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Continuous quantum error detection and suppression with pairwise local interactions

Yi-Hsiang Chen *

Department of Physics, University of Southern California, Los Angeles, California 90089, USA

Todd A. Brun†

Communication Sciences Institute, University of Southern California, Los Angeles, California 90089, USA

(Received 13 May 2020; accepted 9 September 2020; published 16 October 2020)

Performing measurements for high-weight operators has been a practical problem in quantum computation,
especially for quantum codes in the stabilizer formalism. The conventional procedure of measuring a high-weight
operator requires multiple pairwise unitary operations, which can be slow and prone to errors. We provide an
alternative method to passively detect the value of a high-weight operator using only two-local interactions
and single-qubit continuous measurements. This approach involves joint interactions between the system and
continuously monitored ancillary qubits. The measurement outcomes from the monitor qubits reveal information
about the value of the operator. This information can be retrieved by using a numerical estimator or by
evaluating the time average of the signals. The interaction Hamiltonian can be effectively built using only
two-local operators, based on techniques from perturbation theory. We apply this indirect detection scheme
to the four-qubit Bacon-Shor code, where the two stabilizers are indirectly monitored using four ancillary qubits.
Due to the fact that the four-qubit Bacon-Shor code is an error-detecting code and that the quantum Zeno effect
can suppress errors, we also study the error suppression under the indirect measurement process. In this example,
we show that various types of non-Markovian errors can be suppressed.
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I. INTRODUCTION

In many conventional quantum algorithms, circuits are
presented in discrete time—unitary operations and measure-
ments are treated as if they happened instantly. However,
each quantum gate requires an operational duration, during
which, errors can also happen. These effects can be cap-
tured in a continuous-time description of the evolution of
a quantum system. Continuous measurement can be natu-
rally incorporated into this framework. In fact, continuous
weak measurement has been extensively studied and used
for both practical applications and fundamental understanding
[1–7]. In particular, continuous measurement for single-qubit
observables has been well studied both theoretically and ex-
perimentally [4,6,8,9]. There have been earlier studies of
simultaneous continuous measurements of the noncommuting
operators in the Bacon-Shor code [10,11], under the assump-
tion that continuous measurements of the two-local operators
exist. The same two-qubit continuous measurement is used
in a more recent work [12] for error correction and suppres-
sion under time-dependent Hamiltonians. However, methods
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to perform practical continuous measurement of multi-qubit
observables have not been fully developed.

In the context of continuous quantum error correction,
early work by Paz and Zurek [13] introduces a jumplike error
correction process, where the recovery operation is applied
with probability γ dt at each time step dt with rate γ . This
continuous-time jumplike error correction process can be re-
alized as applying a sequence of weak measurements [14],
and the minimum number of the required ancillary qubits
is found to be n − k + 1 for an [n, k, d] code [15]. Another
framework proposed by Ahn, Doherty, and Landahl (ADL)
[16] uses continuous measurements with feedback control to
maintain the fidelity of an unknown quantum state. Some
feedback-based error correcting protocols related to the ADL
scheme are studied in Refs. [17–20].

A major practical difficulty of almost all continuous quan-
tum error correction schemes is that they assume that it is
possible to continuously measure multiqubit operators. Mea-
suring high-weight operators is crucial for many quantum
codes in the stabilizer formalism [21]. The surface code
[22,23], for example, has stabilizer generators of weight four,
and other codes can have even higher-weight stabilizers. To
continuously measure these high-weight operators is chal-
lenging, since it requires Hamiltonians with many-body terms.

In this paper, we introduce a method to indirectly detect
the value of a high-weight operator using local two-body
interactions and single-qubit continuous measurements. The
approach involves applying an interaction Hamiltonian for
the system and additional qubits that are being continuously
monitored. The information of the system’s value for the
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observable translates into different signatures of the moni-
tored qubits, which we can identify. The setup can be applied
to quantum codes where we detect errors by measuring the
stabilizers. As an example, we apply this detection scheme to
the four-qubit Bacon-Shor, which is an error-detecting code
that can detect errors by measuring two-local operators [24].
In this paper, we focus on the measurements of the weight-
four stabilizers in the error-detecting Bacon-Shor code.

It is well-known that the quantum Zeno effect can freeze
a state in an eigenstate of an observable that is frequently
measured. Since the four-qubit Bacon-Shor code is an error-
detecting code, we examine whether errors can be suppressed
when we apply the continuous indirect measurement of the
stabilizers. In Ref. [25], it is shown that non-Markovian errors
can be suppressed by the Zeno effect when the system is being
directly measured. Our results for indirect detection also agree
with this observation.

The paper is organized as follows. In Sec. II, we introduce
in detail the theory behind continuous indirect detection. We
also show how to retrieve the information in the monitored
qubits. In Sec. III, we demonstrate the application to the
four-qubit Bacon-Shor code including the process of error
detection and error suppression. In the last section, Sec. IV,
we provide a construction of the target Hamiltonian using only
two-local interactions.

II. INDIRECT DETECTIONS

Suppose we want to detect the value of a Pauli operator
O with eigenvalues +1 and −1 for a system. We design
a Hamiltonian H = (k/2)(I − O) ⊗ Xm coupling the system
to an additional monitor qubit m, where Xm is the Pauli X
operator for the ancillary qubit m. It is convenient to rewrite
the Hamiltonian in terms of projectors, i.e., H = k�− ⊗ Xm,
where �− is the projector onto the −1 eigenspace of O. The
intuition behind this construction is that m will be static when
the system is in the O = +1 eigenspace, while Zm will rotate
when the system is in the O = −1 eigenspace. By measuring
Zm, we gain information about which eigenspace the system is
in. Therefore we continuously measure Zm with measurement
rate λ to indirectly measure the value of O. The measurement
outcomes are given by a continuous output current I (t ) [1,2],
with

dI = 〈Zm〉dt + dW

2
√

λ
, (1)

where dW , representing the measurement noise, is a Wiener
process with zero mean and variance dt . The expectation
value is 〈 · 〉 ≡ Tr[ · ρ] on the total system ρ, including the
system and the ancillary qubit. The whole system evolves
according to

ρ(t + dt ) = A(dI )ρ(t )A†(dI )

Tr[A(dI )ρ(t )A†(dI )]
, (2)

where

A(dI ) = e−iHdt−λ( dI
dt −Zm )2

dt . (3)

This process drives ρ towards one of the eigenspace of O.

To observe this, we expand Eq. (2) using Ito’s rule [26,27]:

dρ = −i[H, ρ]dt + λ(ZmρZm − ρ)dt

+
√

λ(Zmρ + ρZm − 2ρ〈Zm〉)dW. (4)

(A detailed derivation can be found in Appendix A.) The
expectation value of O evolves as

d〈O〉 = 2
√

λ(〈ZmO〉 − 〈Zm〉〈O〉)dW. (5)

Here, 〈O〉 is a time-dependent stochastic variable. Since d〈O〉
is proportional to the Weiner increment, the evolution of 〈O〉
is a random walk with a time-varying step size. This implies
the following two properties: (1) the ensemble average of 〈O〉
remains constant at its initial value. (2) the variance of 〈O〉
tends to increase with time. The first property can be observed
by the fact that

E[d〈O〉] = dE[〈O〉] = 0 ⇒ E[〈O〉] = 〈O〉t=0. (6)

The change of the variance of 〈O〉 is

d (E[〈O〉2] − (E[〈O〉])2)

= E[d (〈O〉2)] = 4λE[(〈ZmO〉 − 〈Zm〉〈O〉)2dt] � 0. (7)

Equation (7) implies that 〈O〉 tends to deviate from its
average which remains at its initial value due to Eq. (6).
However, 〈O〉 is bounded between −1 and 1. The increase
of the variance implies that 〈O〉 approaches either +1 or −1
at later times. As 〈O〉 becomes close to ±1, we have 〈ZmO〉 ≈
〈Zm〉〈O〉, and the step size of the random walk becomes small.
Hence, 〈O〉 tends to stabilize at ±1. When 〈O〉 is either +1
or −1, we have 〈ZmO〉 = 〈Zm〉〈O〉 and d〈O〉 = 0 for all later
times. Therefore 〈O〉 = ±1 is stable. This shows that when ρ

is constantly monitored by Zm, the process drives it towards
an eigenspace of O. We call this property A.

