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In recently emerging correlated topological materials, such as magnetic Dirac/Weyl semimetals, additional
tunabilities of their transport and magnetic properties may be achieved by utilizing possible interaction between
the exotic relativistic fermions and magnetic degree of freedom. The two-dimensional antiferromagnetic (AFM)
Dirac semimetal EuMnBi2, in which an intricate interplay between multiple magnetic sublattices and Dirac
fermions was suggested, provides an ideal platform to test this scenario. We report here a comprehensive
study of the AFM structures of the Eu and Mn magnetic sublattices as well as the interplay between Eu and
Mn magnetism in this compound by using both polarized and nonpolarized single-crystal neutron diffraction.
Magnetic susceptibility, specific heat capacity measurements, and the temperature dependence of magnetic
diffractions suggest that the AFM ordering temperatures of the Eu and Mn moments are at 22 and 337 K,
respectively. The magnetic moments of both Eu and Mn ions are oriented along the crystallographic c axis,
and the respective magnetic propagation vectors are kEu = (0, 0, 1) and kMn = (0, 0, 0). With proper neutron
absorption correction, the ordered moments are refined at 3 K as 7.7(1) and 4.1(1) μB for the Eu and Mn ions,
respectively. In addition, a spin-flop (SF) phase transition of the Eu moments in an applied magnetic field along
the c axis was confirmed to take place at a critical field of Hc ≈ 5.3 T. The AFM exchange interaction and
magnetic anisotropy parameters (J = 0.81 meV, Ku = 0.18 meV, Ke = −0.11 meV) are determined based on
a subsequent quantitative analysis of the SF transition. The evolution of the Eu magnetic moment direction as
a function of the applied magnetic field in the SF phase was also determined. Clear kinks in both field and
temperature dependences of the magnetic reflections (±1, 0, 1) of Mn were observed at the onset of the SF phase
transition and the AFM order of the Eu moments, respectively. This unambiguously indicates the existence of a
strong coupling between Eu and Mn magnetism. The interplay between two magnetic sublattices could bring new
possibilities to tune Dirac fermions via changing magnetic structures by applied fields in this class of magnetic
topological semimetals.

DOI: 10.1103/PhysRevResearch.2.043100

I. INTRODUCTION

Dirac/Weyl semimetals have attracted a great deal of re-
cent research interest largely owing to their exotic quantum
states and emergent phenomena as well as their high potentials
for future technological applications [1]. The linear dispersive
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electronic bands with gapless crossings near the Fermi level,
that are protected by topology or symmetries, can be described
as massless relativistic quasiparticles Dirac or Weyl fermions,
which can give rise to transport behaviors such as high carrier
mobility, immunity to disorder, ballistic electronic transport,
and quantum Hall effect [2–4].

Furthermore, a potential coupling of Dirac/Weyl fermions
to other degrees of freedom such as magnetism [5,6] may open
up other avenues for the exploration and tuning of physical
properties. Recently, particular attention has been focused on
magnetic Dirac/Weyl materials, in which it is possible to tune
the electronic transport properties by utilizing the interaction
between the relativistic quasiparticles and magnetism [7–11].
A few candidates of magnetic Dirac/Weyl materials have al-
ready been theoretically proposed or experimentally verified,
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like Co3Sn2S2 [12,13], MnBi2Te4 [14–16], and the layered
manganese pnictides AMnBi2 (A = rare/alkaline earth) “112”
system [17–22]. Among them, the experimental evidence for
the coexistence of Dirac fermions and AFM order was found
in AMnBi2 compounds by different methods [6,10,11,21,23–
34], such as quantum oscillation, magnetoresistant behav-
ior, angle-resolved photon emission spectroscopy, and optical
conductivity. In addition, due to coupling of the magnetic
layer and Bi square-net layer with Dirac fermions, a strong
influence of magnetic order on electronic transport properties
was found [6,9,11,35,36], and Dirac fermions were also re-
ported to enhance the exchange coupling between magnetic
moments in AMnBi2 [10]. EuMnBi2 and YbMnBi2 were re-
cently discovered as two possible candidates; in particular,
YbMnBi2, whose magnetic structures and excitations were
studied by neutron scattering in previous works [5,37], shows
significant coupling of Dirac bands with spins [5]. By sponta-
neous or externally induced time-reversal symmetry breaking,
EuMnBi2 and YbMnBi2 could also be driven to host Weyl
physics. Such magnetic Dirac materials where the magnetic
and conducting layers are coupled but separated spatially pro-
vide an ideal platform to study the interplay between magnetic
moments and Dirac carriers, which may find promising appli-
cation potential in spintronics devices.

In the case of EuMnBi2, physical properties like the half-
integer quantum Hall effect [6] and the magnetopiezoelectric
effect [38] were recently observed, and in addition to its
interesting transport properties, the occurrences of giant mag-
netoresistance effects and quantum oscillations would suggest
an important role of the magnetic order of the Eu sublattice
[6,35,39]. Furthermore, the Eu moments were also suggested
to have an apparent interplay with the Mn moments [39],
which might explain why the orientation of the Eu moments
in EuMnBi2 is reported to be different from that in EuZnBi2

[6], and the ordering temperature of Mn moments in EuMnBi2

is much higher than that of SrMnBi2 with the same crystal
structure. Given the large energy scale of exchange interac-
tions, it would be very hard to tune the magnetic order of Mn
ions via applied magnetic fields, unless using extremely high
fields. Nevertheless, it was found that the magnetic order of
Eu ions in EuMnBi2 is actually field tunable and a spin-flop
transition occurs at the applied field H = 5.3 T along the
c axis [6,35,39]. This thus suggests that such an interplay
between different magnetic sublattices in this class of mag-
netic Dirac materials could be used to tune their intrinsic
magnetic structures under moderate magnetic fields, subse-
quently, to impact their electronic behaviors related to Dirac
fermions. In this regard, EuMnBi2 provides an ideal plat-
form to experimentally examine possible intricate interplay
between multiple magnetic sublattices and to test the scenario
of possible tuning of Dirac fermion behaviors via the magnetic
degrees of freedom. Although the magnetic structure of the Eu
sublattice has already been studied by resonant x-ray magnetic
scattering and neutron diffraction, a comprehensive study of
the magnetic structures of both Eu and Mn sublattices as well
as possible interplay between Eu and Mn magnetism have not
been reported so far.

In this work, we present detailed neutron scattering studies
of magnetic structures, field-induced spin-flop transition, and
the interplay between Eu and Mn magnetism in the Dirac

material EuMnBi2. From polarized neutron diffractions, we
have confirmed the ordered magnetic moment orientation of
the Mn and Eu sublattices and the existence of the inter-
play between the Eu and Mn magnetic moments based on
temperature-dependence measurements. After proper correc-
tion for the Eu neutron absorption, we have further determined
the magnetic structure and ordered magnetic moment size for
both the Eu and Mn sublattices by using hot-neutron single-
crystal diffraction. For the spin-flop states, we have studied
the field dependence of the magnetic structure of the Eu sub-
lattice and determined the evolution process of the Eu moment
direction with the applied field along the c axis. Moreover,
based on a quantitative analysis of the observed spin-flop
transition in our neutron diffraction study, we have determined
the exchange interaction and magnetic anisotropy parameters
for the Eu sublattice. We thus propose an anisotropic XXZ
spin Hamiltonian model that includes a dominant isotropic
antiferromagnetic exchange interaction with a small planar
exchange anisotropy as well as a small uniaxial single-ion
anisotropy for the Eu sublattice in EuMnBi2.

