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D. R. Saykin ,1 V. Yu. Kachorovskii,2,3 and I. S. Burmistrov 4,5

1Department of Physics, Stanford University, Stanford, California 94305, USA
2Ioffe Institute, Polytechnicheskaya 26, 194021 St. Petersburg, Russia

3Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
4L. D. Landau Institute for Theoretical Physics, Semenova 1-a, 142432 Chernogolovka, Russia

5Laboratory for Condensed Matter Physics, National Research University Higher School of Economics, 101000 Moscow, Russia

(Received 6 March 2020; revised 29 July 2020; accepted 1 October 2020; published 19 October 2020)

Transport and elastic properties of freestanding two-dimensional materials are determined by competition
between dynamical and quenched out-of-plane deformations, i.e., between flexural phonons and ripples, respec-
tively. They both tend to crumple the system by overcoming the strong anharmonicity which stabilizes the flat
phases. Despite active research, it still remains unclear whether the rippled phase exists in the thermodynamic
limit or is destroyed by thermal out-of-plane fluctuations. We demonstrate that a sufficiently strong short-range
disorder stabilizes ripples, whereas in the case of a weak disorder the thermal flexural fluctuations dominate in
the thermodynamic limit. Therefore the phase diagram of a flexible two-dimensional material with a quenched
short-range disorder has four distinct phases. These phases have drastically different elastic and transport
properties that are of crucial importance for the emergent field of flexible nanoelectronics.
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I. INTRODUCTION

The discovery of graphene [1–3] and other flexible two-
dimensional (2D) materials [4] is an outstanding breakthrough
in condensed-matter physics. Such materials have the out-of-
plane bending degree of freedom, which governs a number of
amazing physical phenomena [5–14], explored in the emer-
gent field of flexible nanoelectronics [14–18]. A peculiarity
of this field is the competition of dynamical flexural phonons,
which dominate in clean systems and static out-of-plane de-
formations, called ripples, induced by a quenched disorder.

Despite great effort, the basic physics behind flexible nano-
electronics, which is based on a synergy of electrical, optical,
and elastic properties of flexible 2D materials, is still not well
understood. Even the temperature dependence of conductivity,
which should be essentially different in dynamical and static
regimes, is not established. The key unsolved question is the
phase diagram of a flexible 2D material that accounts for com-
petition between flexural phonons and ripples in the presence
of strong anharmonicity which prevents crumpling [19–25].

In this paper, we report the phase diagram of a flexible 2D
material with a quenched short-range disorder. Our main re-
sults are illustrated in Fig. 1 and can be formulated as follows:

(i) There are four distinct phases: clean or rippled flat ones
and clean or rippled crumpled ones. They are split up by two
separatrices, which correspond to the crumpling (red curve)
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and rippling (blue line) transitions. The transition lines cross
each other in the fully unstable, multicritical fixed point M.

(ii) There is a stable fixed point F corresponding simulta-
neously to the clean and rippled flat phases. The coexistence
of two distinct flat phases at the single fixed point reflects
noncommutativity of limits of vanishing thermal and rippling
fluctuations caused by singularity in the corresponding renor-
malization group (RG) equations; see Eq. (9) below.

II. CRITICAL ELASTICITY OF MEMBRANES

The problem addressed in this paper has a close connec-
tion with the critical elasticity of 2D crystalline membranes.
It dates back to the seminal paper by Nelson and Peliti
[19], in which the idea of crumpling transition, i.e., the
transition between flat and crumpled phases, was put for-
ward. The thermal out-of-plane fluctuations tend to crumple
the membrane. In contrast, the long-range interactions be-
tween flexural phonons, i.e., anharmonic effects, “iron” the
membrane and stabilize the flat phase. As a result of such
competition, flat and crumpled phases can exist in a clean
crystalline membrane. A more detailed analysis of the crum-
pled transition and the critical elasticity of clean membranes
has been developed in Refs. [20–25]. Ripples caused by
imperfection of the crystal lattice act similarly to flexural
phonons and also tend to crumple the membrane as was pre-
dicted a long time ago [26–30].

The importance of competition between flexural phonons
and ripples is most evident in freestanding graphene. Indeed,
the effect of the thermal fluctuations is controlled by the ratio
of temperature T and the bending rigidity κ0. In a clean
membrane the crumpling transition occurs at T/κ0 ∼ 1. In
graphene, κ0 ∼ 1 eV, so that the thermal fluctuations alone are
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FIG. 1. Sketch of the phase diagram and side views of a mem-
brane. B is the rescaled disorder strength and T is the amplitude
of thermal fluctuations; see text below Eq. (2). The solid red curve
corresponds to the crumpling transition. The solid blue line is the
rippling-transition line, separating disordered and clean phases. The
fully unstable (multicritical) point is marked by M. Two flat phases
(clean and disordered) coexist in the stable singular fixed point F
reflecting noncommutativity of limits of vanishing thermal and rip-
pling fluctuations. The arrows mark direction of RG flow towards
the infrared. Pink shaded regions are traces of the membrane profiles
due to dynamical fluctuations. Inset: The sketch of the RG flow for
f = B/T .

not enough to crumple it. At the same time, recent numerical
simulations of disordered graphene clearly indicate the crum-
pling transition [31]. Additional evidence for the importance
of disorder in graphene is provided by recent experimental
measurements of anomalous Hooke’s law [32,33]. The mea-
sured scaling exponent was substantially different from the
one known from numerical simulations of a clean membrane
[34]. These findings imply the existence of the rippled phase
with properties distinct from the clean flat phase.

