

∑
j∈V3

vi j − p3

∑
i, j∈V2

yi j

)

× δ

(
p2

∑
i, j∈V1

ui j − p1

∑
i∈V1

∑
j∈V2

vi j

)
δ

(
p2

∑
i, j∈V3

ui j − p3

∑
i∈V2

∑
j∈V3

vi j

)

× δ

(
ε
∑

i, j∈V1

ui j −
∑
i∈V1

∑
j∈V3

wi j

)
δ

(
ε
∑

i, j∈V3

ui j −
∑
i∈V2

∑
j∈V3

wi j

)
. (B40)

Using the integral representation of the δ function Eqs. (B8) and (B9), we have

NG =
∑

{ui j},{wi j},{vi j},{wi j}

∮ ∏
i∈V1

dzi

2π
z
∑

l∈V1
uil +

∑
m∈V2

vim+∑n∈V3
win−c1−1

i

×
∮ ∏

i∈V2

dzi

2π
z
∑

l∈V1
vil +

∑
m∈V2

yim+∑n∈V3
vin−c2−1

i

∮ ∏
i∈V3

dzi

2π
z
∑

l∈V1
uil +

∑
m∈V2

vim+∑n∈V3
win−c3−1

i

×
∫

dζ

2π
e−ζ (σ p2

∑
i∈V1

∑
j∈V2

vi j−p1
∑

i, j∈V2
yi j )
∫

dξ

2π
e−ξ (σ p2

∑
i∈V2

∑
j∈V3

vi j−p3
∑

i, j∈V2
yi j )

×
∫

dτ

2π
e−τ (p2

∑
i, j∈V1

ui j−p1
∑

i∈V1

∑
j∈V2

vi j )
∫

dκ

2π
e−κ(p2

∑
i, j∈V1

ui j−p3
∑

i∈V2

∑
j∈V3

vi j )

×
∫

dη

2π
e−η(ε

∑
i, j∈V1

ui j−
∑

i∈V1

∑
j∈V3

wi j )
∫

dθ

2π
e−θ(ε

∑
i, j∈V3

ui j−
∑

i∈V1

∑
j∈V3

wi j ) (B41)

=
∮ ∏

k=1,2,3

∏
i∈Vk

dzi

2π
z−(1+ck )

i

∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π

×
∏
i < j

i, j ∈ V1

∑
ui j

(ziz je
−2τ p2−2ηε )ui j

∏
i < j

i, j ∈ V2

∑
yi j

(ziz je
2ξ p3+2ζ p1 )yi j

∏
i < j

i, j ∈ V3

∑
ui j

(ziz je
−2κ p2−2θε )ui j

×
∏
i∈V1

∏
j∈V2

∑
vi j

(ziz je
−σζ p2+τ p1 )vi j

∏
i∈V2

∏
j∈V3

∑
vi j

(ziz je
−σξ p2+κ p3 )vi j

∏
i∈V1

∏
j∈V3

∑
wi j

(ziz je
η+θ )wi j . (B42)

Here, we introduce the order parameters

qk = 1

pkN

∑
i∈Vk

zi. (k = 1, 2, 3). (B43)

Equation (B42) is now written as

NG =
∏

k=1,2,3

[
pkN

∫
dqk

∏
i∈Vk

∮
dzi

2π
z−(1+ck )

i

]∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π

×
∏

k=1,2,3

δ

(
pkNqk −

∑
i∈Vk

zi

)
exp

[
1

2
e−2τ p2−2εη(p1Nq1)2 + 1

2
e2ζ p1+2ξ p3 (p2Nq2)2

+ 1

2
e−2κ p2−2ξθ (p3Nq3)2 + e−σζ p2+τ p1 p1 p2N2q1q2 + e−σξ p2+κ p3 p2 p3N2q2q3 + eη+θ p1 p3N2q1q3

]
. (B44)
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Here, we used the same approximation as in Eq. (B11). Using relations Eqs. (B9) and (B24), Eq. (B44) becomes