II. EXPERIMENTAL DETAILS

Single crystals of EuMnBi2 were grown by the flux method
using bismuth as self-flux. The starting materials of Eu, Mn,
and Bi were mixed in an Ar-filled glove box at a molar ratio of
Eu : Mn : Bi = 1 : 1 : 10. The mixture was placed in an alumina
crucible, which was then sealed in an evacuated quartz tube.
The tube was heated up to 1000 ◦C over 10 h and then kept
constant for 20 h. Afterward, the tube was slowly cooled
down to 600 ◦C with a cooling speed of 2.5 ◦C/h followed
by centrifuging to separate crystals from the Bi flux. Shiny
plate-like crystals with a typical dimension of 5 × 5 × 1 mm
were obtained.

Single-crystal x-ray diffraction (XRD) was performed at
room temperature with an incident wavelength of 1.54 Å
(Cu-Kα) on a Bruker D2 Phaser x-ray diffractometer. The
neutron-scattering data presented in this paper were collected
at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching,
Germany, and the Institut Laue-Langevin (ILL) in Grenoble,
France. The single-crystal neutron diffraction experiment was
performed at the hot-neutron four-circle diffractometer HEIDI
[40] (with incident wave length λi = 0.795 Å), the polar-
ized neutron diffraction measurement was carried out on the
cold-neutron polarized spectrometer DNS [41,42] (with λi =
4.2 Å), and the field dependence study was carried out at
the lifting-counter thermal-neutron diffractometer D23 with a
12-T vertical-field magnet (and λi = 1.2735 Å). By combining
a wide range of polarized and nonpolarized neutron diffraction
techniques, the temperature, neutron polarization (non-spin-
flip and spin-flip), and magnetic-field dependences of both
nuclear and magnetic reflections could be thoroughly inves-
tigated. In particular, given the significantly reduced neutron
absorption and extinction effects with hot neutrons, it became
possible to obtain high-quality and reliable structure factors
for the refinements of both nuclear and magnetic structures in
materials containing strong neutron-absorbing elements such
as Eu in EuMnBi2.

A few selected single crystals were also used for mea-
suring the specific heat capacity and magnetic properties
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FIG. 1. X-ray diffraction (XRD) of single-crystal EuMnBi2 at
300 K. XRD pattern shows sharp (0,0,L) peaks. The left inset is a
photograph of single-crystal samples of EuMnBi2, showing a typical
size of around 5 mm with a thickness of 1.5 mm (grid width is 1 mm)
and clear rectangular natural edge; the right inset is an x-ray Laue
pattern of the (H,K,0) reciprocal plane, and a fourfold symmetry can
be clearly seen.

by PPMS and SQUID (from Quantum Design). Magnetic
susceptibility was measured from 2 to 350 K in various ap-
plied magnetic fields with both zero-field-cooling (ZFC) and
field-cooling (FC) conditions. The isothermal magnetization
(M − H) curves were measured in a sweeping field from −50
to 50 kOe at 2 and 300 K, respectively.

III. RESULTS

A. X-ray diffraction and magnetic properties

The crystalline quality and structure were checked by XRD
and x-ray Laue (Fig. 1). EuMnBi2 shares the same structure
as SrMnBi2 with space group I4/mmm (no. 139). The lattice
parameter c = 22.614(5) Å at room temperature extracted
from XRD (in Fig. 1) is quite consistent with the previous
results [39]. It is worth noting that the small peak around
2θ = 27◦ in Fig. 1 is due to the residual bismuth flux on the
surface.

The temperature dependence of magnetic properties
(shown in Fig. 2) was measured along both the a and c axes
respectively. As shown in the magnetic susceptibility data
with applied fields H = 0.1 and 5 T in Fig. 2(a), the onset
of AFM ordering of Eu magnetic moments can be clearly
observed at around 22 K. Below the ordering temperature,
the susceptibility shows clear magnetic anisotropy, suggesting
that Eu moments are more inclined along the c axis. There is
no clear indication for the onset of the AFM ordering of Mn
moments in the susceptibility. Nonetheless, as shown in the
inset of Fig. 2(a), a FC/ZFC bifurcation point could still be
seen at about 337 K, which could be regarded as the signature
of the AFM ordering of Mn moments. The magnetization
curves show typical Curie-Weiss behavior above T Eu

N = 22 K,
as shown in Fig. 2(b). In order to obtain a relatively accurate
effective moment size of Eu, an appropriate temperature range
(70–180 K) was selected for the fitting of the susceptibility.
The data were fitted to χ = χ0 + C

T −Tc
, where C is the Curie

FIG. 2. (a) ZFC/FC magnetization curves measured under ap-
plied magnetic fields along the a and c axes. Inset shows the enlarged
plot of the high-temperature range. (b) The inverse susceptibility of
the ZFC curves with Curie-Weiss fitting around the selected temper-
ature range. Dashed lines are the extension of the linear fitting.

constant, Tc represents the Weiss temperature, and χ0 accounts
for the temperature-independent contributions. The effective

moments of Eu2+ obtained in a usual manner (μeff =
√

3kB·C
nμB

)

are 7.77 μB (H ‖ a) and 8.57 μB (H ‖ c) respectively, which
are quite reasonable given that the theoretical value is 7.94
μB for Eu2+ (4 f 7). The obtained effective moments along the
c axis (easy axis here) is a little bit larger than the theoreti-
cal one, and similar results were also seen in the previously
reported works (e.g., EuMnSb2, 8.0 μB [43]; EuMnBi2, 8.1
μB [39]). One possible explanation for this is a non-negligible
Curie-Weiss contribution from the Mn moments since they
may not be completely saturated in this temperature regime.

The inset in Fig. 2(b) shows field dependence of the
magnetic moment in EuMnBi2 above and below the AFM
transition temperature of Eu. The magnetization at 1.8 K
shows an accelerating upward change around 4.8 T, which
is consistent with the spin-flop transition of EuMnBi2 [6,39]
under applied fields along the c axis.

B. Specific heat capacity

The specific heat capacity Cp of EuMnBi2 measured over
a range of 2 to 350 K shows two clear anomalies, as shown
in Fig. 3. A distinct and strong anomaly is observed near
22 K, which is believed to be associated with the ordering
of the Eu magnetic moments. As expected, the application of
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FIG. 3. The specific heat capacity (Cp vs T curve) of EuMnBi2

single crystal. The inset shows the field dependence of the anomaly
peak, which indicate a AFM phase transition of the Eu moments.

a magnetic field has a slight influence on this heat capacity
anomaly. The peak position was shifted to lower temperatures
by increasing applied field. Another anomaly in Cp associated
with the AFM ordering of the Mn moments is the observed
maximum near 315 K. This anomaly is quite broad in temper-
ature, as previously reported [39]. In SrMnBi2, that anomaly
associated with the Mn ordering has been reported to be
around 290 K and be also rather weak and broad [20,39].
This kind of broad peak may indicate the presence of possible
short-range ordering of the Mn moments near the magnetic
ordering temperature. Compared to SrMnBi2, the Néel tem-
perature of the Mn moments ordering in EuMnBi2 is much
higher, which is presumably due to the enhanced exchange
interaction between the Mn moments.