Previous theoretical studies of disordered 2D materials
[29,30] predict the existence of the rippled flat phase at ex-
actly zero temperature, T = 0, and instability with respect to
the thermal fluctuations (similar results have been obtained
for disordered membranes of dimension D = 4 − ε [26–28]).
This conclusion implies the absence of the stable rippled
phase and, at first glance, contradicts the observations of
Refs. [31–34]. Recently, the crumpling transition in disor-
dered freestanding graphene was addressed in Ref. [35]. It
was shown that (i) disorder can crumple a membrane in agree-
ment with Ref. [31] and (ii) instability of the rippled phase
predicted in Refs. [29,30] develops logarithmically slow, i.e.,
the marginal T = 0 rippled phase controls elastic properties of
disordered freestanding graphene for T �= 0 in a wide interval

of length scales (see also Ref. [36]) but does not “survive”
in the thermodynamic limit even for the case of an ultimate
strong disorder. This marginal behavior can manifest itself in
experiments on anomalous Hooke’s law in graphene [32,33]
as was demonstrated in Ref. [37]. Alternatively, observations
in Refs. [31–33] could be the manifestation of a stable rippled
flat phase at T �= 0. Here, we use the standard model of a
disordered membrane and prove that the second scenario is
realized.

III. THE MODEL

There are many ways to introduce a disorder experimen-
tally: by bombarding graphene with heavy atoms [38], by
fluorination [39], or by creating macroscopical defects, e.g.,
artificial holes [40]. Theoretically, one classifies disorder with
respect to the reflection symmetry related to the top and bot-
tom surfaces of a membrane. An example of disorder which
preserves the reflection symmetry is the so-called metric or
in-plane disorder. It can arise due to fluctuations in the con-
centration of impurity atoms. Such short-range disorder is
irrelevant at T �= 0 in the thermodynamic limit, i.e., the flat
phase remains stable [27,28,35] (for discussion of the special
case T = 0, see Ref. [41]). Therefore we focus on a ran-
dom curvature disorder which breaks the reflection symmetry
[26,29,30]. Such disorder naturally arises if adatoms are situ-
ated on the top or bottom surface only.

We consider a standard model with a large number, dc, of
flexural phonon modes, which allows one to develop control-
lable perturbation theory in 1/dc [22,42]. In order to determine
the phase diagram, it is sufficient to perform 1/dc expan-
sion up to the second order. As was recently demonstrated
[43–45], among second-order diagrams there are such that are
not accounted for by the so-called self-consistent screening
approximation (SCSA) [46], which is frequently discussed as
an efficient approximate scheme [36,47]. Our results represent
rigorous treatment of anharmonicity in disordered membranes
within the second order in 1/dc expansion, which is not
accounted for either by SCSA or by other approximative
schemes such as the nonperturbative RG approach [48–50].
We show that the finite temperature instability of the rippled
phase was an artefact of the first-order approximation in 1/dc.

Terms of the higher order in 1/dc stabilize the rippled phase
and lead to the appearance of the rippling transition (the blue
line in Fig. 1).

The membrane’s configuration is parametrized with a vec-
tor r(x) ∈ Rd , x ∈ RD, where D = d − dc. We introduce
stretching factor ξ0, which characterizes the projective area
of a membrane, ξ 2

0 L2, and use vectors u(x) ∈ RD and h(x) ∈
Rdc to describe in-plane and out-of-plane displacements: r =
ξ0x + u + h. The energy of the crystalline membrane consists
of bending and elastic contributions [19,26,29,30]

F =
∫

d2x
[

κ0

2
(�h − β)2 + μ0u2

αβ + λ0

2
u2

αα

]
. (1)

Here μ0 and λ0 stand for the Lamé coefficients. The last two
terms on the right-hand side of Eq. (1) describe the in-plane
elastic energy with the strain tensor uαβ = (∂αuβ + ∂βuα +
∂αh∂βh)/2. Quenched random curvature is added via a zero-
mean Gaussian random vector β [26,29,30]. The strength
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of disorder is controlled by a variance b0: β j (x)βk (x′) =
b0 δ jkδ(x − x′), j, k = 1, . . . , dc.