The probabilities of ρ approaching the O = ±1
eigenspaces, i.e., P(〈O〉 → ±1), also match the probabilities
of getting the outcomes ±1 when an O measurement is
directly applied to ρ. We call this property B. This is a direct
consequence of Eq. (6) and the fact that 〈O〉 → ±1 at later
times. In fact, after a period when 〈O〉 → ±1,

E[〈O〉] = P(〈O〉 → +1) − P(〈O〉 → −1)

= 〈O〉t=0 = Tr

[
I + O

2
ρ(0)

]
− Tr

[
I − O

2
ρ(0)

]
,

(8)

where Tr[ I±O
2 ρ(0)] are the probabilities of getting the re-

sults ±1 when an O measurement is performed on the
system. Because the probabilities add to unity, Eq. (8) implies
Tr[ I±O

2 ρ(0)] = P(〈O〉 → ±1), which is property B.
Property A and B validate the whole process as a proper O

measurement on the quantum system.

A. Detection methods

The value of 〈O〉, however, is not directly accessible be-
cause only Zm is being continuously measured. In order to
learn the value of O, we can use a numerical estimator ρ̂,
initially proportional to the identity, to evolve according to
Eq. (2) with the outcomes dI from the Zm measurements of
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ρ. The information contained in dI steers ρ̂ to the correct
eigenspace ρ is in. The following explains this behavior.

Since H commutes with O, the evolution from Eq. (2) does
not cause transitions between the eigenspaces of O. We have
property I: if a state starts in a block diagonal form, i.e.,

ρ(0) = p+(0)ρ+(0) + p−(0)ρ−(0), (9)

such that Tr[Oρ±(0)] = ±1, p±(0) � 0 and p+(0) +
p−(0) = 1, then the state maintains the same block diagonal
structure at all later times:

ρ(t ) = p+(t )ρ+(t ) + p−(t )ρ−(t ), (10)

where Tr[Oρ±(t )] = ±1, p±(t ) � 0 and p+(t ) + p−(t ) = 1
for all t � 0.

To evaluate how p± evolves with time, we look at the
expectation values of the eigenspace projectors,

p±(t + dt ) = Tr[ρ(t + dt )�±]

= 1

N p±(t )Tr[A(dI )ρ±(t )A†(dI )], (11)

where N = Tr[A(dI )ρ(t )A†(dI )]. For infinitesimal dt , one
can deduce that

p±(t + dt ) ≈ 1

N p±(t )Tr
[
ρ±(t )e−2λ( dI

dt −Zm )2
dt

]
≈ 1

N p±(t )e−2λ( dI
dt −〈Zm〉ρ± )2

dt , (12)

where 〈Zm〉ρ± = Tr[Zmρ±(t )]. (The derivation is in Appendix
B.) This form is essentially the same as Bayes’s theorem—our
knowledge of the probability of ±1 given the outcome dI is

P(±1|dI ) = P(dI| ± 1)P(±1)

P(dI| + 1)P(+1) + P(dI| − 1)P(−1)

= 1

N e−2λ( dI−(±1)dt√
dt

)2

P(±1), (13)

where the exponential represents the Gaussian distribution of
the stochastic variable dI , given the value +1 or −1.

The evolution for ρ±(t ) is

ρ±(t + dt ) = �±ρ(t + dt )�±
Tr[�±ρ(t + dt )�±]

= A(dI )ρ±(t )A†(dI )

Tr[A(dI )ρ(t )A†(dI )]

Tr[A(dI )ρ(t )A†(dI )]

Tr[A(dI )ρ±(t )A†(dI )]

= A(dI )ρ±(t )A†(dI )

Tr[A(dI )ρ±(t )A†(dI )]
, (14)

which has the same form as Eq. (2). This shows that the
states ρ± evolve independently. We have Property II: if two
initial states, ρ1,2(0) = σ1,2 ⊗ |0〉m〈0|, are both in the O = +1
or both in the O = −1 eigenspace, and they both evolve
according to Eq. (2) with the same A(dI ), then we have
〈Zm〉ρ1 = 〈Zm〉ρ2 for any time.

Property II is true because for any state strictly in either
O = ±1 eigenspace, the monitor qubit m is the only part of
the system with nontrivial evolution. Since both m’s of ρ1,2

are initially prepared in |0〉m〈0|, it is true that 〈Zm〉ρ1 = 〈Zm〉ρ2

for all times.
Properties I and II and Eq. (12) are sufficient to show the

steering effect of the estimator.

Let us use a numerical estimator ρ̂ to represent our knowl-
edge of a real system ρreal that is constantly monitored through
the measurements of Zm. The initial state of the estimator is

ρ̂(0) = Id

d
⊗ |0〉m〈0|

= 1

2

(
2

d
�+

)
⊗ |0〉m〈0| + 1

2

(
2

d
�−

)
⊗ |0〉m〈0|

= p+(0)ρ+(0) + p−(0)ρ−(0), (15)

where d is the system dimension excluding qubit m. The
estimator initially has p±(0) = 1/2 and ρ±(0) = (2/d )�± ⊗
|0〉m〈0|, and it satisfies property I. Suppose the real system
ρreal(0) is in the O = −1 eigenspace and the monitor qubit m
is prepared in state |0〉m〈0|. Continuously measuring Zm gives
outcomes

dI = 〈Zm〉ρreal dt + dW

2
√

λ
. (16)

We use the signal dI from ρreal to evolve ρ̂ according to
Eq. (2). Since both ρreal(t ) and ρ−(t ) are in the O = −1
eigenspace and have the same initial state of m, we have

〈Zm〉ρreal = 〈Zm〉ρ− (17)

for any time t � 0, due to property II.
From Eq. (12), the ratio of the p± in the estimator becomes

p+(t + dt )

p−(t + dt )
= p+(t )e−2λ(〈Zm〉ρreal −〈Zm〉ρ++ dW

2
√

λ
)2

dt

p−(t )e−2λ( dW
2
√

λ
)2

dt

on average−−−−−→ p+(t )

p−(t )
e−2λ(〈Zm〉ρreal −〈Zm〉ρ+ )2

dt . (18)

It shows that the ratio of p+/p− decreases on average due
to the difference between 〈Zm〉ρreal and 〈Zm〉ρ+ . Since H =
k�− ⊗ Xm, only the negative eigenspace causes transitions.
Therefore it is evident that 〈Zm〉ρreal 
= 〈Zm〉ρ+ = 1 for most
times. It is expected that p− → 1 and p+ → 0 at later times.
This means that the estimator ρ̂ is driven to the O = −1
eigenspace at later times.