C. Polarized neutron diffraction

Polarized neutron scattering was performed at DNS with
(H,0,L) as the horizontal scattering plane, and Fig. 4 shows
the temperature dependence of the intensities for two selected
magnetic reflections (1, 0,−2) and (−1, 0, 1) at the x spin-flip
channel. It needs to be mentioned that the x-polarization direc-
tion is along the average direction of the scattering vectors Q
for all the detectors in the detector bank at DNS, and the corre-
sponding y-polarization direction is perpendicular to x in the
horizontal scattering plane; thus, the z-polarization direction
is vertical, i.e., perpendicular to both x and y. Two magnetic
phase transitions can be seen clearly in different tempera-
ture ranges. To obtain a reliable transition temperature and
critical exponents, the temperature-dependence curves were
fitted with the power-law equation I = I0 + A(1 − T/TN )2β

in a range of about ±10% of TN near those transitions. The
fitted transition temperatures are 22 and 337 K, which are in
a good agreement with our heat capacity and magnetization
results. The fitted critical exponents are β = 0.240(5) for Eu
and β = 0.327(13) for Mn, resulting as the linear slopes in
the inserts of Figs. 4(a) and 4(b). The critical exponent of Mn
is close to the classical three-dimensional Ising model (β =
0.326). As for Eu, the critical exponent value is just located
between two-dimensional (β = 0.125) and three-dimensional
Ising models. However, the power-law refinement holds over

FIG. 4. (a) Temperature dependence of the (1, 0, −2) magnetic
Bragg peak intensity of Eu. (b) Temperature dependence of the
(−1, 0, 1) magnetic Bragg peak intensity of Mn. The empty circles
and stars with error bar are experimental data. The solid lines are
the fittings of the experimental data by the formula I = I0 + A(1 −
T/TN )2β . The insets are the corresponding log-scale plots of the peak
intensity vs the reduced temperature TN − T where TN is the critical
temperature for Eu and Mn respectively. The slop represents the
power parameter 2β.

an unusually wide temperature range for Eu, down to about
7 K until the intensity tends to saturate, well outside the usual
critical region.

To gain further information of the magnetic moment orien-
tations, two-dimensional (2D) Q scans in the (H,0,L) planes of
reciprocal space at the spin-flip and non-spin-flip modes along
different neutron polarization directions were performed at
30 and 4 K, respectively. As shown in Figs. 5(a) and 5(b),
the diffraction pattern of x non-spin flip stays the same and
no clear temperature dependence is observed, which indicates
that all reflections in x non-spin flip are only related to the
nuclear structure. The scattering signal in x spin flip shown
in Figs. 5(c) and 5(d) has purely magnetic contributions.
At 30 K, only the Mn moments are ordered, and therefore
Fig. 5(c) basically shows pure magnetic reflections of Mn
moments. At 4 K, both Eu and Mn moments are ordered, and
they both contribute to the magnetic diffraction intensities, so
new reflections appear in Fig. 5(d) that are associated with the
magnetic scattering of Eu moments, which also indicates that
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FIG. 5. Polarized neutron diffraction patterns of single crystal
EuMnBi2. [(a), (b)] Nuclear reflections in the (H,0,L) plane at 30
and 4 K. (c) Magnetic reflections of Mn magnetic sublattice at 30 K
(T Eu

N < 30 K < T Mn
N ). (d) Magnetic reflections of both Mn and Eu

sublattice at 4 K (4 K < T Eu
N < T Mn

N ).

the magnetic sublattices of Eu and Mn have different magnetic
structures. For z polarization (shown in Fig. 11 in Appendix
A), the 2D Q scans are basically the same as those in the x
direction, which suggest that the magnetic moments have a net
projection component in horizontal XY scattering plane which
is (H,0,L). The sign of polarized neutron can only be flipped
when there exists a nonzero component of magnetic moments
perpendicular to the polarization of the neutron beam P and
the scattering wave vector Q. By comparing the nuclear and
magnetic diffraction patterns, the absence of magnetic (0,0,L)
reflections and occurrence of (−1,0,L) reflections is an indi-
cation for all the moments along the c axis, which means that
there is no projected magnetic moment of Eu or Mn in the ab
plane; otherwise any magnetic moment perpendicular to Q =
(0,0,L) would contribute to the x and z spin-flip channels like
the (0,0,2n) nuclear reflections in Figs. 5(a) and 5(b), which
are not observed in Figs. 5(c) and 5(d).

Last but not least, all the magnetic reflections lie on the
positions of the Brillouin zone center. This indicates that the
magnetic unit cell is the same as the nuclear unit cell, so the
magnetic propagation vectors k could be (0,0,0) or (h,k,l),
where h, k, l are integers. Based on their different temperature

dependences, the magnetic propagation vectors of Mn and Eu
moments are identified as (0,0,0) and (0,0,1) respectively.

As we know, it is usually very difficult to tune the Mn
moments directly by simply applying a magnetic field; to
overcome the exchange interaction between Mn moments,
we may need an extremely high magnetic field due to its
high AFM phase transition temperature (T Mn

N ≈ 337 K). In
the EuMnBi2 system, if the exchange interaction between the
Eu and Mn moments is strong enough, it would be possible
to mediate the magnetic moments of Mn indirectly by tuning
the Eu moments with a moderate applied magnetic field. So,
it would be interesting and worthwhile to study the exchange
interaction between Eu and Mn magnetic sublattices by apply-
ing magnetic fields or partially replace some Mn atoms with
nonmagnetic ions in the future.

D. Single-crystal diffraction with hot neutrons

Having determined the magnetic propagation vectors as
well as the moment directions of Eu and Mn sublattices
via polarized neutron diffraction, hot-neutron single-crystal
diffraction measurements were performed to comprehensively
determine both the crystalline and magnetic structures of
EuMnBi2 at HEIDI. Since EuMnBi2 has two magnetic phase
transitions at T Eu

N ≈ 22 K for Eu2+ and T Mn
N ≈ 337 K for

Mn2+, we measured about 1700 nuclear and magnetic reflec-
tions allowed by the symmetry of space group I4/mmm at 3
and 300 K respectively. Given the strong neutron absorption of
Eu in this material, a finite-element analysis method was used
for neutron absorption correction. A few reasonable approx-
imations were used for the convenience of calculation: The
absorption of one reflection is based on its integrated intensi-
ties and center ω angle setup instead of each scanning point
intensity in its whole rocking curve. The effective neutron
beam flux incident on the sample is approximately treated as
a constant for all reflections (further details in Appendix B).
After a proper neutron-absorption correction, the corrected
structure factor data were refined using Jana2006 [44], and
the irreducible representations of possible magnetic structure
models were analyzed by MAXMAGN [45] from the Bilbao
Crystallographic Server [46–48]. The nuclear structure used
here was based on the previously reported works [39] and the
parameters established from our own XRD results.