In the absence of disorder the theory based on Eq. (1)
contains an important length scale, the so-called Ginzburg
length L∗ ∼ κ0/

√
Y0T [24] separating the regime of conven-

tional elasticity, L � L∗, from the universal scaling regime,
L 	 L∗. Here, Y0 = 4μ0(μ0+λ0 )

(2μ0+λ0 ) denotes the bare (ultraviolet)
value of the 2D Young’s modulus. Due to an anharmonic
coupling between the in-plane and out-of plane elastic modes,
the bending rigidity scales in the universal regime as κ ∝
κ0(L/L∗)η, where η is a critical exponent. Although the crum-
pling transition cannot be observed in a clean graphene, the
anomalous power-law scaling of κ leads to highly nontrivial
phenomena already verified experimentally, such as anoma-
lous Hooke’s law [23,24,32–34,37,51,52], negative thermal
expansion coefficient [53–59], power-law scaling with T of
the phonon-limited conductivity [60–62], etc.

IV. CRUMPLING TRANSITION AND 1/dc EXPANSION

The stretching factor scales with a membrane size L as [35]

dξ 2/d ln L = −dc(T + B)ξ 2/(4π ), ξ (L∗) = ξ0, (2)

where T = T/κξ 2 and B = b/ξ 2 are rescaled amplitudes of
the thermal and disorder-induced fluctuations, respectively.
Here, κ and b are the scale-dependent bending rigidity and
disorder variance, respectively. The crumpling transition oc-
curs when ξ (L) turns into zero at a finite length scale, while
in the flat phase ξ (∞) > 0. Both the thermal and rippling
fluctuations contribute to crumpling of the membrane [cf.
Eq. (2)]. There is a dimensionless parameter f = B/T =
bκ/T that controls the relative strength of the rippling fluc-
tuation in comparison with the flexural phonons. In the clean
case, B = 0, the power-law dependence of κ on L results in
the crumpling transition occuring at a very high temperature
Tc = 4πηκ0/dc. In a disordered membrane, scaling of T and
B is more intricate than a power law. There is a crumpling-
transition curve in the plane (T ,B) which was found in
Ref. [35] by using the first-order expansion over 1/dc. Below
we demonstrate that the higher-order terms in 1/dc lead to the
rippling transition (the blue line in Fig. 1).

Replicating u and h in Eq. (1), integrating over u, and
averaging the replicated partition function over disorder, we
obtain the effective free energy [35]:

Fdis =
N∑

a,b=1

∫
d2k

(2π )2

κab k4

2

(
h(a)

k h(b)
−k

)

+ Y0

8

N∑
a=1

∫
d2q

(2π )2

∣∣∣∣
∫

d2k
(2π )2

[k × q]2

q2

(
h(a)

k+qh(a)
−k

)∣∣∣∣
2

.

(3)

Here, N stands for the number of replicas. We introduced
the N × N matrix κab = κ0[δab − f0Jab], where f0 = b0κ0/T
and the matrix Ĵ has all elements equal to unity.

Anharmonicity of flexural phonons results in a renormal-
ization of the parameters of Fdis. The necessary information
can be extracted from the exact two-point Green’s func-
tion 〈h(a)

i (k)h(b)
j (−k)〉 ≡ Ĝab(k)δi j , where the average is with

FIG. 2. (a) The equation for the screened interaction. (b) The
self-energy correction of the first order in 1/dc.

respect to the free energy (3). The quadratic part of Fdis de-
termines the bare Green’s function Ĝab(k) = T (δab + f0Jab)/
(κ0k4). At first, the screening of the interaction between
flexural phonons should be taken into account via random-
phase approximation (RPA)-type resummation [see Fig. 2(a)
and Appendix A]. The screened interaction becomes indepen-
dent of Y0 for q < L̃−1

∗ = √
dc(1 + 2 f0)/L∗ and behaves as

Yq ∼ q2/dc in the limit q → 0 [35]. For graphene, L∗ ∼ 1 ÷
10 nm. Since L̃∗ < L∗, flakes of disordered graphene of realis-
tic size are always in the universal regime. Using the smallness
of Yq, we construct the regular perturbation theory in 1/dc for
the self-energy �̂ [see diagrams in Figs. 2(b) and 3], which re-

lates the exact and bare Green’s functions: Ĝ−1 = Ĝ−1 − �̂.

V. RESULTS

The perturbation theory for �̂(k) has infrared logarithmic
divergences as k → 0 (see Appendix B). They can be used to
extract the scaling behavior of the theory (see Appendix C),

d ln κ

d ln L
= ηκ ( f ) = η(1)

κ

dc
+ η(2)

κ

d2
c

+ · · · ,

− d ln b

d ln L
= ηb( f ) = η

(1)
b

dc
+ η

(2)
b

d2
c

+ · · · . (4)

FIG. 3. Diagrams for the self-energy corrections in the second
order in 1/dc. Diagrams (a) and (b) are included in the SCSA.
Diagrams (c)–(f) are not taken into account by the SCSA.
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The explicit expressions for η
(1),(2)
κ,b are given as

η(1)
κ

= 2(1 + 3 f + f 2)

(1 + 2 f )2
, η

(1)
b = 2(2 + 6 f + f 2)

(1 + 2 f )2
, (5)

η(2)
κ

= [73 + 803 f + 3550 f 2 + 7743 f 3 + 7995 f 4 + 3046 f 5

+ 265 f 6 − 68ζ (3)(1 + 11 f + 49 f 2 + 111 f 3+129 f 4

+ 64 f 5 + 9 f 6)]/[27(1 + 2 f )6], (6)

and

η
(2)
b = [146 + 1606 f + 7217 f 2 + 16 260 f 3 + 17 273 f 4

+ 6466 f 5 + 451 f 6 − 68ζ (3)(2 + 22 f + 98 f 2

+ 222 f 3 + 257 f 4 + 122 f 5 + 15 f 6)]/[27(1 + 2 f )6].