If ρreal is in the O = +1 eigenspace, the ratio becomes

p+(t + dt )

p−(t + dt )
= p+(t )

p−(t )
e2λ(〈Zm〉ρreal −〈Zm〉ρ− )2

dt , (19)

where 〈Zm〉ρreal = 〈Zm〉ρ+ = 1. We will have p+ → 1 and
p− → 0 instead. The estimator ρ̂ evolves to the O = +1
eigenspace in this case.

The above shows that when a physical system ρreal is in an
eigenspace of O, its measurement records dI drive ρ̂ to that
eigenspace. If 〈O〉ρ̂ approaches +1 (equivalently p+ → 1),
we learn that ρreal is in the eigenspace of O = +1. If 〈O〉ρ̂
approaches −1 (equivalently p− → 1) then ρreal is in the
eigenspace of O = −1. These results are sufficient for error
detections on general stabilizer codes, where we prepare the
encoded state in the joint +1 eigenspace of a set of commuting
operators. For each stabilizer Oi, we attach an extra qubit
mi to the system with Hamiltonian (1/2)(I − Oi ) ⊗ Xmi and
continuously measure Zmi . From the signals of measuring
Zmi , we are able to detect if errors have taken the state out
of the stabilized space. However, simulating the evolution of
the estimator requires computational overhead. As the system
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size grows, the exponential increase of the matrix dimension
makes the method of simulating the estimator impractical. We
provide in the following an alternative method to retrieve the
information contained in the outcomes dI without simulating
the whole quantum state.

Note that in this particular setup where H = k�− ⊗ Xm, it
is clear that if the state ρ is in the +1 eigenspace then 〈Zm〉 =
1 at all times. The signal becomes a Wiener process with a
constant drift, i.e., dI = 1dt + (dW/2

√
λ). We can evaluate

an average function of dI defined by

I (t ) ≡
{

1
t

∫ t
0 dI if 0 � t � w

1
w

∫ t
t−w

dI if w < t
, (20)

where w is the window width which is short compared to the
average time between errors (1/the rate of errors) but long
compared to the inverse of the measurement rate on the mon-
itor qubits (1/λ), i.e., (1/λ) � w � (1/the rate of errors). In
the case where ρ is in the +1 eigenspace, the average function
reads

I (t ) = 1 +
{

1
t

∫ t
0

dW
2
√

λ
if 0 � t � w

1
w

∫ t
t−w

dW
2
√

λ
if w < t

. (21)

The variance of I (t ) is

Var
[
I (t )

] =
⎧⎨
⎩

E
[(

1
t

∫ t
0

dW
2
√

λ

)2
]

= 1
4λt if 0 � t � w

E
[(

1
w

∫ t
t−w

dW
2
√

λ

)2
]

= 1
4λw

if w < t
.

(22)
Because E[I (t )] = 1 and Var[I (t )] is inversely proportional to
time, we should expect that I (t ) converges to 1 after t � w. If
ρ is in the −1 eigenspace, there will be oscillations of 〈Zm〉.
The dynamics of 〈Zm〉 involve

d〈Zm〉 = 2k〈Ym〉dt + 2
√

λ(1 − 〈Zm〉2)dW, (23)

d〈Ym〉 = −2k〈Zm〉dt − 2λ〈Ym〉dt − 2
√

λ〈Zm〉〈Ym〉dW. (24)

The Xm in H causes a rotation of the y-z plane in the Bloch
sphere for the monitor qubit m. The first terms in above equa-
tions indicate such a rotation. The exponential suppression in
the second term for 〈Ym〉 is due to the measurements on Zm.
The average function of dI becomes

I (t ) = 〈Zm〉 +
{

1
t

∫ t
0

dW
2
√

λ
if 0 � t � w

1
w

∫ t
t−w

dW
2
√

λ
if w < t

, (25)

where 〈Zm〉 denotes the average value of 〈Zm〉 over an integra-
tion period, i.e.,

〈Zm〉 =
{

1
t

∫ t
0 〈Zm〉dt if 0 � t � w

1
w

∫ t
t−w

〈Zm〉dt if w < t
. (26)

Since there are oscillations of 〈Zm〉 between −1 to 1, 〈Zm〉
should be noticeably smaller than 1. The later simulation
shows that I (t ) approaches zero after a period of time, when
ρ is in the −1 eigenspace. By directly evaluating I (t ) from
the measurement outcomes, one can determine whether the
state is in the +1 eigenspace. Although this method is noisier
than the method of calculating 〈O〉ρ̂ from the estimator, it
significantly speeds up the process of detecting errors.

The relative size between the strength of the Hamiltonian
k and the measurement rate λ plays a role in determining
the effectiveness of this indirect detection scheme. If λ is
too large, then the frequent measurements on Zm freeze m
in the state |0〉m〈0| due to the quantum Zeno effect. In this
case, 〈Zm〉 stays close to 1 for a much longer time, and the
information gain is greatly reduced. If λ is too small, the ratio,
in Eqs. (18) and (19), between p+ and p− changes slowly. The
rate at which the estimator approaches either ±1 eigenspace
becomes small. This is also not an ideal limit for learning the
value of O for ρ. From our testing, the most efficient regime
is around λ = 0.5k ∼ 1.5k.

In most cases, the stabilizers are high weight operators,
e.g., weight four stabilizers in the surface code. Directly
measuring these high weight operators requires multiple gate
operations, which can be more inaccurate. This passive in-
direct detection scheme can provide an alternative way to
measure these stabilizers. In Sec. IV, we show how the de-
sired Hamiltonians can be effectively constructed by 2-local
operators. In the following section, we provide a minimal
example demonstrating the process and the behavior of the
indirect detection method. We set λ = 0.6k and the time
unit to be 1/k throughout the rest of the paper. We also
omit the tensor product notation “⊗” for the rest of the
paper.

B. ZZ example

We provide a simple 3-qubit example to demonstrate
the indirect detection scheme. Suppose we want to know
the value of the operator Z1Z2 for qubits 1 and 2. We
bring in an additional monitor qubit m and turn on the
joint Hamiltonian H = (k/2)(I − Z1Z2)Xm. Under continu-
ous measurements of Zm with outcomes dI , the whole state
ρ evolves according to Eq. (2). In experiment, dI are ob-
tained from the measurement apparatus. For simulation, the
outcomes are generated using dI = Tr[Zmρ]dt + dW/(2

√
λ),

where dW is a Wiener process. Figures 1(a) and 1(b) show
the dragging effect of the estimator—if the state ρ is in
the Z1Z2 = ±1 eigenspace then the estimator ρ̂ approaches
the eigenspace ρ is in. From the value that 〈Z1Z2〉ρ̂ ap-
proaches, one can know which eigenspace ρ is in. Figures 1(e)
and 1(f) are the ensemble average over 500 trajectories of
〈Z1Z2〉ρ̂ . The other method to translate the information con-
tained in dI is to evaluate the average function I (t ) defined
by Eq. (20). For convenience, we choose w = 40/k and
evaluate I (t ) from time 0 to w. Figures 1(c) and 1(d) il-
lustrates the difference between the state ρ being in the ±1
eigenspaces. I (t ) converges to 1 if ρ is in the +1 eigenspace,
and it converges to 0 if ρ is in the −1 eigenspace. In
these example, the initial state of ρ is ρ(0) = (1/2)(|00〉 +
|11〉)(〈00| + 〈11|) ⊗ |0〉m〈0| for the case of Z1Z2 = +1 and
is ρ(0) = (1/2)(|01〉 + |10〉)(〈01| + 〈10|) ⊗ |0〉m〈0| for the
case of Z1Z2 = −1.