At 300 K, only Mn2+ moments are ordered and the prop-
agation vector was determined to be kMn = (0,0,0) for the
Mn magnetic sublattice. There are 12 possible maximal mag-
netic space groups for the parent space group I4/mmm (no.
139) with the propagation vector k = (0,0,0), and only six
subgroups (I4/mm′m′, I4′/m′m′m, Im′m′m, Im′mm, Fm′m′m,
Fm′mm) which allow nonzero magnetic moments. Since the
orientation of the Mn2+ moments was confirmed by polarized
neutron scattering and its AFM magnetic properties were
also confirmed by its magnetization basically, there is only
one subgroup I4′/m′m′m (AFM) possible for the magnetic
structure of Mn2+. The integrated intensities of 1375 nuclear
reflections (673 unique) were collected and then could be
refined very well by combining the nuclear structure and G-
type (magnetic space group: I4′/m′m′m) AFM structure of the
Mn2+ moments. As shown in Fig. 6(a), the calculated intensi-
ties are quite linear with the observed intensities, the weighted
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FIG. 6. [(a), (b)] Integrated intensities of the Bragg reflections
collected at room temperature 300 K and low-temperature 3 K are
plotted against the calculated values, respectively. Panels (c) and
(d) show the corresponding magnetic structure models generated by
VESTA [49].

R factor of the refinement is 5.67%. Figure 6(c) shows the
corresponding magnetic structure of the Mn moments, and the
refined ordered moment size for Mn2+ is 2.1(1) μB at T =
300 K (Table I).

A similar analysis was performed for the data taken at 3 K,
where the Eu2+ moments are ordered in addition to the same
magnetic order of Mn. The additional magnetic reflections in
Fig. 5(d) indicate that the Eu2+ magnetic order has a different
magnetic propagation vector from that of Mn2+, kEu = (0,0,1).
By doing the same magnetic symmetry analysis as Mn2+,
there are also six maximal subgroups (PI 4/mnc, PI 4/nnc,
CAmca, CAmcm, PI mmn, PI nnm) which allow nonzero mag-
netic moments in the total 12 possible maximal magnetic
space groups for the parent space group I4/mmm (no. 139)
with the propagation vector k = (0, 0, 1). As for the Mn2+,
the Eu2+ moments are also by polarization analysis found to
be oriented along the c axis, allowing only two magnetic space
groups, PI 4/mnc and PI 4/nnc. The two possible structures
were refined separately using 1717 reflections (622 unique).
We found that the refinement result is significantly better
and more reliable by using magnetic space group PI 4/nnc.
PI 4/mnc is excluded for its unreasonable refined values for
both the Eu2+ and Mn2+ moment sizes. As Fig. 6(b) shows,
the integrated intensities Iobs of almost all of the reflections
have a nice linear behavior with the calculated intensities Icalc,
and the refined weighted R factor is 8.33%, which is still
acceptable by considering the additional errors induced dur-
ing the absorption correction process. Figure 6(d) shows the

TABLE I. Refined results for the nuclear and magnetic structures
of EuMnBi2 at 300 and 3 K. k in the table represents the magnetic
propagation vector. All magnetic structures are based on the nuclear
space group I4/mmm.

Atom Site x y z Uiso k

T = 300 K

Eu 4e 0 0 0.11482(8) 0.01040(41) N/A
Mn 4d 0 0.5 0.25 0.01391(64) (0,0,0)
Bi(1) 4c 0 0.5 0 0.01135(23) N/A
Bi(2) 4e 0 0 0.32855(5) 0.01135(23) N/A

a = 4.535(5) Å, c = 22.6110(5) Å
RF2 = 4.27, RwF2 = 5.67
MMn = 2.1(1) μB

T = 3 K

Eu 4e 0 0 0.1149(7) 0.00198(37) (0,0,1)
Mn 4d 0 0.5 0.25 0.00323(54) (0,0,0)
Bi(1) 4c 0 0.5 0 0.00152(24) N/A
Bi(2) 4e 0 0 0.3289(33) 0.00152(24) N/A

a = 4.512(3) Å, c = 22.23(13) Å
RF2 = 5.20, RwF2 = 8.33
MMn = 4.1(1) μB, MEu = 7.7(1) μB

corresponding magnetic structure of Eu and Mn sublattices,
which is consistent with the previously reported x-ray results
[6], and the final refined ordered magnetic moment at 3 K is
4.1(1) μB for Mn2+ and 7.7(1) μB for Eu2+. All the refined
parameters are shown in Table I, and the lattice parameters at
3 K are a little bit smaller than that at 300 K. As expected,
the moment size of Eu is close to the theoretical saturated
value of the isolated atoms MEu2+ = gJmJμB = 7μB, (mJ =
7/2, gJ = 2) and the average value extracted from the effec-
tive moment size determined in magnetization measurements

(MEu2+ =
√

J
J+1 ( μ

‖a
eff+μ

‖c
eff

2 ) ≈ 8.2μB), indicating that the elec-

trons responsible for moments of Eu2+ are quite local. As
for Mn, the moment size is about 20% smaller than the full
moment of the isolated Mn atoms, which may be caused by
the hybridization between the localized 3d electrons of Mn2+

and itinerant 6p electrons from the valence band of Bi.

E. Spin-flop transition and magnetic anisotropy

Having determined the antiferromagnetic structures of both
Eu and Mn moments comprehensively, a field-dependent neu-
tron diffraction experiment was performed at D23 with a
12-T vertical-field magnet, with the aim to shed light on the
nature of the spin-flop transition and magnetic anisotropy in
this compound. Compared to the previously reported study of
the spin-flop transition via magnetization measurements [6],
neutron scattering has the irreplaceable advantage of being
able to access to possible field-dependent spin-reorientation
processes of each of the Eu and Mn magnetic sublattice sep-
arately because of their distinct magnetic propagation wave
vectors, and it can thus give more direct information about
the field-driven evolution of the magnetic structures as well as
possible interplay between Eu and Mn magnetism. As shown
in Fig. 7(a), a sharp intensity drop indicating a spin-flop phase
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FIG. 7. (a) Field dependence of the integrated intensities of the
selected nuclear and magnetic (contributed by Eu) reflections taken
at 1.5 K. Blue lines are the fitting results. The insets are the schematic
plots of the Eu magnetic moment directions in AFM (left), spin-
flop (middle), and spin-flip (right) phases, respectively. Blue arrows
inside circles represent the spin configuration in different phases. Hc

denotes the spin-flop critical field, and Hs denotes the spin-flip (satu-
ration) critical field. (b) Calculated evolution of the corresponding
tilting angle θ of Eu magnetic moments in the spin-flop process.
Light green zone corresponds to the measured field range in panel (a).
(c) Calculated weighted factor as a function of the in-plane azimuth
angle φ of Eu magnetic moments at various applied fields. Line
profiles are shifted along the vertical axis with a step of 20 from
the one at 5.4 T. Panel (d) shows the best φ angles with the smallest
Rw factor at different applied fields. Red dashed line is a reference
line for φ = 45◦. The corresponding inset in panel (d) is a schematic
diagram of the spatial shape for the in-plane anisotropy.