(7)

The RG flow for the theory (3) can be cast in the form of
the single-parameter scaling,

d ln f /d ln L = β( f ) = ηκ ( f ) − ηb( f ). (8)

The function β( f ) is shown in the inset of Fig. 1. It has
three fixed points: 0, ∞, and f∗ ≈ 8.5 dc [63]. The fixed
point f = 0 is stable in the infrared and describes the clean
flat phase. At f = 0 the bending rigidity and disorder vari-
ance acquire the power-law scaling, κ ∼ Lη and b ∼ L−η′

,
where η = ηκ (0) and η′ = ηb(0). They are not indepen-
dent: η′ = 2η. The expansion to the second order in 1/dc

yields η ≈ 2
dc

− 68ζ (3)−73
27d2

c
[45]. Both exponents characterize

the spatial behavior of two types of roughness correlation
functions, 〈δh(x)δh(0)〉 ∼ |x|2−η and 〈h(x)〉〈h(0)〉 ∼ |x|2−η′

,
where δh(x) = h(x) − 〈h(x)〉 and 〈· · · 〉 stands for the average
with respect to F [36].

The infrared stable fixed point at f = ∞ describes the
rippled flat phase (within the expansion of the first order in
1/dc this fixed point was found to be marginally unstable
[29,35]). At f = ∞ the bending rigidity and the disorder
variance have a power-law scaling with momentum, κ ∼
Lη∞ and b ∼ L−η′

∞ , where η∞ = ηκ (∞) and η′
∞ = ηb(∞).

Within the expansion of the second order in 1/dc we find
η∞ ≈ 1

2dc
− 612ζ (3)−265

1728d2
c

and η′
∞ ≈ η∞ − 68ζ (3)−31

228d2
c

. The fixed
point at f = f∗ is unstable in the infrared and corresponds
to the rippling transition [64]. This transition is character-
ized by the divergent correlation length with the exponent

ν = 1/[ f dβ/df ]| f = f∗ = 288d2
c

68ζ (3)−31 .
In order to elucidate the physics of the rippling and crum-

pling transitions we study the RG flow of T and B:

d ln T /d ln L = dc(B + T )/(4π ) − ηκ (B/T ),

d lnB/d ln L = dc(B + T )/(4π ) − ηb(B/T ). (9)

The flow diagram for B and T is shown in Fig. 1. There
is an unstable fixed point at Tc = 4πη/dc and B = 0,
corresponding to the crumpling transition due to thermal
fluctuations in the absence of disorder. This fixed point
controls the transition between the clean flat phase and the
clean crumpled phase. The unstable fixed point at T = 0 and
Bc = 4πη′

∞/dc corresponds to the disorder-driven crumpling
transition [35]. This fixed point controls transition between
flat and crumpled rippled phases. Remarkably, both the clean

flat phase ( f = 0) and the rippled flat phase ( f = ∞) are
described by the single singular infrared stable fixed point F
at T = B = 0. The singularity at T → 0 and B → 0 is clearly
seen from the explicit expressions for the functions ηκ (B/T )
and ηb(B/T ); see Eqs. (4)–(7)]. RG equations (9) admit the
multicritical (more precisely, tetracritical) fixed point M at
T∗ = 4πηκ ( f∗)/[dc(1 + f∗)] and B∗ = f∗T∗ (see Fig. 1).
This multicritical fixed point has two unstable directions:
along the crumpling-transition curve, which demarks flat
and crumpled phases, and along the rippling-transition line,
B = f∗T , which splits up clean and rippled phases and
connects M and F . The scaling along these two separatrices
is controlled by the critical exponents ν and 1/ηκ ( f∗),
respectively. We emphasize the striking resemblance of our
RG flow diagram to the one for the random-bond Ising model
[65]. The rippling-transition line corresponds to the so-called
Nishimori line [66].

In the course of derivation of RG equations (9) we ne-
glected the term ∂αu∂βu in the expression for uαβ . This
approximation is justified for B, T � 1 [67]. The terms
∂αu∂βu provide additional contributions to Eqs. (9) that are of
higher order in powers of B and T . These terms do not affect
the properties of the fixed point F but can result in corrections
of higher order in 1/dc to the position of the crumpling-
transition line as well as to the critical exponents governing
scaling behavior at the fixed points Bc, Tc, and M [67].

