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Influence of a planar metal nanoparticle assembly on the optical response of a quantum emitter
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We develop an analytical framework to study the influence of a weakly intercoupled in-plane spherical metal
nanoparticle (MNP) assembly on a coherently illuminated quantum emitter (QE). We reduce the analytical
expressions derived for the aforementioned generic planar setup into simple and concise expressions representing
a QE mediated by a symmetric MNP constellation, by exploiting the symmetry. We use the recently introduced
generalized nonlocal optical response (GNOR) theory that has successfully explained plasmonic experiments to
model the MNPs in our system. Due to the use of GNOR theory, and our analytical approach, the procedure we
suggest is extremely computationally efficient. Using the derived model, we analyze the absorption rate, resultant
Rabi frequency, effective excitonic energy shift, and dephasing rate shift spectra of an exciton bearing QE at the
center of a symmetric MNP setup. We observe that the QE experiences plasmon-induced absorption rate spectral
linewidth variations that increase in magnitude with decreasing MNP-QE center separation and increasing
number of MNPs. Our results also suggest that parameter regions where the QE exhibits trends of decreasing
linewidth against decreasing MNP-QE center separation are likely to be associated with plasmon-induced
excitonic energy redshifts. Similarly, regions where the QE absorption rate linewidth tends to increase against
decreasing MNP-QE center separation are likely to be accompanied by plasmon-induced excitonic energy
blueshifts. In both these cases, the magnitude of the observed redshift and blueshift was seen to increase with
the number of MNPs in the constellation, due to enhancement of the plasmonic influence. We show that even
when the magnitude of the QE absorption rate spectrum is much smaller compared to the isolated (collective)
MNP spectra, it is sufficient to dramatically modify the spectrum of the MNP-QE nanohybrid, causing sharp
Fano-type interference patterns.
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I. INTRODUCTION

Metamaterials formed by combining different types of
nanoparticles are gaining increasing research attention due
to their unprecedented capabilities to manipulate light at the
nanoscale [1,2]. Plasmonic metal nanoparticles (MNPs) [3]
and quantum emitters (QEs) [4] are two categories of widely
studied nanoparticles whose fascinating optoelectronic prop-
erties are often expected to synergize when combined [5–8].
Due to the tunability of the optical properties using their
size and structure, MNPs and QEs possess a wide array of
applications in a variety of fields such as biosensing [9,10],
photothermal cancer therapy [11,12], optoelectronic nanode-
vices [13–18], and photovoltaics [19,20]. When a QE is kept
in nanoscale proximity to a small MNP, a dipole-dipole cou-
pling occurs between the two nanoparticles forming a highly
tunable hybrid nanosystem exhibiting interesting optical sig-
natures [1,2,21]. It has been shown theoretically, as well as
experimentally, that hybrid superstructures where one or more
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MNPs are attached to QEs have the potential to be utilized as
versatile sensors and actuators which can surpass the capabil-
ities of the individual constituents [11,22]. Therefore, hybrid
molecules made of MNPs and QEs have captured the atten-
tion of both theorists and experimentalists. Moreover, various
techniques to successfully fabricate MNP-QE nanohybrids
that can be probed at the single-molecule level have already
been demonstrated in the literature [23–25]. In this context,
attempts to enhance our understanding of systems comprising
multiple MNPs and QEs are of vital importance [26,27].

MNPs much smaller than the wavelength of the incident
light (λ) exhibit strong dipolar resonant excitations known as
localized surface plasmon resonances (LSPRs) [28,29]. These
resonances enable MNPs to act as nanoscale optical cavities
that are able to focus electromagnetic energy to spots much
smaller than λ, overcoming the half-wavelength size limita-
tion of the conventional optical cavities [30,31]. LSPRs are
nonpropagating modes of excitation of the conduction band
electrons which arise naturally from the scattering problem
of a subwavelength MNP in an oscillating electromagnetic
field. An effective restoring force is exerted on the driven
electrons by the curved surface of the particle, which leads
to an amplification of the field, both inside the particle, and
on the near field of the outside. The resonant condition of
this phenomenon is termed a localized surface plasmon reso-
nance [3]. In frequency regions close to their plasmonic peaks,
MNPs can be used to tailor the optical response of nearly
resonant QEs [11,32,33].
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It is evident that the optical response of each participating
MNP plays a pivotal role in determining the behavior of the
MNP-QE hybrid nanostructures. The most widely adopted
analytical approach in the literature to model the optical
response of plasmonic nanoparticles such as MNPs is the
use of classical local response approximation (LRA) [22,33–
35]. However, this approach overlooks the nonlocal effects
[34,36] that become prominent in small MNPs, where the
ratio of the number of surface atoms to those that make
up the bulk of the particle is significant [2]. Thus, LRA
has been challenged on a number of accounts, for example,
its prediction that the surface plasmon resonance energy in
the quasistatic limit is independent of the MNP size, which
conflicts with the experimentally observed results [34,37–
40]. Such nonclassical effects could be captured using ab
initio approaches such as density-functional theory (DFT)
[41,42]. However, such approaches are extremely computa-
tionally demanding, especially for nanohybrids formed by
coupling several particles together. A simpler and computa-
tionally less demanding approach would be to surpass the
LRA using nonlocal response theories such as the nonlocal
hydrodynamic model or the generalized nonlocal optical re-
sponse (GNOR) theory [34]. The GNOR theory is a recent
generalization and an extension of the nonlocal hydrodynamic
model, which goes beyond the latter by taking both convection
current and electron diffusion phenomena in the MNPs into
account [34,38]. It has been shown to better capture both
size-dependent resonance shifts and linewidth broadening of
the MNP extinction cross section that occurs with decreasing
particle size. It has been shown that GNOR based absorption
spectra of bare Ag nanoparticles closely align with the respec-
tive experimental electron energy-loss spectroscopy (EELS)
observations compared to theoretical predictions obtained us-
ing tools such as discrete dipole approximation (DDA) and
coordinate-dependent discrete interaction model (cd-DIM)
which is an atomistic variant of DDA [43]. GNOR also
successfully approximates experimentally measured spectra
for both monomers and dimers (with nanometer-sized gaps)
which previously seemed to require microscopic theory and
invocation of the quantum mechanical effects of tunneling
[34,36].