transition was observed at about 5.3 T for both (1,0,2) and
(1,1,1) magnetic reflections of the Eu sublattice; however,
the nuclear reflection (1,1,2) basically shows no field de-
pendence. This field-driven spin-reorientation phenomenon,
also known as the spin-flop transition, has already been ob-
served and investigated in a number of different classes of
antiferromagnets during the past several decades (including

two-sublattice uniaxial [50–60], multisublattice [61], noncen-
trosymetric [62–64] antiferromagnets, etc.), and a variety of
phenomenological models [55,56,64–66] have been proposed
to solve the spin configuration for the spin-flop transition. A
common approach is to list all possible free-energy terms in a
magnetic system [Eq. (1)] and minimize the free energy of this
system to satisfy the equilibrium condition of the spin-flop
process. For the two-sublattice uniaxial collinear antiferro-
magnets, such as EuMnBi2 here in this paper, the molar free
energy of N antiferromagnetically coupled spins S at T = 0 K
can be given by [55,56,67–69]

E = 1
2 (gμBSN )

[
J cos(θ1 − θ2) − 1

2 Ku(cos2 θ1 + cos2 θ2)

+ Ke cos θ1 cos θ2 − H⊥(sin θ1 + sin θ2)

− H‖(cos θ1 + cos θ2)
]
, (1)

where θ1 and θ2 represent the angles for the sublattice mag-
netizations of Eu deviated from the easy-axis (i.e., c-axis)
directions. The first term is the exchange energy, and the
second and third terms are the magnetic anisotropy energies,
whereas J is the antiferromagnetical exchange interaction be-
tween the two sublattices of Eu, and Ku and Ke denote the
uniaxial single-ion magnetic anisotropy and exchange inter-
action anisotropy, respectively. The last two terms are the
Zeeman energies, where H⊥ and H‖ are the components of
the applied field perpendicular and parallel to the easy axis
of the magnetization. To figure out the relation between the
orientation of Eu moments and the applied field in the spin-
flop phase, the following equilibrium condition,

∂E

∂θ1
= ∂E

∂θ2
= 0, (2)

can be utilized. Derived from Eqs. (1) and (2), we can have

H⊥ sin(θ1 − θ2) = J (sin θ1 + sin θ2) sin(θ1 − θ2)

+ Ku(cos θ2 − cos θ1) sin θ1 sin θ2

+ Ke(cos θ2 − cos θ1) sin θ1 sin θ2 (3)

and

H‖ sin(θ1 − θ2) = J (cos θ1 + cos θ2) sin(θ1 − θ2)

+ Ku(sin θ2 − sin θ1) cos θ1 cos θ2

− Ke(cos2 θ1 sin θ2 − cos2 θ2 sin θ1). (4)

Here we consider two special situations: The applied field
H is perpendicular or parallel to the easy axis. First, for the
perpendicular case, θ1 = π − θ2 = θ , we have

H = H⊥ = (2J + Ku + Ke) sin θ (5)

and particularly when θ = 90◦, the spin-flip critical field of
the saturation for the applied field perpendicular to c axis
will be Hs(⊥) = 2J + Ku + Ke. Second, for the applied field
H parallel to the easy axis and θ1 = −θ2 = θ , the relation
between the magnetization directions and the applied field in
the spin-flop state can be extracted as

H = H‖ = (2J − Ku + Ke) cos θ (6)

where θ = 0◦ is the saturation condition and naturally we will
have the spin-flip (saturation) critical field for the applied field
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along the c axis Hs(‖) = 2J − Ku + Ke. Since the magnetic
diffraction intensities of the reflections (1,0,2) and (1,1,1) are
sensitive to θ , namely proportional to the squared in-plane
AFM component (i.e., |M sin θ |2) for the Eu sublattice in
the spin-flop phase, the intensity can be simply expressed
as I ∼ 1 − H2

(2J−Ku+Ke )2 . Thus 2J − Ku + Ke can be easily ex-
tracted from the fitting of the field-dependence curves of the
reflections (1,0,2) and (1,1,1); subsequently, the critical tilting
angle θ of the Eu moments at the spin-flop phase transition
can also be determined, as shown in Fig. 7(b), which is about
76.8◦. Furthermore, both the fitted results for the reflections
(1,0,2) and (1,1,1) show the saturated magnetic field Hs(‖)
at around 23 T, which is quite consistent with the previously
reported magnetization in Ref. [6] as well as the theoretical
calculation in Ref. [68] that also successfully reproduced the
half-integer quantum Hall effect.

In addition, the critical field of the spin-flop transition
can in principle also be calculated from the exchange and
anisotropy constants. When the applied field is parallel to the
easy axis, the molar free energy at T = 0 K for the antiferro-
magnetic phase and spin-flop phase can be expressed as

E =
{−(J + Ku + Ke), H < Hc

J cos 2θ − (Ku − Ke) cos2 θ − 2H cos θ, H � Hc
, (7)

where Hc is the spin-flop critical field and 1
2 (gμBSN ) is

omitted for simplicity. Assuming the adiabatic approximation
during the spin-flop phase transition, we can set the energy
of the antiferromagnetic phase equal to that of the spin-flop
phase given by Eq. (7) when H = Hc. From Eqs. (7) and (6),
one can naturally obtain the spin-flop critical field and the
critical angle θ as

Hc =
√

(2J − Ku + Ke)(Ku + Ke), (8a)

cos θ =
√

Ku + Ke

2J − Ku + Ke
= Hc

Hs(‖)
. (8b)

From all above equations, the exchange interaction J and
anisotropy parameters all can be expressed in terms of the
critical fields (which can be directly measured):

J = 1

2

[
Hs(⊥) − H2

c

Hs(‖)

]
, (9a)

Ku = 1

2
[Hs(⊥) − Hs(‖)], (9b)

Ke = H2
c

Hs(‖)
− 1

2
[Hs(⊥) − Hs(‖)], (9c)

where Hc = 5.3 T and Hs(‖) = 23 T can be extracted from
our fitting results. While the value of Hs(⊥) has not been
confirmed in any experiments directly, we can still give an
estimation according to the previously proposed relations near
TN in Ref. [57]:

TN − T = g2μ2
B(2S2 + 2S + 1)Hs(⊥)2

120k2
BTN

; (10)

subsequently, Hs(⊥) is calculated as 30.4 T with TN ≈ 22 K,
S = 7

2 for Eu ions, and the actual neutron experimental tem-
perature T = 1.5 K. Besides, we can also give out a reference
value of Hs(⊥) from the low-field isothermal magnetization

data [70] at low temperature by linear extension to the sat-
uration condition (i.e., for Ms = 7μB per Eu, Hs(⊥) will be
estimated as 29.3 T). Hence, with the known critical fields,
one obtains the exchange interaction J = 14.04 T (0.81 meV),
uniaxial magnetic anisotropy Ku = 3.15 T (0.18 meV), and
exchange interaction anisotropy Ke = −1.93 T (−0.11 meV)
at T = 1.5 K. Actually, a standard formula for the spin-flop
critical field as a function of uniaxial magnetic anisotropy
energy is known as [54,71]