Note that there is a trade-off between accuracy and effi-
ciency for the two methods—the estimator approach gives a
more stable readout comparing to Ī (t ) but requires computa-
tional overhead. The estimator approach can be more accurate
for theoretical analysis while the average function is more
experimentally feasible.

043093-4



CONTINUOUS QUANTUM ERROR DETECTION AND … PHYSICAL REVIEW RESEARCH 2, 043093 (2020)

FIG. 1. (a), (b), (e), and (f) are the estimator approach. Each of (a) and (b) is a sample trajectory, and each of (e) and (f) is an ensemble
average over 500 trajectories. The signals from measuring the physical state drive the estimator to the Z1Z2 = ±1 eigenspace the physical
state is in. (a) and (e) are the evolutions of 〈Z1Z2〉ρ̂ when ρ is in the +1 eigenspace of Z1Z2. (b) and (f) are the cases when ρ is in the −1
eigenspace of Z1Z2. (c), (d), (g), and (h) represent the average function Ī (t ). Each of (c) and (d) is a sample trajectory, and each of (g) and (h)
is an ensemble average over 500 trajectories. It converges to 1 when the physical state is in the +1 eigenspace, and it converges to 0 when the
state is in the −1 eigenspace.

III. AN APPLICATION TO THE FOUR-QUBIT
BACON-SHOR CODE

The 4-qubit Bacon-Shor code is an error-detecting code
that can detect errors by measuring only weight-two operators.
In the stabilizer formalism, it has two weight-four stabilizers,
Sz = ZZZZ and Sx = XXXX . Checking if the system stays in
the joint Sz = +1 and Sx = +1 eigenspace allows us to detect
single-qubit errors. To measure the stabilizers, we could in
principle bring in two extra qubits mz and mx and apply the
Hamiltonian

H = k

2
(I − Z1Z2Z3Z4)Xmz + k

2
(I − X1X2X3X4)Xmx ,

with continuous measurements on Zmz and Zmx . However,
applying the weight-five Hamiltonian requires many-body in-
teractions and is experimentally hard. As we show in Sec. IV,
the above Hamiltonian would appear in the fifth-order ex-
pansion of the perturbation construction. It means that the
base Hamiltonian should be five orders of magnitude stronger
than the Hamiltonian needed for indirect detection. This poses
a practical challenge for experiments. To reduce the energy
scale, we can instead use

H = k

2
(Z1Z2 − Z3Z4)Xmz + k

2
(X1X3 − X2X4)Xmx , (27)

which involves only 3-local interactions. As shown in Sec. IV,
this Hamiltonian appears in the second order expansion of
the perturbative construction, where mz and mx are effective
two-level systems. To gain insight into this setup, let us first
recall the stabilizer formalism for the 4-qubit Bacon-Shor
code. The code uses four physical qubits to encode one logical
qubit and can detect any single-qubit error. The Hilbert space
decomposes into tensor products of four subsystems with the

following set of commuting operators and their complements,

Logical qubit : ZL = Z1Z3, XL = X1X2,

Gauge qubit : ZG = Z1Z2, XG = X1X3,

Stabilizers : Sx = X1X2X3X4, Sx = Z4,

Sz = Z1Z2Z3Z4, Sz = X1X2X3.

The encoded basis is |ZLZGSxSz〉. We add a bar on each bit for
the encoded basis to distinguish it from the physical basis. For
example, |0̄1̄0̄1̄〉 represents the basis vector corresponding to
ZL = +1, ZG = −1, Sx = +1, and Sz = −1. The relationship
between the two bases can be found in Table I. In this encoded
basis, it is convenient to rewrite Eq. (27) as

H = k

2
(I − Sz )ZGXmz + k

2
(I − Sx )XGXmx

= k�
Sz
−ZGXmz + k�

Sx− XGXmx , (28)

where �
Sz
− and �

Sx− are projectors onto their −1 eigenspaces.
The signature for the state being in either combination of Sz =
±1 and Sx = ±1 is clear: when the state is in the Sz = +1
and Sx = +1 eigenspace, the monitor qubits are static; when
either Sz or Sx is −1, there are oscillations for Zmz or Zmx .
Note that since there is no term involving ZL or XL, the logical
qubit is perfectly preserved during the process of indirect
detection. The gauge qubit can be treated as an external degree
of freedom for the system, where its dynamics are irrelevant.
The noncommutativity between the two terms in H is on the
gauge system, and does not affect the detection process. We
prepare the state in the simultaneous +1 eigenspace of Sz

and Sx and continuously monitor Zmz and Zmx . If there is no
error, we should observe static values of 〈Zmz,x 〉, which are
both one in our setting. If an error takes the state out of the +1
eigenspace of a stabilizer then we can detect it by the nonstatic
evolution of 〈Zmz,x 〉. However, these expectation values are
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TABLE I. Code basis: bar/un-bar represents encoded/physical basis.

|0̄0̄0̄0̄〉 = 1√
2
(|0000〉 + |1111〉), |0̄1̄0̄0̄〉 = 1√

2
(|0101〉 + |1010〉), |0̄0̄1̄0̄〉 = 1√

2
(|0000〉 − |1111〉), |0̄1̄1̄0̄〉 = 1√

2
(|1010〉 − |0101〉),

|1̄0̄0̄0̄〉 = 1√
2
(|0011〉 + |1100〉), |1̄1̄0̄0̄〉 = 1√

2
(|1001〉 + |0110〉), |1̄0̄1̄0̄〉 = 1√

2
(|1100〉 − |0011〉), |1̄1̄1̄0̄〉 = 1√

2
(|0110〉 − |1001〉),

|0̄0̄0̄1̄〉 = 1√
2
(|0001〉 + |1110〉), |0̄1̄0̄1̄〉 = 1√

2
(|0100〉 + |1011〉), |0̄0̄1̄1̄〉 = 1√

2
(|1110〉 − |0001〉), |0̄1̄1̄1̄〉 = 1√

2
(|0100〉 − |1011〉),

|1̄0̄0̄1̄〉 = 1√
2
(|1101〉 + |0010〉), |1̄1̄0̄1̄〉 = 1√

2
(|1000〉 + |0111〉), |1̄0̄1̄1̄〉 = 1√

2
(|0010〉 − |1101〉), |1̄1̄1̄1̄〉 = 1√

2
(|1000〉 − |0111〉).

not directly obtained from experiments. The outcomes of the
continuous measurements are dIz,x = 〈Zmz,x 〉dt + dWz,x/2

√
λ.

To retrieve information contained in 〈Zmz,x 〉, we can evaluate
the time average of the signals defined in Eq. (20). We can also
use an estimator ρ̂ to learn the stabilizer values as described in
Sec. II. From the outcomes dIz,x = 〈Zmz,x 〉ρdt + dWz,x/2

√
λ,

we evolve the estimator according to

ρ̂(t + dt ) = Aρ̂(t )A†

Tr[Aρ̂(t )A†]
, (29)

where

A = e−iHdt−λ( dIz
dt −Zmz )2

dt−λ( dIx
dt −Zmx )2

dt . (30)

The estimator is initially maximally mixed and can be decom-
posed into four blocks, i.e.,

ρ̂(t ) =
∑

α=±1,β=±1

pαβ (t )ραβ (t ), (31)

where pαβ (t ) = Tr[�Sx
α �

Sz

β ρ̂(t )] and ραβ (t ) = �Sx
α �

Sz

β ρ̂(t ) ×
�

Sz

β �Sx
α . The evolutions for the probabilities become

pαβ (t + dt ) ≈ pαβ (t )

N e−2λ[( dIz
dt −〈Zmz 〉αβ )2−( dIx

dt −〈Zmx 〉αβ )2
]dt .