NG =
∏

k=1,2,3

(
pkN

∫
dqkdq̂k

2π

)∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π
exp

[
1

2
e−2τ p2−2εη(p1Nq1)2

+ 1

2
e2ζ p1+2ξ p3 (p2Nq2)2 + 1

2
e−2κ p2−2ξθ (p3Nq3)2 + e−σζ p2+τ p1 p1 p2N2q1q2

+ e−σξ p2+κ p3 p2 p3N2q2q3 + eη+θ p1 p3N2q1q3 + N
∑

k=1,2,3

(−q̂k pkqk + pkck log q̂k − pk log ck!)

]
. (B45)

In the limit N → ∞, we have the following saddle-point
conditions:

εp1q1e−2τ p2−2εη = p3q3eη+θ , (B46)

εp3q3e−2κ p2−2εθ = p1q1eη+θ , (B47)

q2e2ζ p1+2ξ p3 = σq1e−σζ p2+τ p1 , (B48)

q1e−2τ p2−2εη = q2e−σζ p2+τ p1 , (B49)

q3e−2κ p2−2εθ = q2e−σξ p2+κ p3 , (B50)

q̂1

N
= p1q1e−2τ p2−2εη + p2q2e−σζ p2+τ p1

+ p3q3eη+θ , (B51)

q̂2

N
= p2q2e−2ζ p1+2ξ p3 + p1q1e−σζ p2+τ p1

+ p3q3e−σξ p2+κ p3 , (B52)

q̂3

N
= p3q3e−2κ p2−2εθ + p2q2e−σξ p2+κ p3

+ p1q1eη+θ , (B53)

qkq̂k = ck (k = 1, 2, 3). (B54)

From Eqs. (B46)–(B54), we obtain

q2
1 = 1

N
e2τ p2+2εη c1

p1 + p2 + εp1
, (B55)

q2
2 = 1

N
e−2ζ p1−2ξ p3

c2σ

p1 + σ p2 + p3
, (B56)

q2
3 = 1

N
e2κ p2+2εθ c3

p3 + p2 + εp3
, (B57)

q1q2 = 1

N
eσζ p2−τ p1

c2

σ p2 + p1 + p3
, (B58)

q2q3 = 1

N
eσξ p2−κ p3

c2

σ p2 + p1 + p3
, (B59)

q1q3 = 1

N
e−(η+θ ) p1

p3

c1ε

p1 + p2 + εp1
, (B60)

c1(σ p2 + p1 + p3) = c2(p1 + p2 + εp3). (B61)

By substituting Eqs. (B55)–(B61) into Eq. (B45), NG is
expressed in terms of the model parameters. The order param-
eters Eq. (B43) correspond to the order-parameter functions
Eq. (A10) when n = 0. This indicates that the normalization
constants of the Gaussian mixtures Tk and T̂k in Eqs. (B25) and
(B26) are identical to qk and q̂k , respectively. Accordingly, we
obtain the relations between Tk and T̂k as Eqs. (B54)–(B60).
Besides, Eq. (B61) is identical to the constraint between the

model parameters Eq. (6), i.e., the same constraint is derived
by both the model definition and the replica analysis.

4. Comparison between the canonical and microcanonical SBMs

In the main text, we used the canonical SBM for deriving
the detectability limit, whereas we used the microcanoni-
cal SBM for conducting the numerical experiments. This is
because the derivation under the canonical SBM is more
straightforward and simpler, while the canonical SBM causes
a problem when conducting the numerical experiments. The
canonical SBM required the regular approximation as an
additional approximation to calculate the average largest
eigenvalue in the replica analysis. The approximation creates
a large difference of the derived solutions from the original
ones because of ignoring the fluctuation of the degree distri-
bution. Thus, it becomes difficult to validate the results of the
analytical calculation by comparing them to the results of the
numerical experiments.