Hc =
√

2Ku

χ⊥ − χ‖
, (11)

where χ⊥ and χ‖ are the susceptibilities in a small applied
magnetic field at T = 0 K for H ⊥ c and H ‖ c respectively.
Combining the above Eq. (11) and the susceptibilities at T =
2 K in Fig. 2(a), the uniaxial magnetic anisotropy parameter
can be obtained, Ku = 3.35 T (0.19 meV). As expected, the
values of Ku that we calculated by using two methods are
quite close, which indicates that the model we used above is
suitable for the spin-flop transition of the Eu sublattice in this
uniaxial antiferromagnet EuMnBi2. The positive Ku implies
that a single-ion easy axis is along the c axis. With all the
known exchange interaction and anisotropy parameters, the
spin Hamiltonian of a two-sublattice (i, j) antiferromagnet
[60,72] for Eu can be approximately written in the so-called
XXZ model as

HEu =
∑
i< j

[
J
(
Sx

i Sx
j + Sy

i Sy
j

) + (J + Ke)Sz
i Sz

j

]

− Ku

∑
i

Sz
i Sz

i − gμBH
∑

i

Sz
i . (12)

The ratio between the out-of-plane and the in-plane com-
ponents of the exchange interaction r = (J + Ke)/J can be
used as an indicator to distinguish from the various clas-
sical spin models (i.e., r = 1 for Heisenberg model, r = 0
for XY model, r = ∞ for Ising model). Given that the ex-
change anisotropy Ke is only approximately −13% of J ,
which makes r = 0.87, it can thus be strongly suggested
that the Eu magnetism should be described by a dominant
Heisenberg exchange interaction with a small planar exchange
anisotropy. Nevertheless, given that Ku > |Ke|, the ordered
moment direction of Eu along the c axis is largely dictated
by Ku. Hence, the classical 3D/2D Ising model is likely not
suitable for describing the magnetic interactions of Eu here in
EuMnBi2. This result may explain why the fitted critical ex-
ponents β for Eu has a strong deviation from that of the 3D or
2D Ising models. Given the difficulties for a potential inelastic
neutron scattering measurement on spin-wave excitations due
to strong neutron absorption of Eu, our estimation of the
magnetic exchange interaction as well as magnetic anisotropy
parameters based on a quantitative analysis of the spin-flop
transition clearly provides very valuable microscopic under-
standing of the magnetism in this compound.

Now we go one more step further to study the spin config-
uration in the spin-flop states as well as in-plane anisotropy.
Performing a series of neutron diffraction experiments at var-
ious applied fields would be a direct and effective method to
figure out the in-plane preferred directions for the magnetic
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FIG. 8. (a) Comparison of the observed and calculated squared
structure factors of neutron diffraction data taken at 1.5 K with
11.5-T magnetic field along c axis. (b) In the corresponding magnetic
structure models under 11-T field, the magnetic moment direction of
Eu atoms are tilted by about 60◦ away from c axis with in-plane AFM
component along the [1,1,0] direction.

moment of Eu in its spin-flop states. Because the magnetic
structure factor is proportional to the component of the mag-
netic moment that is perpendicular to the scattering wave
vector Q, the intensity of magnetic diffractions changes as
the moment direction changes. By analyzing the intensity
change of nonequivalent magnetic reflections at the spin-
flop transition, the orientated directions of in-plane magnetic
components can be confirmed. With appropriate numerical
calculations and also taking magnetic domains into considera-
tion, we get the best in-plane azimuth angles φ for the applied
fields, as shown in Figs. 7(c) and 7(d). The parameter Rw is
the weighted profile factor for angle φ refinement to check
how good it will fit, which here is defined as

Rw = 100

⎡
⎢⎣

∑n
i=1 wi

∣∣∣ ISF
exp,i

IAFM
exp,i

− ISF
calc,i

IAFM
calc,i

∣∣∣2

∑n
i=1 wi

( ISF
exp,i

IAFM
exp,i

)2

⎤
⎥⎦

1/2

, (13)

in which only the ratios of intensities between the spin-flop
and the zero-field AFM states matter. We found that the best
fitted azimuth angles φ in the ab plane are very close to 45◦,
as shown in Fig. 7(d), which indicates that the in-plane AFM
components of Eu magnetic moments are basically along the
〈1, 1, 0〉 directions, as shown in the schematic plot in Fig. 7(a).
Since the preferred in-plane orientation is already known, the
spatial shape of the anisotropy tensor can be easily imagined;
that is, the component of the anisotropy tensor along the
diagonal ab direction (i.e., [1,1,0]) is larger than that along
the a or b axis, as shown in the inset of Fig. 7(d), and the
out-of-plane component is strongest of all.

Meanwhile, we also collected 161 reflections in a reason-
able Q range in a magnetic field of 11.5 T (11 nonequivalent
reflections for Q < 3.1 Å−1). The observed squared structure
factors versus the calculated ones are plotted in Fig. 8(a), and
the corresponding |F |2calc were calculated based on the struc-
ture parameters in Table I and the magnetic structure models
in Fig. 8(b). The tilting angle θ is refined as 60.0◦, which
is well consistent with our fitted field dependence, resulting
in θ = 60.4◦ at 11.5 T in Fig. 7(b). For now, the magnetic

structures of the Eu sublattices in EuMnBi2 including their
evolutions in the field along the c axis are comprehensively
determined.

F. Coupling of Eu and Mn magnetism

To reveal possible interplay between Eu and Mn mag-
netism, we now turn to the temperature and field dependence
of two representative magnetic reflections (1,0,1) and (1,0,2),
which are attributed to the AFM ordering of Mn and Eu
respectively. Detailed field dependence experiments of mag-
netic reflection (1,0,1) at 1.5 and 25 K were performed. Some
selected rocking curve scans are plotted in Figs. 9(a) and 9(b).
For both 1.5 and 25 K, the intensities are found to be enhanced
a little by an increase of the magnetic field. This could be due
to a very small misalignment between the c axis of the sample
and the direction of the applied vertical field, and a nonzero
in-plane component of the applied field may induce a canted
states [66], thus making the magnetic moment component
perpendicular to Q(±1,0,1) linearly increased or decreased by
the field; similar behavior can also be observed on the mag-
netic reflection (1,0,2) in Fig. 7(a) just before the spin-flop
transition occurs. A clear kink is observed at H = 5.3 T from
the extracted field dependence of the integrated intensities
of (1,0,1) for T = 1.5 K. The integrated intensity basically
stays in the same level for fields H < 5.3 T, as shown in
Fig. 9(c). That the AFM order of Mn responds to the occur-
rence of the spin-flop phase transition of Eu moments at Hc

strongly suggests the existence of interplay between Eu and
Mn magnetisms. On the other hand, no clear anomaly is seen
in the data at 25 K which can be well fitted by the quadratic
curve. The fitting results also show that the coefficient of the
quadratic term at 25 K is obviously much larger than that at
1.5 K. This implies that the Mn moment strongly prefers to
be oriented along the c axis as long as the Eu moment does
the same. Such a c-axis preferred magnetic anisotropy likely
results from a strong coupling between Eu and Mn moments.
Furthermore, the temperature dependence of the magnetic
reflection (1,0,1) is also monitored during the cooling process
near T Eu

N with or without applied field, as shown in Fig. 9(d).
At zero field, a sudden jump of intensity happens at T = 22 K,
i.e., exactly at the magnetic phase transition of Eu; in a field of
H = 9 T, the intensity jump is not as clear as that at zero field.
This suggests the interaction between Eu and Mn moments
is significantly weakened when the Eu magnetic sublattice
enters into the spin-flop phase. It is necessary to mention
that such kind of intensity increase in Fig. 9(d) could also be
caused by the extinction release during the phase transition.
As shown in Figs. 9(e) and 9(f), the intensity stays basically
the same for the nuclear reflection (1,1,2) but increases a little
bit for the magnetic reflection (1,0,1), suggesting that this is an
intrinsic intensity increase instead of the effect from extinction
release.