VI. DISCUSSION AND CONCLUSION

Our key result is the demonstration of the stabilization
of ripples by sufficiently strong disorder. More precisely, for
T < T∗ (see Fig. 1), when disorder is increased the membrane
first undergoes transition corresponding to the stabilization
of ripples, and as disorder is increased further the second
disorder-induced crumpling transition occurs. In contrast, for
T > T∗, the crumpling transition happens before the stabi-
lization of ripples. Our phase diagram suggests the possibility
of a rippling transition with decreasing temperature at fixed
disorder. The relevance of our theory for realistic membranes
is also supported by numerical simulations [31] where the
crumpling transition with increase of disorder was clearly
seen. The phase diagram in Fig. 1 suggests that it is possible to
probe all four phases by lowering the temperature at a given
disorder. A very interesting subject for further research, we
expect that the phase diagram is even more nontrivial in the
case of long-range disorder [68].

Apart from fundamental importance, our results shed light
on a temperature dependence of conductivity which is limited
by scattering of carriers off the out-of-plane deformations
[69]. For example, in the clean flat phase the conductivity
of freestanding graphene is limited by flexural phonons and
decays with T as σ ∝ T −η max{(μ/T )2−2η, 1}, where μ is
the Fermi level [62]. By contrast, in the rippled flat phase, the
conductivity at T � μ saturates at a certain level, σ = const,
which should strongly depend on localization effects simi-
lar to the scattering off a static disorder [70]. For T 	 μ,

there could exist an interval of temperatures in which the
Drude-type approach is applied such that ripple-limited
conductivity increases with temperature, σ ∝ T 2−η′

. A chal-
lenging problem is to study localization effects in the different
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regions of our phase diagram due to scattering off out-of-plane
fluctuations with emphasis on the regime of high-temperature
localization predicted in Ref. [62].

As mentioned above, the clean and rippled flat phases can
also be distinguished experimentally by measurement of the
anomalous Hooke’s law, ε ∼ Fα , where ε is the stretching
caused by an applied stress F . In the clean and rippled flat
phases, we have α = η/(2 − η) [24] and α = η′

∞/(2 − η∞),
respectively.

To conclude, we predicted the phase diagram of a flexible
2D material (see Fig. 1). We demonstrated the existence of
the crumpling- and rippling-transition lines, which cross each
other at the multicritical point M. The rippling-transition line
connects M with the singular stable point F, in which the
rippled flat and clean flat phases coexist. Our results reconcile
the theory of membrane elasticity with recent experimental
and numerical data for disordered graphene.
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APPENDIX A: SCREENED INTERACTION

The interaction between flexural phonons modifies the
Green’s function. The exact Green’s function can be written
as follows (in the replica limit N → 0):

Ĝ(k) = T
[
κ(1 − f Ĵ )k4 − �̂(k)

]−1
. (A1)

As is well known, before constructing the perturbation
theory in the interaction between flexural phonons, it is im-
portant to take into account screening of this interaction by the
flexural phonons themselves. This screening [see Fig. 2(b)] is
determined by the bare polarization operator

�̂ab(q) = dc

3T

∫
k

[k × q]4

q4
Ĝab(|k − q|)Ĝab(k)

= (1 + 2 f + f 2Ĵ )
dcT

16πκ
2q2

. (A2)

Here, we introduced for brevity the following shorthand no-
tation:

∫
k ≡ ∫

d2k/(2π )2. Summation of the geometric series
shown in Fig. 2(b) yields the screened interaction

N̂ (q) = Ŷq

2
= Y0/2

1 + 3Y0�̂(q)/2

= Y0

2

q2

q2 + q̃2∗

(
1 − f 2Ĵ

1 + 2 f
+ q2

q2 + q̃2∗

f 2Ĵ

1 + 2 f

)
. (A3)

We mention that the screened interaction at small momenta
q � q̃∗ becomes independent of the Young modulus Y0 and
proportional to 1/dc.

APPENDIX B: SELF-ENERGY CORRECTION

1. Contribution of the first order in 1/dc

The self-energy correction of the first order in 1/dc is given
by the diagram in Fig. 2(a). It can be written as

�̂
(1)
ab (k) = − 2

∫
q

[k × q]4

q4
N̂ab(q)Ĝab(|k − q|)

= − 2

dc
κk4

[
1 + 3 f + f 2 − f 3Ĵ

(1 + 2 f )2
L0

(
k

q̃∗

)

+ f 2(1 + f Ĵ )

(1 + 2 f )2
L1

(
k

q̃∗

)]
ab

, (B1)

where

Lm(K ) =
∫ ∞

0

dq

q

q2m min
{
q4/K4, 1

}
(1 + q2)m+1

. (B2)

For m = 0, 1 they are given explicitly as follows:

L0(K ) = − ln K + 1

2
ln(1 + K2) + K2 − ln(1 + K2)

2K4
,

L1(K ) = K2 − ln(1 + K2)

K4
. (B3)