However, the microcanonical SBM does not require the
regular approximation because it can be defined with an ar-
bitrary degree sequence, and we can choose one that avoids
the effects of the fluctuation. Meanwhile, as mentioned in
Sec. IV A, the microcanonical SBM requires an additional
constraint that c1 and c2 can take only natural numbers.
This originates from the fact that it specifies a certain de-
gree for each node as its model parameters. Note that the
replica analysis with the microcanonical SBM (and canonical
SBM) required another approximation, which is called EMA.
However, the effect of this approximation can be neglected
under the experimental condition in Sec. IV, as discussed in
Appendix D.

In short, the canonical SBM is appropriate to explain the
derivation of the detectability limit because of the simplicity.
The microcanonical SBM is appropriate for conducting the
numerical experiments because it does not require the regular
approximation.

APPENDIX C: BIMODAL STOCHASTIC BLOCK MODEL

In this Appendix, we explain the bimodal SBM in detail.
This model is a variant of the SBM that has no overlapping
structure. The bimodal SBM has a bimodal degree distribu-
tion: each node randomly takes either degree c1 or c2. We
denote the fraction of the nodes that have degree c1 as b1

and that of c2 as b2 (b1 + b2 = 1). Note that, because the
degree assignment is independent of the group assignment,
one cannot infer the planted structure based on the degree
sequence.
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(a) (b)

FIG. 8. Largest eigenvalues as a function of α. The lines represent the results of the replica analysis and the dots represent those of the
numerical experiments. (a) The figure shows the results of the canonical SBM for c1 = 10, 14, 18, 22, 26, 30. (b) The figure shows the results
of the microcanonical SBM for c1 = 3, 4, 5, 6.

We define the two-block bimodal SBM in the microcanon-
ical formulation. The model is parametrized as follows:

e =
(1 ε

ε 1

)
e11, (C1)

b = (b1, b2) = (2p1, p2). (C2)

Here, as defined in Sec. II, ekl is the number of edges between
blocks k and l , and ε is the parameter that controls the strength
of community structure. Moreover, p1 and p2(= αp1) are the
sizes of the community and overlapping blocks of the over-
lapping SBM, respectively. As mentioned in the main text,
the purpose of introducing the bimodal SBM is to compare
the overlapping SBM to the SBM with the nonoverlapping
structure and the same average degree. We can confirm that
both models have the same average degree.

Subsequently, we show the average largest eigenvalue of
the bimodal SBM under the detectable and undetectable con-
ditions. As in the overlapping SBM, we can calculate it using
the replica method. The detailed derivation can be found in
Ref. [7].

First, under the detectable condition, we obtain the equa-
tion for a as

cb(c2A − B)(c1A − B) = (a2 − 1)(cbA − B)B, (C3)

where

A = (cb − 1)� − a, (C4)

B = �(c2 − cb) − acb, (C5)

� = 1 − ε

1 + ε
. (C6)

Here, a is the precision parameter of the Gaussian mixture,
which corresponds to a1 and a2 in the case of the overlapping
SBM. Besides, cb ≡ b1c1 + b2c2 and c2

b ≡ b1c2
1 + b2c2

2. Note
that a has no indices because of the symmetry between the two
blocks. We let the solutions of Eq. (C3) be adet. Using this
solution, we obtain the following expression of the average
largest eigenvalue:

[λ(M )]M = c1c2

(adet )3

A

B
. (C7)

Second, under the undetectable case, we obtain the equa-
tions for a and φ as follows:

∑
t=1,2

bt c2
t

(φ − ct/a)2
= (a2 + 1)

cb

(
cba

a2 − 1

)2

. (C8)

When we let the solutions of these equations be aund and φund,
we obtain the average largest eigenvalue as [λ(M )]M = φund.

APPENDIX D: ACCURACIES OF THE EMA AND
THE REGULAR APPROXIMATION

For the replica analysis, we introduced two approxi-
mations: the regular approximation and EMA. Here, we
investigate the dependencies of the average degree on the
accuracy of each approximation. It is known that when the
average degree is sufficiently large, the effect of these approx-
imations can be asymptotically ignored. However, it is not
trivial how the approximations affect the results for a graph
with a low average degree.