A similar zero-field temperature-dependence experiment
was also performed with polarized neutrons by using another
EuMnBi2 sample at DNS. As shown in Fig. 10(a), a small but
finite increase of the intensity of the Mn magnetic refection
(1,0,1) can clearly be observed at T Eu

N ≈ 22 K. Such an in-
crease is also visible from a comparison of the rocking curve
scans at 4 and 30 K, as shown in Fig. 10(b). With a large
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FIG. 9. Field and temperature dependences of the selected mag-
netic reflections. [(a), (b)] Rocking curve scans of the magnetic
reflection (1,0,1) under various applied fields along the c axis at 2 and
25 K respectively. (c) The extracted field dependence of integrated
intensities of (1,0,1) at 1.5 and 25 K. The data at 25 K are shifted
up by 0.4 for an easy comparison with that at 1.5 K. Solid blue line
is the quadratic function fitting for 25 K and solid green line is a
piecewise fitting of a quadratic function and a constant for 1.5 K.
(d) Temperature dependence of the magnetic reflection (1,0,1) with
H = 0 and 9 T. Red solid lines are the fittings of step function. A
clear kink is observed at around 22 K for magnetic reflection (1,0,1)
under zero field. Dashed line shows the ordered temperature T Eu

N .
Rocking curve scans of the nuclear reflection (e) (1,1,2) and magnetic
reflection (f) (1,0,1) at 2 and 25 K under zero field.

Q-range mapping in the x spin-flip channel, the difference
diffraction pattern in the (H,0,L) plane between 4 and 30 K
is shown in Fig. 10(c), from which all the magnetic intensity
enhancement can be easily seen. Except for the Eu magnetic
reflections (−1, 0,±2), there are some extra intensities on
(−1, 0,±1) as shown in the enlarged plot in Fig. 10(d) and in
the corresponding line cut [Fig. 10(e)]. Therefore, both field
dependence and temperature dependence of magnetic reflec-
tions suggest a strong interplay between the two magnetic
sublattices in EuMnBi2.

FIG. 10. Temperature dependence of polarized neutron diffrac-
tion at DNS. (a) Intensities of the magnetic reflection (−1, 0, 1)
of Mn as a function of temperature near T Eu

N . Solid red line is a
fitting of step function; dashed line with arrow shows the AFM phase
transition temperature of Eu. (b) Rocking curve scans of the magnetic
reflection (−1, 0, 1) measured at 4 and 30 K. (c) The difference of
polarized neutron diffraction patterns between 4 and 30 K in the
(H,0,L) scattering plane. (d) Enlarged plot of the red rectangle part in
panel (c). Red arrows show the extra intensity of magnetic reflections
(1,0,1) and (−1, 0, 1). (e) The corresponding line profile extracted
from panel (d) along the [0,0,L] direction at H = −1. Solid blue line
is the multipeak Gauss fitting.

IV. DISCUSSION AND CONCLUSION

We note that the propagation vectors of Mn and Eu sublat-
tices in EuMnBi2 are k = (0, 0, 0) and (0,0,1) respectively.
At low temperature, the refined magnetic moment size for
Mn ions is smaller than the usual one, while in contrast, the
moment size of Eu ions is a little bit larger than the theoret-
ical value for isolated ions. This could be a result of strong
coupling among 3d , 4 f , and itinerant electrons. The field-
and temperature-dependence experiments do show strong evi-
dence for the interplay between Eu and Mn sublattices, and the
strength of the interplay could be affected by the applied field.
This coupling between Eu and Mn sublattices could be the
result of the change of the magnetic anisotropy caused by the
ordering of Eu moments. The magnetic ordering of Eu would
enhance the magnetic anisotropy, which would in turn in-
crease the tendency of the Mn moments to be orientated along
the c axis. On the other side, a weakened magnetic anisotropy
in the spin-flop phase of Eu is expected to also weaken the
Eu-Mn coupling strength, as demonstrated in Figs. 9(c) and
9(d). This thus suggests that the coupling of Eu and Mn
magnetism strongly depends on the magnetic structure of the
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Eu sublattice in this system. Given that the magnetic structure
of the Eu sublattice can be tuned by an applied field, this may
bring new possibilities to continuously tune the interaction
between rare-earth-metal and transition-metal magnetic ions
by an external magnetic field instead of chemical doping
[73,74]. It is also worthwhile to study the Eu-Mn coupling in
the future with various field directions. Fields along the [1,0,0]
and [1,1,0] directions, unlike the applied field along the c axis,
will much easier align the magnetic moments of the Eu ions
and cant them into the ab plane, which may help to tilt the Mn
moments subsequently.

It is known that the magnetic order of the Eu sublat-
tice shows a remarkable impact on the Dirac fermions in
this layered antiferromagnet as demonstrated by Shubnikov–
de Haas (SdH) oscillation measurement and first-principles
calculations [35]. Coincidentally, signatures of spin-fermion
coupling between the magnetic Mn layer and Dirac fermions
of the Bi layer were just reported in a similar system YbMnBi2

[5]. Therefore, there is a good reason to believe that not only
the Eu sublattice but also the Mn sublattice could play an
important role on the Dirac band structures in EuMnBi2. Such
an intricate interplay of 3d , 4 f , and itinerant electrons may be
used to realize novel correlated Dirac fermion states in a solid,
which can offer a promising approach to emerging topological
spintronics.