In the limit k/q̃∗ � 1 and N → 0, we find

�̂(1)(k) = − 2

dc
κk4

(
α1 ln

q∗
k

− f γ1Ĵ ln
q′

∗
k

)
, (B4)

where q∗ = q̃∗ exp[1/4 + γ1/(2α1)] and q′
∗ = q̃∗ exp(−1/4)

and

α1 = 1 + 3 f + f 2

(1 + 2 f )2
, γ1 = f 2

(1 + 2 f )2
. (B5)

2. Contribution of the second order in 1/dc

In this section we present results for the contribution of
the second order in 1/dc to the self-energy (see diagrams in
Fig. 3).

a. Diagram in Fig. 3(a)

The contribution to the self-energy corresponding to the
diagram in Fig. 3(a) has the following form:

�̂
(2,a)
ab (k) = − 2

T

∫
q
[Ĝ(|k − q|)�(1)(|k − q|)Ĝ(|k − q|)]ab

× [k × q]4

q4
N̂ab(q). (B6)

Computing the integrals over momentum q in the same
way as in Ref. [45], we obtain for k/q̃∗ � 1 and
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N → 0

�̂(2,a)(k) = 2

d2
c

κk4

{
α(a)

[
ln2 q∗

k
+ 1

2
ln

q∗
k

]
+ α̃(a) ln

q∗
k

− f Ĵ

[
γ (a)

(
ln2 q′

∗
k

+ 1

2
ln

q′
∗

k

)
+ γ̃ (a) ln

q′
∗

k

]}
,

(B7)

where

α(a) = 1 + 7 f + 16 f 2 + 12 f 3 + f 4

(1 + 2 f )4
,

γ (a) = f 2(2 + 6 f + f 2)

(1 + 2 f )4
,

α̃(a) = −γ1

β1
β (2,a) + f 2(1 + 5 f + 5 f 2)

(1 + 2 f )4
,

γ̃ (a) = γ (2,a) + 3 f 4

(1 + 2 f )4
. (B8)

b. Diagram in Fig. 3(b)

The diagram in Fig. 3(b) can be considered as the first-
order correction to the self-energy in which the interaction line
is changed due to correction to the polarization operator:

�̂
(2,b)
ab = 6

T

∫
q

[k × q]4

q4
[N̂ (q)δ�̂(q)N̂ (q)]abĜab(|k − q|),

δ�̂cd = 2dc

3T 2

∫
k

[k × q]4

q4
Ĝcd (|k − q|)[Ĝ(k)�̂(1)(k)Ĝ(k)]cd .

(B9)

The correction to the polarization operator can be computed
as follows:

δ�̂(q) = −T δπ̂ (q/q̃∗)

4πκ
2q2

, δπ̂ (q) =
∑
j=0,1

δπ̂ j L̃ j (q), (B10)

where

δπ̂0 = 1 + 6 f + 10 f 2 + 2 f 3 + f 2(2 + 6 f + f 2)Ĵ

(1 + 2 f )2
,

δπ̂1 = f 2(1 + 4 f + 3 f 2Ĵ )

(1 + 2 f )2
, (B11)

and

L̃m(q) =
∫ 1

0
dkkLm(kq) +

∫ ∞

1

dk

k3
Lm(kq). (B12)

The functions L̃0 and L̃1 can be computed exactly as follows:

L̃0(q) = (1 + q2)

6q2

[
(1 + q2)2

q2
ln(1 + q2) − 1

]
− q2 + 3

3
ln q,

L̃1(q) = q2

3
ln q − (q2 − 2)

6q2

[
(1 + q2)2

q2
ln(1 + q2) − 1

]
.

(B13)

Substituting the expression (B10) for the correction to the
polarization operator into Eq. (B9), we obtain in the limits

k/q̃∗ � 1 and N → 0

�̂(2,b)(k) = − 4

d2
c

κk4

{
α(b)

[
ln2 q∗

k
+ 1

2
ln

q∗
k

]
+ α̃(b) ln

q∗
k

− f Ĵ

[
γ (b)

(
ln2 q′

∗
k

+ 1

2
ln

q′
∗

k

)
+ γ̃ (b) ln

q′
∗

k

]}
,

(B14)

where

α(b) = 1 + 9 f + 30 f 2 + 42 f 3 + 19 f 4 + 2 f 5

(1 + 2 f )5
,

γ (b) = f 3(2 + 7 f + 2 f 2)

(1 + 2 f )5
,

α̃(b) = −γ1

β
β (b) + f 2(1 + 7 f + 15 f 2 + 6 f 3)

(1 + 2 f )5
,

γ̃ (b) = γ (b) − f 4(1 − 2 f )

(1 + 2 f )5
. (B15)

c. Diagram in Fig. 3(c)

The correction to the self-energy shown in Fig. 3(c) can be
written as follows:

�̂
(2,c)
ab (k) = 4

T

∫
q,Q

[k × q]2

q2

[k × Q]2

q2

[(k − q) × Q]2

Q2

× [(k − Q) × q]2

q2
Ĝac(|k − q|)Ĝcd (|k − Q|)