(32)

When ρ is in the eigenspace of Sx = α and Sz = β, the pαβ of
the estimator has the largest increase on average. Hence, the
estimator approaches the eigenspace of Sx = α and Sz = β.
The argument mostly follows the discussion in Sec. II for each
Sx and Sz.

Simulations of the time-averaged signal and of the estima-
tor approach, over 500 trajectories, are shown in Figs. 2 and 3.
We use the following initial states as examples for the system

being in the four eigenspaces of Sx = ±1 and Sz = ±1:

σ++ ≡ 1
2 (|0̄〉 + |1̄〉)(〈0̄| + 〈1̄|) ⊗ |0̄0̄0̄〉〈0̄0̄0̄|,

σ+− ≡ 1
2 (|0̄〉 + |1̄〉)(〈0̄| + 〈1̄|) ⊗ |0̄0̄1̄〉〈0̄0̄1̄|,

σ−+ ≡ 1
2 (|0̄〉 + |1̄〉)(〈0̄| + 〈1̄|) ⊗ |0̄1̄0̄〉〈0̄1̄0̄|,

σ−− ≡ 1
2 (|0̄〉 + |1̄〉)(〈0̄| + 〈1̄|) ⊗ |0̄1̄1̄〉〈0̄1̄1̄|,

(33)

where they are expressed in the encoded basis |ZLZGSxSz〉.
ρ(0) is one of the states above with monitor qubits initialized
in state |0〉〈0|.

A. Error analysis

1. Error detection

When we apply the four-qubit Bacon-Shor code, we pre-
pare the state in the Sx = +1 and Sz = +1 eigenspace and
store information in the logical qubit of the state. To detect
errors, we attach monitor qubits to the system and contin-
uously measure them. If there are no errors, the monitor
qubits are static and both Īz,x(t ) converge to 1. Or we can
simulate the estimator, which will approach the joint +1
eigenspace. Let us first consider single-qubit errors. Suppose
an X1 error happened on the first system qubit. The error
anticommutes with Sz and the state is taken to the Sz = −1
eigenspace. A sample trajectory is shown in Fig. 4, where the
error is detected by observing that Īz(t ) drifts to 0 and 〈Sz〉ρ̂
flips to −1.

We present another example where the errors are
continuous-in-time 1/f Hamiltonian errors, i.e.,

Herr (t ) =
∑

i

εi(t )σi, (34)

where each σi is a single-qubit Pauli matrix acting on the
ith qubit and εi(t ) is a time-dependent scalar function. Each
εi(t ) consists of exponentially decaying random pulses with

FIG. 2. Īx,z verse time for the four eigenspaces. The red is Īz(t ) and the blue is Īx (t ). The average function converges to 1 (or 0) if the
corresponding stabilizer is in the +1 (or −1) eigenspace.
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FIG. 3. The estimator approach. The blue is the evolution of 〈Sx〉ρ̂ . The red is the evolution of 〈Sz〉ρ̂ . It is shown that the estimator
approaches the eigenspace the system belongs to.

magnitude ε, i.e.,

εi(t ) = ε
∑
αi

θ (t − tαi ) exp
(
− t − tαi

τ

)
, (35)

where θ (t ) is the Heaviside step function [28]. In Sec. III A 2,
it is shown that this type of error can be suppressed
by implementing continuous indirect measurements. For
most trajectories, the system stays close to the Sz,x = +1
eigenspace. Īz,x(t ) converges to 1 while 〈Sz,x〉ρ̂ approaches 1
and stays at 1. Occasionally, the error can cause the system
to jump to the −1 eigenspace of Sz,x. A sample trajectory of
this case is shown in Fig. 5, where we detect the system’s 〈Sx〉
jumping to −1 by observing that Īx(t ) starts to decay to 0 and
〈Sx〉ρ̂ flips to −1. In general, since any single-qubit Pauli error
anticommutes with at least one of the Sz,x, any single-qubit
error can be detected. Multiqubit errors can be detected when
they consist of operators anticommuting with one of the Sx,z.
The undetectable errors are those commuting with both Sx,z.
However, they must be at least weight 2. They happen at lower
rates than single-qubit errors.

We now consider the cases when errors happen on the
monitor qubits. Note that the essential indicator that allows
us to distinguish the four eigenspaces of Sx,z = ±1 is whether
〈Zmz,x 〉 is static or oscillatory in motion. When Sx,z is +1,
〈Zmx,z 〉 is static. When Sx,z is −1, 〈Zmx,z 〉 is oscillatory. It turns
out that the process of stabilizer detection can be preserved
with low rate errors on the monitor qubits. Let us begin
with the case of instantaneous errors on the monitor qubits.
Suppose an Xmz error happened on the monitor mz. If 〈Zmz 〉
was static (because the system is in the Sz = +1 eigenspace),
〈Zmz 〉 flips from +1 to −1 but remains static. As shown in
Fig. 6, Īz(t ) converges to −1 after an Xmz error happened at
t = 20, and then a subsequent X1 error happened at t = 100

FIG. 4. An X1 error happened at t = 20 as indicated by the black
line. After the error, Īz starts to approach 0 and 〈Sz〉ρ̂ flips to −1.

is detected by observing Īz(t ) evolving to 0. If 〈Zmz 〉 is os-
cillatory, an Xmz flips the value of 〈Zmz 〉 but does not change
the oscillatory motion. In general, Īx,z(t ) converging to ±1
indicates that there was no error, and either Īx,z(t ) converging
to 0 indicates there was an error. When such instantaneous
errors happen with rates much smaller than 0.1λ, which is
approximately the inverse of the measurement time for the
indirect detection, the error detection process is preserved. For
continuous Hamiltonian errors, since the monitors are being
continuously measured, errors with strength much smaller
than the measurement rate λ are partially suppressed by the
quantum Zeno effect. Hence, the process of detecting errors
on the encoded four-qubit system can be preserved even with
low-rate errors on the monitors. However, if the errors happen
at high rates, it can cause rapid flipping that mimics the oscil-
latory effect of Zmz , which normally would occur only when
Sz = −1. In that limit indirect detection becomes ineffective.
Of course, these conclusions are for the particular error model
we have been considering. Experimental measurements of
the error process might suggest alternative versions of this
scheme, e.g., measuring Xmz instead of Zmz if there are mainly
Xmz errors.

In the full construction described in Sec. IV, the qubits
mz and mx are two pairs of physical qubits (a, b) and (c, d ).
Each pair (a, b) and (c, d ) is confined to the ground space of
the strong base Hamiltonian, (K/2)(I − ZaZb) + (K/2)(I −
ZcZd ). XaXb and XcXd in the effective Hamiltonian cause tran-
sitions only within the ground space, i.e., |00〉 ↔ |11〉. Hence
they act as Xmz,x for the effective two qubits mz and mx. The
process of detecting errors for the encoded system is similar:
when Sz = +1, both a and b are static; when Sz = −1, both a
and b are oscillatory. The same applies to c and d for Sx. We
only need to continuously measure one qubit for each pair,
e.g., measuring a and c. If errors can happen on the monitor
qubits, it follows similarly from the above argument that the
error detection process for the system qubit can be preserved
under low-rate errors.