In summary, the magnetic phase transitions of the Mn and
Eu sublattices of EuMnBi2 were studied by magnetization,
heat capacity, and neutron scattering, and the transition tem-
peratures for Eu and Mn are confirmed as 22 and 337 K from
the temperature dependence of corresponding magnetic re-
flections; also, the detailed AFM structures of the Mn and Eu
sublattices were directly investigated by using complementary
polarized and unpolarized single-crystal neutron diffraction,
and all the magnetic moments are found aligned along the
c axis at zero field. At 300 K, the magnetic moment size is
estimated as around 2.1 μB for the Mn ions; at 3 K, the ordered
moment sizes are about 4.1 μB for the Mn ions and about
7.7 μB for the Eu ions. Furthermore, the spin-flop process
of the Eu sublattice, the corresponding magnetic structure,
and its evolution in the spin-flop phase were microscopically
investigated in detail by neutron diffraction. By constructing
the molar free energy of this antiferromagnetic system and
combining the equilibrium condition, the exchange interaction
J and anisotropy parameters Ku, Ke are extracted from the fit-
ted critical fields. We found that J � Ke, Ku, showing that the
isotropic antiferromagnetic exchange interaction dominates
in the spin Hamiltonian of the Eu sublattice. A Heisenberg
model modified with a small exchange anisotropy term as
perturbation (namely the XXZ model) should be sufficient
to describe the magnetic exchange interactions for the Eu
sublattice. It has also been determined from the refinement
that spins tilt up to the c axis along the 〈1, 1, 0〉 directions
upon increasing applied fields in spin-flop states, which gives
us more information about the in-plane magnetic anisotropy,
as the schematic inset shows qualitatively in Fig. 7(d). Fur-
thermore, by measuring field and temperature dependences of
the selected magnetic reflections, the existence of the inter-
play between Eu and Mn sublattices was revealed. For future
studies, the interplay between the localized magnetism and
itinerant electrons in this class of Dirac fermion systems are

highly desired, since EuMnBi2 belongs to a large AMnPn2

family of compounds, which is attracting strong interest due
to the potential in spintronic applications like other magnetic
topological materials.

Note added. Recently, we noticed another study on the
magnetic structure of the Eu moments in the spin-flop state of
EuMnBi2 [75]. While the results from both studies are largely
consistent with each other, we found certain discrepancies
between them, mainly concerning the magnetic structure of
the Eu sublattice in the spin-flop state; namely, the in-plane
component of Eu magnetic moments in our work is orientated
along the [1,1,0] direction, instead of [1,0,0] as reported in
Ref. [75], and the reported moment tilting angle from the
c axis is also slightly different, especially in the vicinity of
the spin-flop transition. Because of subtle differences in both
experimental approach and data analysis between our work
and the study in Ref. [75], we will not attempt to speculate
possible causes for those discrepancies here. Nevertheless,
we believe that there are several advantages in our experi-
ments that would make our conclusion very reliable. First,
we measured the field dependence of the magnetic structure
in the spin-flop state under the magnetic field up to 11.5 T,
not just in the vicinity of the spin-flop transition. Second, two
nonequivalent magnetic diffractions instead of only one as
used in Ref. [75] were used to determine the spin reorientation
of the Eu moments in the spin-flop state in our study. Third,
both polarized and nonpolarized neutrons diffraction meth-
ods are combined to determine the magnetic structures and
the ordered moment size; in addition, the proposed spin-flop
magnetic structure of the Eu moments is further confirmed by
our refinement of magnetic structural factors measured in the
spin-flop state.
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APPENDIX A: MAGNETIC SCATTERING CROSS
SECTION FOR POLARIZED NEUTRONS

The full magnetic scattering cross section for polarized
neutrons is quite complicated and the reader is referred to
Ref. [41] for more details. For simplicity, we here only give
a qualitative description to help understand the polarization
analysis. As for the magnetic scattering of a given Q, it
leads to

dσ

d�mag
∼ |〈 f |σ̂n · M⊥Q|i〉|2, (A1)
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TABLE II. The decomposed components of magnetization and
nuclear scattering that contribute to the intensities of the different
polarization channels.

Polarization Spin-flip Non-spin-flip

P ‖ x ‖ Q M⊥Q
y + M⊥Q

z Nuclear

P ‖ y ⊥ Q M⊥Q
z Nuclear + M⊥Q

y

P ‖ z ⊥ Q M⊥Q
y Nuclear + M⊥Q

z

in which σ̂n are the Pauli spin matrices for the neutron spin
and M⊥Q represents the component of the magnetization that
is perpendicular to the scattering vector Q. Here, we use the
common convention for the specific orthogonal setting with x
parallel to Q, and y and z perpendicular to Q, in the horizontal
scattering plane and perpendicular to this plane. Only nonzero
magnetization components both perpendicular to the Q and
the polarization vector P can have contributions in the spin
flip channel. Hence, we summarize the possible magnetization
components responsible for the scattering intensity in Table II
for x, y, and z polarization in the spin- and non-spin-flip chan-
nels. The background and the incoherent scattering are not
included here. As a supplement to Fig. 5, the z-polarization
data are shown in Fig. 11.

APPENDIX B: NEUTRON ABSORPTION CORRECTION

Since the absorption cross section of Eu is about 4530 b,
which is by far larger than that of Mn and Bi, we only
corrected the absorption of Eu. As shown in Fig. 12(a),
the sample we measured is flake-like with irregular shape.
Therefore, the dimension parameters were measured and a
3D model [Fig. 12(b)] was established for the absorption
calculation. According to Beer-Lambert’s law, we have

I ′ = Iexp(−nsσabsL), (B1)

FIG. 11. Polarized neutron diffraction patterns of single crystal
EuMnBi2 in the (H,0,L) plane at 4 K: (a) z non-spin-flip channel and
(b) z spin-flip channel.

FIG. 12. (a) Picture of single-crystal sample on holder for
HEIDI. (b) A 3D model with approximate same shape and size as
our measured sample in panel (a). The purple dots inside the 3D
model represent the positions to calculate the neutron paths. (c) A
schematic drawing for showing the path of incident and scattered
neutron beam at different positions inside the sample. (d) The plot
of absorption factors fabs for some reflections vs the number N of
selected scattering points inside sample. fabs quickly get saturated
when N increase. (e) Comparison between raw and corrected inten-
sities of some selected equivalent reflections.

where ns is the density of scattering units in the sample, σabs is
the absorption cross section, and L is the length of the neutron
absorption path inside the sample. In order to simplify the
calculation, a representation of isolated points were selected
and treated as scattering positions inside the sample, as shown
in Fig. 12(b). Assuming the neutron beam flux is uniform and
time independent, then for a certain scattering condition as
shown in Fig. 12(c), the scattering intensity will be as follows:

I ′
total ∼ I0

N

N∑
j=1

e−nsσabs (Lin
j +Lout

j ), (B2)

in which I0 is the total incident intensity on the sample, which
should be principally related to the sample shape, sample ro-
tation center, and beam uniformity depends on the diffraction
conditions of Q = (h, k, l ). By considering the small size of
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sample and the inevitable divergence of the neutron beam,
I0 could be further approximated as being a constant for all
diffraction centers, so the absorption factor can be simply
expressed as

fabs = 1

N

N∑
j=1

e−μL j . (B3)

Principally, the calculated fabs will converge to a certain value
using a reasonable limited number of scattering points N .

In Fig. 12(d), for some selected reflections, the absorption
factors quickly start to get saturated as N increases. In this
paper, we use N = 3500 to make sure that all the absorption
factors are convergent and in considerable credibility. Raw in-
tegrated intensities and corrected intensities of some selected
strong reflections are plotted in Fig. 12(e), and the variance
becomes significantly better for equivalent reflections after
proper correction. In addition, we noticed that there is new
and much more efficient software, Mag2pol [76], made by
Qureshi, which can also do the neutron absorption correction,
and gives similar correction results as our method, shown in
Fig. 12(e).
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