× Ĝdb(|k − q − Q|)N̂ad (q)N̂cb(Q). (B16)

Taking the integrals over momenta in the same way as in
Ref. [45], we find in the limits k/q̃∗ � 1 and N → 0

�̂(2,c)(k) = 7

3d2
c

κk4(α(c) − f γ (c)Ĵ ) ln
q∗
k

, (B17)

where

α(c) = 1 + 7 f + 17 f 2 + 16 f 3 + 5 f 4

(1 + 2 f )4
,

γ (c) = f 2(1 + 4 f + f 2)

(1 + 2 f )4
. (B18)

d. Diagram in Fig. 3(d)

The correction to the self-energy shown in Fig. 3(d) can be
written as follows:

�̂
(2,d )
ab (k) = − 4dc

T 2

∫
Q,p,p′

[p × Q]2

Q2

[p′ × Q]2

Q2

[p × p′]2

|p − p′|2

× [k × (p − p′)]4

|p − p′|4
[(p − Q) × (p′ − Q)]2

|p − p′|2 N̂lm(Q)

× N̂ac(|p − p′|)N̂bd (|p − p′|)Ĝcl (p)Ĝdl (|p − Q|)
× Ĝcm(p′)Ĝdm(|p′ − Q|)Ĝab(|k − p + p′|).

(B19)

Integration over momenta can be performed in the same
way as in Ref. [45]. Then for k/q̃∗ � 1 and N → 0 we
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retrieve

�̂(2,d )(k) = − 2

d2
c

κk4(α(d ) − f γ (d )Ĵ ) ln
q∗
k

, (B20)

where

α(d ) = 1 + 11 f + 49 f 2 + 111 f 3 + 130 f 4 + 72 f 5 + 16 f 6

(1 + 2 f )6
,

γ (d ) = 2 f 4

(1 + 2 f )5
. (B21)

e. Diagram in Fig. 3(e)

The correction to the self-energy shown in Fig. 3(e) is as
follows:

�̂
(2,e)
ab = − 8dc

T 2

∫
q,p,Q

[k × q]2

q2

[k × Q]2

Q2

[p × q]2

q2

[p × Q]2

Q2

× [(k − q) × (Q − q)]2

|q − Q|2
[(p − Q) × (p − q)]2

|q − Q|2
× N̂ac(q)N̂bd (Q)N̂lm(|q − Q|)Ĝcd (p)Ĝam(|k − q|)
× Ĝmb(|k − Q|)Ĝcl (|p − q|)Ĝdl (|p − Q|). (B22)

Integration over momenta can be performed in the same way
as in Ref. [45]. Then we obtain for k/q̃∗ � 1 and N → 0

�̂(2,e)(k) = − 58

27d2
c

κk4(α(e) − f γ (e)Ĵ ) ln
q∗
k

, (B23)

where

α(e) = 1 + 11 f + 49 f 2 + 111 f 3 + 129 f 4 + 67 f 5 + 10 f 6

(1 + 2 f )6
,

γ (e) = 2 f 4(2 + 5 f + 2 f 2)

(1 + 2 f )6
. (B24)

f. Diagram in Fig. 3(f)

The correction to the self-energy shown in Fig. 3(f) is given
by the following explicit expression:

�̂
(2, f )
ab = 8d2

c

T 3

∫
p,p′,q,Q

[k × q]4

q4

[p × q]2

q2

[p × Q]2

Q2

[p′ × Q]2

Q2

× [(p − Q) × (q − Q)]2

|q − Q|2
[(p′ − Q) × (q − Q)]2

|q − Q|2

× [p′ × q]2

q2
N̂ac(q)N̂bd (q)N̂st (|q − Q|)N̂lm(Q)

× Ĝcl (p)Ĝcs(|p − Q|)Ĝls(|p − q|)Ĝdm(p′)

× Ĝdt (|p′ − Q|)Ĝmt (|p′ − q|)Ĝab(|k − q|). (B25)

Integrating over momenta in the same way as in Ref. [45] and
taking the limits k/q̃∗ � 1 and N → 0, we obtain

�̂
(2, f )
ab (k) = 3 + 68ζ (3)

27d2
c

κk4(α( f ) − f γ ( f )Ĵ ) ln
q∗
k

, (B26)

where

α( f ) = 1 + 11 f + 49 f 2 + 111 f 3 + 129 f 4 + 64 f 5 + 9 f 6

(1 + 2 f )6
,

γ ( f ) = f 4(1 + 6 f + 3 f 2)

(1 + 2 f )6
. (B27)

g. Contribution of the second order in 1/dc

All in all, the six diagrams in Fig. 3 of the main text yield
the following contribution to the self-energy in the second
order in 1/dc:

�̂(2)(k) = − α2 + 2α̃2

d2
c

ln
q∗
k

− 2α′
2

d2
c

ln2 q∗
k

+ f Ĵ

[
γ2 + 2γ̃2

d2
c

ln
q′

∗
k

+ 2γ ′
2

d2
c

ln2 q′
∗

k

]
, (B28)

where

α′
2 = 2α(b) − α(a), α̃2 = 2α̃(b) − α̃(a),

γ ′
2 = 2γ (b) − γ (a), γ̃2 = 2γ̃ (b) − γ̃ (a), (B29)

and

α2 = α′
2 − 7

3
α(c) + 2α(d ) + 58

27
α(e) − 3 + 68ζ (3)

27
α( f ),

γ2 = γ ′
2 − 7

3
γ (c) + 2γ (d ) + 58

27
γ (e) − 3 + 68ζ (3)

27
γ ( f ).