2. Error suppression

It is well-known that frequent measurements can freeze a
system in an eigenspace of the measurement observable due
to the quantum Zeno effect. There have been many efforts
to harness the Zeno effect for error suppression [29–31]. In
Ref. [25], it is shown that non-Markovian errors can be sup-
pressed by the quantum Zeno effect while Markovian errors
can not. In this section, we investigate error suppression for
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FIG. 5. (a) shows 〈Sz,x〉 for the system. After a period, Sx is flipped to −1 while Sz remains at +1. (b) shows Īz,x (t ). After a period, Īx (t )
starts to decay while Īz(t ) remains at +1. (c) shows 〈Sz,x〉ρ̂ for the estimator. 〈Sx〉ρ̂ approaches +1 initially, but it flips to −1 after 〈Sx〉 → −1.

various models under continuous indirect measurements. We
first consider the 1/f Hamiltonian errors defined in Eq. (34),
where the sum is over all physical qubits. In Fig. 7, we plot
the ensemble average of the system’s stabilizer values under
this 1/f Hamiltonian error. As shown in Fig. 7(a), the red and
blue curves represent the case with indirect detection while the
purple and yellow curves represent the case without the mea-
surement setup. The pulse rate and ε are 0.1k and τ ∼ 1/k,
where k is the strength of the Hamiltonian. The measurement
rate λ is set to 0.6k. The red and blue curves decay noticeably
more slowly than the purple and yellow, which shows that
the system state tends to remain in the Sz,x = +1 eigenspace
in the presence of indirect stabilizer detection. Note that 1/f
Hamiltonian noise is a type of non-Markovian error process.
The exhibited suppression aligns with the result in Ref. [25]

FIG. 6. A sample of Īx,z(t ) with an Xmz error at t = 20 and an X1

error at t = 100. The red curve represents Īz(t ), and the blue curve
represents Īx (t ). Īx (t ) remains at 1 because the errors commute with
Sx . Īz(t ) flips to −1 due to the Xmz error and then converges to 0 after
the X1 error happened. The window width w is set to 40/k in this
example.

that non-Markovian errors can be suppressed by the quantum
Zeno effect. We present another example of non-Markovian
errors, where the errors are constant Hamiltonian terms, i.e.,
Herr = ε

∑
σi. To keep the same error magnitude as in the 1/f

noise case, the ε is set to 0.01k, which is the average strength
of εi(t ) in the 1/f noise. The result is shown in Fig. 7(b).
Convergence to the joint +1 eigenspace of Sz,x is apparent
when indirect detection is applied.

Another method to benchmark the state protection is to
evaluate the trace distance between the state at time t and
the initial state [29]. The smaller the trace distance the closer
the state remains to its initial state. Figure 8 shows a clear
protection of the state when the system is being measured.

However, when the errors are Markovian (white noise) the
measurements do not appear to fix the stabilizer values, as
shown in Fig. 7(c). For Markovian noise, the probability of a
state transition is of order dt for a time step. Errors of this type
cannot be suppressed by frequent measurements and full error
correction is required to protect the states. For non-Markovian
noise, by contrast, the probability of a state transition is of
order dt2 in a time step. This is why these transitions can
be suppressed by the quantum Zeno effect [25]. The above
simulations for continuous indirect measurements agree with
these results.

It is worth noting that for the purpose of error prevention,
it is possible in principle to suppress Hamiltonian errors by
applying a strong Hamiltonian alone. For example, suppose
we have a qubit prepared in the |0〉 state in the Z basis with the
presence of an X Hamiltonian error. The error can cause the
state to rotate on the y-z plane in the Bloch sphere. However,
if we apply a Z Hamiltonian, which is strong comparing to
the error term X , the rotating axis becomes closely aligned
with the z axis. The evolution for the state will be confined
in a small region near the north pole. The region can be
made smaller as we increase the strength for the Z term.
Therefore the state is maintained close to its initial state |0〉.
Recall the setup in the indirect measurements. We require
interaction Hamiltonians between the system and the monitor
qubits. These Hamiltonians also contribute to the suppression
of errors because of the above axis-pinning behavior. How-
ever, if an error term has a time-dependent coefficient with a
frequency component on resonance with energy differences
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FIG. 7. The evolutions of the stabilizers under various error models. (a) compares evolutions of 〈Sz,x〉 with/without indirect detection,
under 1/f Hamiltonian noise. (b) compares evolutions of 〈Sz,x〉 with/without indirect detection, under constant Hamiltonian errors. (c) is the
case for white noise, where there shows no suppression of error. They are ensemble averages over 1000 trajectories.

in the system Hamiltonian, transitions are not suppressed.
In this case, applying the Hamiltonian alone is not effective
against the error. However, applying both the Hamiltonian and
the continuous measurements on the monitor qubits performs
better in these cases as shown in Fig. 9. Overall, continu-
ous indirect measurements can protect encoded states against
errors.

IV. CONSTRUCTING THE HAMILTONIAN FOR INDIRECT
DETECTION

In this section, we show how to build an effective Hamil-
tonian for indirect detection. The method is based on the idea
of perturbation gadgets [32]. It uses 2-local Hamiltonians to
produce an effective k-local Hamiltonian that appears in the
first nonvanishing order for the low-lying energy eigenstates.
We begin by briefly recapping the theory presented in [32].

Suppose we have a strong base Hamiltonian H (0) and a
weak potential εV . H (0) has zero ground state energy with
a degenerate ground space G (0) spanned by eigenvectors
|e0

1〉 . . . |e0
d〉, and εV weakly perturbs it. The total Hamilto-

nian H = H (0) + εV will have a d-dimensional vector space
G spanned by the d lowest energy eigenstates |e1〉 . . . |ed〉.
For small enough ε, G largely overlaps with G0. The space
spanned by the lowest d energy eigenstates has an effective

FIG. 8. D(t ) = 1
2 ||ρ(t ) − ρ(0)||1. The red curve is the case

without measurements while the blue curve is the case with con-
tinuous indirect detection. They are ensemble averages over 1000
trajectories.

Hamiltonian

Heff ≡
d∑

i=1

Ei|ei〉〈ei|, (36)

which can be expanded in powers of ε, i.e.,

Heff = U
( ∞∑

m=1

εm
∑

(m−1)

P0V Sl1V · · · Slm−1V P0

)
U†. (37)

The operator P0 projects any vector onto the unperturbed
ground space G (0), and the linear operator U satisfies

UP0|ei〉 = |ei〉 and UG (0)⊥ = 0. (38)

The operator Sl is

Sl =
{∑

i>0
Pi(

−E (0)
i

)l if l > 0,

−P0 if l = 0,
(39)

FIG. 9. The evolution of 〈Sz〉 under an on-resonance X1 error.
The blue curve is the case when the full indirect detection scheme is
applied. The red curve is the case when the Hamiltonian for indirect
detection is applied but no measurements are made on the monitor
qubits.
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where Pi is the projector corresponding to the energy level
E (0)

i of the base Hamiltonian H (0). The summation
∑

(m−1) is
over nonnegative integers l1, l2, . . . , lm−1 such that l1 + · · · +
lm−1 = m − 1 and l1 + · · · + lx � x for any x from 1 to m − 1.
U and U† can also be expanded in powers of ε but only
their zeroth order terms, which are both P0, will contribute
in the later discussion. A more detailed derivation of these
results can be found in Ref. [32]. Note that the expansion
converges only if ||εV || < �E (0)/4, where �E (0) is the en-
ergy gap between the ground energy (assumed zero) and the
second lowest energy. To have a good approximation from the
perturbation, we would expect ||εV || to be much smaller than
�E (0). In this limit, the effect of adding εV to H (0) becomes
a small splitting of the degenerate ground space with a small
deviation from the ground space G (0) to G. When an initial
state is prepared in G (0), its evolution stays mainly in G and
the effective Hamiltonian Heff will be a good approximation
for H .