To derive the detectability limit of the canonical SBM, we
used both the EMA and the regular approximation. To derive
that of the microcanonical SBM, we used the EMA only.
Thus, by comparing both results, we can measure how each
approximation differs from the original result. Figures 8(a)
and 8(b) show the results of the canonical and microcanonical
SBMs, respectively. We can see that the results of the replica
analysis and the numerical experiments are in agreement for
c1 � 30 in the canonical case. However, they are in agree-
ment for c1 � 6 in the microcanonical case. Therefore, we
can conclude that the effect of the EMA is smaller than that
of the regular approximation. Therefore, for the numerical
experiments in Sec. IV, we used the microcanonical SBM and
set c1 = 10, so that the effect of the approximation can be
ignored.
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APPENDIX E: RELATIONSHIP WITH THE
MIXED-MEMBERSHIP SBM

Mixed-membership stochastic block model (MMSBM)
[18] is a popular random graph model that considers an over-
lapping structure. In this section, we discuss the relationship
between our overlapping SBM and the MMSBM. We define a
membership vector of node i as πi = [πik] (k ∈ {1, . . . , K}),∑K

k=1 πik = 1, 0 < πik � 1. That is, πik represents the prob-
ability that node i is assigned to block k. In the MMSBM,
the edge generation probability of a pair of nodes (i, j) is
expressed as

P(Ai j = 1|ρ,πi,π j ) = π�
i ρπ j . (E1)

To see the correspondence to our overlapping SBM, we con-
sider a two-block MMSBM, and exclusive node sets V1, V2,
and V3, where V1 and V3 represent community blocks and V2

represents the overlapping block. For example, let us consider
the following parametrization of πi:

πi =

⎧⎪⎨
⎪⎩

(1, 0)� (i ∈ V1),

(1/2, 1/2)� (i ∈ V2),

(0, 1)� (i ∈ V3).

(E2)

We consider the same parametrization as Eq. (3) for the affin-
ity matrix ρ. By inserting Eqs. (3) and (E2) into Eq. (E1), we
obtain the edge generation probability matrix⎛

⎜⎝
ρin

ρin+ρout

2 ρout
ρin+ρout

2
ρin+ρout

2
ρin+ρout

2

ρout
ρin+ρout

2 ρin

⎞
⎟⎠. (E3)

This equation never coincides with Eq. (5). In fact, one can
easily confirm that the MMSBM does not coincide with our
overlapping SBM for arbitrary choices of πi in Eq. (E2).

It is interesting to consider a variant of the standard
MMSBM. We define a membership vector of node i as an
unnormalized propensity vector gi = [gik] (k ∈ {1, . . . , K}),
gik � 0. Similarly to the standard MMSBM, the edge genera-
tion probability of a pair of nodes (i, j) is expressed as

P(Ai j = 1|ρ, gi, g j ) = g�
i ρg j . (E4)

Again, we consider the case of K = 2 and the following
parametrization of gi:

gi =

⎧⎪⎨
⎪⎩

(1, 0)� (i ∈ V1),

( 1
1+ε

, 1
1+ε

)� (i ∈ V2),

(0, 1)� (i ∈ V3).

(E5)

Here, the labels of the two community blocks are exchange-
able because of the permutation symmetry. By inserting
Eqs. (3) and (E5) into Eq. (E4), we obtain the following edge
generation probability matrix:⎛

⎝ ρin ρin ρout

ρin
2

1+ε
ρin ρin

ρout ρin ρin

⎞
⎠. (E6)

Equation (E6) becomes identical to Eq. (5) when σ = 2/(1 +
ε). In fact, one can confirm that the parametrization of πi in
Eq. (E5) is the only nontrivial choice that achieves the equiv-
alence to our overlapping SBM. Therefore, this generalized
MMSBM and our overlapping SBM share the same model
space in the range of 1 � σ � 2.
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