(B30)

APPENDIX C: DERIVATION OF THE RG EQUATIONS

1. First order in 1/dc

The effect of the first-order correction (B4) to the self-
energy can be interpreted as 1/dc corrections to κ and f :

κ(k) = κ

[
1 + 2α1

dc
ln

q∗
k

]
,

κ(k) f (k) = κ f

[
1 + 2γ1

dc
ln

q′
∗

k

]
,

f (k) = f

[
1 + 2(γ1 − α1)

dc
ln

q′′
∗

k

]
, (C1)

where q′′
∗ = q̃∗e1/4+γ1/(α1−γ1 ). We mention that the perturbative

results (C1) suggest that the bare parameters κ and f coincide
with the renormalized parameters at the scales q∗ and q′′

∗ ,
respectively, i.e., κ ≡ κ(q∗) and f ≡ f (q′′

∗ ). Also we note that
the following relation holds: κ(q∗) f (q′′

∗ ) = κ(q′
∗) f (q′

∗).
The perturbative corrections (C1) can be recast in the form

of the RG equations [29,35]:

−d ln κ

d ln k
= η(1)

κ

dc
, −d ln f

d ln k
= β (1)

dc
,

η(1)
κ

= 2α1, β (1) = 2(γ1 − α1). (C2)

Since the momentum scales are arranged as q′
∗ < q∗ < q′′

∗ ,
strictly speaking, the RG equations (C2) are valid for k < q′

∗.
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2. Second order in 1/dc

The results (B4) and (B28) for the self-energy allow us
to write the following perturbative expansions for bending
rigidity κ and the parameter f :

κ(k)

κ(q∗)
= 1 + 2α1

dc
ln

q∗
k

+ 1

d2
c

(
α2 + 4 f γ1

dα1

df
ln

q′
∗

q∗

)
ln

q∗
k

,

+ 2

d2
c

[
α2

1 + (γ1 − α1) f
dα1

df

]
ln2 q∗

k
(C3)

f (k)

f (q′′∗ )
= 1 +

(
2(γ1 − α1)

dc
+ (γ2 − α2)

d2
c

)
ln

q′′
∗

k

+2(γ1 − α1)

d2
c

d[ f (γ1 − α1)]

df
ln2 q′′

∗
k

. (C4)

We emphasize that f in the right-hand side of Eqs. (C3) and
(C4) is defined at the momentum scale q′′

∗ . Also we note that
in derivation of Eqs. (C3) and (C4) we used the following
nontrivial relations:

α′
2 = α2

1 + (γ1 − α1) f
dα1

df
, γ ′

2 = γ 2
1 + (γ1 − α1) f

dγ1

df
.

(C5)

The perturbative expansion (C4) describes how the disorder
parameter f transforms under a change of the momentum
scale from q′′

∗ to k. The form of Eq. (C3) is a bit un-
conventional since its right-hand side involves f not at the
momentum scale q∗ but at another momentum scale, q′′

∗ .
Therefore it is convenient to rewrite Eq. (C3) with f defined

at the momentum scale q∗ in its right-hand side:

κ(k)

κ(q∗)
= 1 +

(
2α1

dc
+ α2

d2
c

)
ln

q∗
k

+ 2

d2
c

[
α2

1 + (γ1 − α1) f
dα1

df

]
ln2 q∗

k
. (C6)

We stress that f in the right-hand side of Eq. (C6) is defined
at the momentum scale q∗.

The results (C4) and (C6) can be cast from perturbative
solutions of the following RG equations for κ and f :

−d ln κ

d ln k
= ηκ = η(1)

κ

dc
+ η(2)

κ

d2
c

,

−d ln f

d ln k
= β( f ) = β (1)

dc
+ β (2)

d2
c

, (C7)

where η(2)
κ

= α2 and β (2) = α2 − γ2. The coefficients η(1)
κ

and
η(2)
κ

are given by Eqs. (5) and (6), respectively. For conve-
nience, we present the final expressions for the first- and
second-order coefficients of β( f ),

β (1) = −2(1 + 3 f )

(1 + 2 f )2
(C8)

and

β (2) = −[73+803 f +3667 f 2 + 8517 f 3 + 9278 f 4 + 3420 f 5

+ 186 f 6− 68ζ (3)(1 + 11 f + 49 f 2 + 111 f 3

+128 f 4 + 58 f 5 + 6 f 6)]/[27(1 + 2 f )6]. (C9)
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