The following construction for the indirect measurement
requires us to design 2-local Hamiltonian terms H (0) and V
such that the first nonvanishing order of the expansion gives
the desired Hamiltonian.

A. First example: ZZ detection

Suppose we want to measure Z1Z2 for qubits 1 and 2, and
the desired Hamiltonian is

Htarget = k

2
(I − Z1Z2)Xm.

We bring in two ancillary qubits m1 and m2, and turn on a
Hamiltonian H = H (0) + εV , where

H (0) = K

2
(I − Zm1 Zm2 ) (40)

and the perturbing term is

V = K (Z1Xm1 + Z2Xm2 + 2εXm1 Xm2 ). (41)

K is a constant and ε � 1. (Note that the identity term in the
base Hamiltonian is unnecessary but we keep it for conve-
nience.) The expansion of Heff in Eq. (37) up to second order
in ε gives

Heff = U [εP0V P0 + ε2P0V S1V P0 + O(ε3)]U†

= Kε2P0[2(I − Z1Z2)Xm1 Xm2 − 2]P0 + O(ε3). (42)

The ancillary qubits are prepared in the ground space, G (0) =
H12 ⊗ span{|00〉, |11〉}m1m2 , and the effective Hamiltonian for
the 4-qubit system can be approximated by

H̃eff = 2Kε2(I − Z1Z2)Xm1 Xm2 , (43)

in the limit of ε � 1. The shifted term proportional to P0 is
neglected since it acts as the identity in the subspace. Note
that since the ancillary qubits are restricted to G (0), which is
a two-dimensional subspace, we can treat m1 and m2 as an
effective qubit m and the operator Xm1 Xm2 behaves as Xm that
flips m. Hence, it can be simplified as a three-body system
with Hamiltonian

H̃eff = 2Kε2(I − Z1Z2)Xm, (44)

which is in the desired form for the indirect measurement
(with k = 4Kε2). Since m1 and m2 are confined to the ground
space G (0) and are simultaneously rotated by Xm1 Xm2 , we can
detect the value of Z1Z2 by continuously measure only one of
Zm1 or Zm2 . When the state is in the eigenspace of Z1Z2 = +1,
both m1 and m2 are static. When the state is in the Z1Z2 = −1
eigenspace, 〈Zm1〉 and 〈Zm2〉 are oscillatory. The system’s Z1Z2

value can be obtained by calculating the estimator or evaluat-
ing the time average of the signal as described above.

B. Construction for the four-qubit Bacon-Shor code

To indirectly measure the stabilizers, Sz = Z1Z2Z3Z4 and
Sx = X1X2X3X4, for the 4-qubit Bacon-Shor code, we apply
the Hamiltonian,

H = k

2
(Z1Z2 − Z3Z4)Xmz + k

2
(X1X3 − X2X4)Xmx , (45)

and continuously measure Zmz and Zmx . However, to obtain
this Hamiltonian using only 2-local operators requires four
ancillary qubits, which we call a, b, c and d . The full phys-
ical system becomes an 8-qubit state, where 1, 2, 3, 4 are the
system qubits and a, b, c, d are the monitor qubits for the
indirect measurements. The full perturbative construction has
a Hamiltonian H = H (0) + εV , where the base Hamiltonian is

H (0) = K

2
(I − ZaZb) + K

2
(I − ZcZd ), (46)

and the perturbing term is

V = K

2
√

2
(Z3 + Z4 − Z1 − Z2)Xa,

+ K

2
√

2
(Z3 + Z4 + Z1 + Z2)Xb,

+ K

2
√

2
(X2 + X4 − X1 − X3)Xc,

+ K

2
√

2
(X2 + X4 + X1 + X3)Xd ,

+ Kε

2
(Z1Z2 + Z3Z4 + X1X3 + X2X4). (47)

The monitor qubits are prepared in the ground space of
H (0), which consists of two two-level subspaces for the
monitors. The unperturbed ground space is G (0) = Hsys ⊗
span{|00〉, |11〉}ab ⊗ span{|00〉, |11〉}cd . After adding εV , the
perturbed ground space has an effective Hamiltonian that
reads

Heff = εP0V P0 + ε2P0V S1V P0 + O(ε3)

= Kε2 1
2 (Z1Z2 − Z3Z4)XaXbP0

+ Kε2 1
2 (X1X3 − X2X4)XcXd P0 − Kε22P0 + O(ε3).

(48)

Since the ancillary qubits are prepared in the ground space of
H (0), the full system effectively has the Hamiltonian

H̃eff =Kε2

2
[(Z1Z2 − Z3Z4)XaXb + (X1X3 − X2X4)XcXd ].

(49)
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FIG. 10. The evolution of 〈Sz〉 under the full 8-qubit construc-
tion. The orange curve includes the indirect detection alone without
any errors. The blue curve also includes 1/f Hamiltonian noise. The
green curve is the 1/f Hamiltonian noise alone without any indirect
measurement. They are ensemble averages over 500 trajectories.

The XaXb and XcXd only cause transitions within the ground
space G (0), and they act as a single-qubit X for an effec-
tive qubit confined in the space spanned by {|00〉, |11〉}. We
obtain the target Hamiltonian (45) by identifying XaXb →
Xmz and XcXd → Xmx . The monitors are initially prepared in
|0000〉abcd . XaXb (XcXd ) simultaneously rotates Za and Zb

(Zc and Zd ) when the state is in the Sz = −1 (Sx = −1)
eigenspace. To measure the values of Sz and Sx, we contin-
uously measure Za (or Zb) and Zc (or Zd ). The information
of the system being in either eigenspace of Sz,x = ±1 can
be obtained by evaluating Īa(t ) and Īc(t ) or by calculating
〈Sz,x〉ρ̂ using an estimator ρ̂ as described in Sec. II. When
the system is in the Sz = +1 eigenspace, 〈Za〉 is static. Īa(t )
converges to +1 and 〈Sz〉ρ̂ → +1. When the system is in the
Sz = −1 eigenspace, 〈Za〉 is oscillatory. Īa(t ) approaches 0
and 〈Sz〉ρ̂ → −1. The same detection rule applies to Sx.

It is worth recalling that the constant Kε2 in the effective
Hamiltonian is the strength k of the target Hamiltonian in
Eq. (45). The fact that ε needs to be small for the perturbation
to work accurately implies that K , the strength of the base
Hamiltonian, has to be large enough that Kε2 is large com-
pared to the error strength (or rate). We numerically simulated
an example with ε2 ∼ 0.001 to demonstrate the performance
of the full perturbative construction. The result for 〈Sz〉 is
shown in Fig. 10. (〈Sx〉 behaves similarly.) The ensemble
averages of trajectories for 〈Sz〉 are plotted for various cases.
The orange curve represents the no-error case when we apply
the full construction using only 2-local Hamiltonians from
Eqs. (46) and (47) and continuous measurements of Za and Zc.
When there is no error, 〈Sz〉 is expected to remain 1 through-
out the detection process. This is true for the 6-qubit setup
introduced in Sec. III. However, building the Hamiltonian
perturbatively causes the stabilizers to drop slightly below 1,
indicating the presence of small errors due to higher-order
corrections. Nonetheless, the deviation is small as shown in
Fig. 10. The blue and the green curves are the cases when
the system suffers from the 1/f Hamiltonian errors defined in
Eq. (34), where the sum is over all physical qubits (including
the monitor qubits). The blue includes continuous indirect
detection while the green does not. The suppression of errors

is apparent, although it is slightly less effective than the ideal
6-qubit case shown in Fig. 7(a). For most trajectories where
errors are suppressed, the stabilizer values stay close to 1.
For some trajectories where errors cause 〈Sz,x〉 to flip to −1,
we can detect them by observing Īa,c(t ) decaying towards 0
or 〈Sz,x〉ρ̂ flipping to −1. These behaviors are essentially the
same as in Fig. 5.

V. CONCLUSION

We have presented and analyzed a method for the con-
tinuous measurement of high-weight operators, and applied
this to the problem of continuous quantum error detection
by the four-qubit Bacon-Shor code. This method includes
engineering an interaction Hamiltonian between the system
and the continuously measured ancillary qubits. More nontriv-
ially, the Hamiltonian can be effectively built using physically
viable two-local interactions, and the measurements on the
monitor qubits consist of well-studied single-qubit continuous
measurements.

One major advantage of using this type of continuous
monitoring is that it can exhibit error suppression for non-
Markovian noise. The traditional circuit-based model is a
discrete-time scheme, which cannot generally be carried out
quickly enough to produce error suppression. This continuous
monitoring scheme does not replace fault-tolerance methods,
but it can be incorporated into a larger code (or a larger
quantum algorithm) by concatenation. We can implement
continuous monitoring for the lowest level qubits and pass the
error information to higher levels for error tracing and correc-
tion. More specifically, we could encode a qubit at the bottom
layer of a large code as the logical qubit of an error-correcting
code (or error-detecting code), where the stabilizer generators
are continuously monitored by the scheme we introduce here.

In general, this detection scheme can be applied to mea-
suring the stabilizers in any quantum code. However, as the
weight of the stabilizers in a code increases, the difficulty
of performing this detection scheme is also increased. This
is because perturbatively constructing the Hamiltonian for
the indirect detection requires applying a strong base Hamil-
tonian. The strength of this base Hamiltonian grows as the
weight of the target term increases because these terms would
appear at higher orders in the expansion. This is one of the
reasons that we apply it to the four-qubit Bacon-Shor code,
where the stabilizers are weight-four and their values can be
obtained by measuring the two-local gauge operators. In this
case, the target Hamiltonian can appear in the second order
expansion, which is the minimum. The question of how the
construction scheme applies to other quantum codes remains
open, but it should certainly apply to the 9-qubit and larger
Bacon-Shor codes.

Two methods are provided for retrieving the measurement
outcomes. The estimator approach is computationally hard
and difficult to carry out in real time but may be beneficial
to theoretical analysis. By contrast, the signal time average is
noisier, but more efficient to perform in real time. It is shown
that errors with low rates can be detected and (in the non-
Markovian case) suppressed. This is in the regime where the
indirect detection is effective. For high-rate or high-strength
errors that change the system too rapidly, the detection scheme
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becomes inapplicable. However, if the type of errors can be
learned from the experiments, it may be possible to adjust the
setup for better performance.

Overall, we have presented a new method for measuring
high-weight operators using practical experimental resources.
This is a step towards practical quantum error-correction for
quantum computing.
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APPENDIX A: ITO RULE EXPANSION

Recall from Eqs. (1)–(3) in the paper, we have

A(dI ) = e−iHdt−λ( dI
dt −Zm )2

dt

= e−λ( dI
dt )2dt−λdt e−iHdt+2λdIZm

= e−λ( dI
dt )2dt−λdt

[
I − iHdt + 2λ〈Zm〉Zmdt

+
√

λZmdW + 1
2λdt + O(dtdW )

]
, (A1)

where e−λ( dI
dt )2dt−λdt is a constant and will be canceled out

after we normalize the state. We use Ito’s rule, i.e., dW 2 = dt ,
and keep terms up to O(dt ) and drop terms of O(dtdW ) and
higher. We then have

A(dI )ρA†(dI ) = e−2λ[( dI
dt )2+1]dt {ρ − i[H, ρ]dt + λρdt + λZmρZmdt + 2λ〈Zm〉(Zmρ + ρZm)dt +

√
λ(Zmρ + ρZm)dW }

(A2)

and

Tr[A(dI )ρA†(dI )] = e−2λ[( dI
dt )2+1]dt [1 + 4λ〈Zm〉2dt + 2λdt + 2

√
λ〈Zm〉dW + O(dtdW )]

⇒ 1

Tr[A(dI )ρA†(dI )]
= e2λ[( dI

dt )2+1]dt [1 − 2λdt −�����4λ〈Zm〉2dt − 2
√

λ〈Zm〉dW +�����4λ〈Zm〉2dt + O(dtdW )]. (A3)

Combining together these terms, we get

dρ = A(dI )ρA†(dI )

Tr[A(dI )ρA†(dI )]
− ρ

= −i[H, ρ]dt + λ(ZmρZm − ρ)dt +
√

λ(Zmρ + ρZm − 2〈Zm〉ρ)dW + O(dtdW ), (A4)

which is Eq. (4) in the paper. Equation (5) is derived by multiplying both sides of Eq. (4) by the operator O and taking the trace.
Since [H,O] = [H, Zm] = 0, Eq. (5) can be derived as

d〈O〉 = Tr[Odρ]

= −i�������0
Tr[O[H, ρ]]dt + λ

����������0
Tr[OZmρZm − Oρ]dt +

√
λTr[OZmρ + OρZm − 2〈Zm〉Oρ]dW

= 2
√

λ(〈ZmO〉 − 〈Zm〉〈O〉)dW. (A5)

APPENDIX B: BAYES RULE RELATION

The approximation in Eq. (12) is pure expansion based on the fact that dt is infinitesimal. To the first order of dt , the H term
does not appear. The overall factor N is irrelevant to the ratio between p± in our argument and we do not need to expand it. Let
dI = f dt + dW/(2

√
λ). We have

p±(t + dt ) = 1

N
{

p±(t )Tr
[
ρ±(t )e−2λ( dI

dt −Zm )2dt
] + O(dt2)

}
= 1

N
{

p±(t )Tr
[
ρ±(t )e−2λ( f −Zm+ dW

2
√

λdt
)2dt] + O(dt2)

}
= 1

N
{

p±(t )Tr
[
ρ±(t )e−2λ( f −Zm )2dt−2

√
λ( f −Zm )dW e−2λ( dW

2
√

λdt
)2dt] + O(dt2)

}
= 1

N
{

p±(t )Tr
{
ρ±(t )[I − 2λ( f − Zm)2dt − 2

√
λ( f − Zm)dW + 2λ( f − Zm)2dt]e−2λ( dW

2
√

λdt
)2dt} + O(dt2)

}
= 1

N
{

p±(t )[1 − 2
√

λ( f − 〈Zm〉±)dW ]e−2λ( dW
2
√

λdt
)2dt + O(dt2)

}
, (B1)
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where dW 2 = dt is used. Replacing Zm by 〈Zm〉± and going backwards through the above equalities, we get

p±(t + dt ) = 1

N
{

p±(t )e−2λ( f −〈Zm〉±+ dW
2
√

λdt )2
dt + O(dt2)

}
= 1

N
{

p±(t )e−2λ( dI
dt −〈Zm〉±)2

dt + O(dt2)
}
, (B2)

which shows the Eq. (12).
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