In this paper, we develop a comprehensive analytical
framework to study the interaction of a coherently illuminated
two-level quantum emitter with a nonlocally modeled in-plane
assembly of spherical MNPs. We utilize the GNOR theory
[34,36] to model the MNPs in our assembly. The resulting
procedure is extremely computationally efficient.

This paper is organized as follows: In Sec. II A, we first
outline the theoretical foundations of modeling MNP dipoles
using the GNOR theory, followed by Secs. II B and II C,
where we analytically derive the complete forms of the
external-field-induced and QE-induced dipoles in the generic
planar MNP constellation. In Sec. II D, we derive the effective
external field experienced by the coherently illuminated QE,
under the influence of the in-plane MNP dipole assembly.
In Sec. II E, we reduce the equations derived in the earlier
sections to obtain simplified, elegant analytical equations for
a planar symmetric setup. Then, we model the QE as an open
quantum system in Sec. II F, and outline the procedure of
obtaining the steady-state solutions to the QE density matrix

FIG. 1. Schematic diagram of the system under study. The exci-
ton bearing quantum emitter undergoes dipole interactions with the
coherent external drive E (incident along the z axis) and the dipole
response fields of the metal nanoparticles placed around it, in the xy
plane.

in Sec. II G. Finally, in Sec. III, we use the derived model for
a detailed analysis of a QE under the influence of a weakly
intercoupled in-plane symmetric MNP setup.

II. FORMALISM

We consider N spherical MNPs of radius rn, placed
at center-to-center separations Rn from a QE, where n =
1, . . . , N . This setup, depicted in Fig. 1, is lying in the xy
plane. The exciton bearing quantum emitter (QE) is assumed
to have a relatively negligible radius, a relative permittivity
εs, and an excitonic energy h̄ω0. A perpendicularly incident
coherent electric field E = E0(e−iωt + eiωt )ẑ = E ẑ optically
couples the components of our hybrid nanosystem, where ω

is the angular frequency of the incoming radiation and ẑ is the
unit vector along the z axis. The system is submerged in a bath
of relative permittivity εb, and transient thermal effects [12,44]
are assumed to be negligible. We assume reasonably sufficient
MNP separations to neglect inter-MNP quantum mechanical
[45,46] and multipolar hybridization effects [26,47,48], under
perpendicular polarization conditions.

Note that throughout the formalism section we use bold
fonts, hat notation, tilde notation, plus sign superscript, and
bold hat notation to refer to vectors, quantum mechani-
cal operators, slowly varying amplitudes, positive-frequency
components, and unit vectors, respectively.

A. Nonlocal model for plasmonic dipoles

For our planar MNP constellation, we consider small
metallic spheres, each with radius rn � λ (wavelength of
incoming radiation). For such MNPs the ideal dipole rep-
resentation is valid in the quasistatic regime, which allows
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for time-varying fields but neglects the effects of spatial re-
tardation over the particle volume [3]. The system of metal
nanoparticles is described by the coupled dipole approxima-
tion under the quasistatic limit, where one MNP’s influence on
the other can be simplified to that of a point dipole at the origin
of the former MNP [26]. The dielectric permittivity of each
MNP is obtained using the Drude-type dielectric function [34]

εm(ω) = εcore(ω) − ω2
p

ω(ω + iγ )
, (1)

where ωp is the bulk plasmon frequency, γ is the relaxation
constant of the bulk material, and εcore(ω) is the response of
the bound electrons.

Under plane-wave illumination with a positive-frequency
component of the form E+

in = Ẽ
+
ine−iωt , an oscillating dipole

moment dn with a positive-frequency component of the form
[3]

d+
n = (4πε0εb)r3

nβnẼ
+
ine−iωt (2)

is induced in the nth MNP, where ε0 is the permittivity of free
space and βn is the Clausius Mossotti factor of the nth MNP
in a bath of relative permittivity εb. The dipole moment dn,
the response field Eres

n of which closely resembles that of a
point dipole, can be retrieved as a combination of the positive-
and negative-frequency components as dn = d+

n + d−
n , where

d−
n = (d+

n )∗ [3].
The dipole response field Eres

n emanated by the point dipole
dn on the center of another MNP with radius rj, situated at a
radial distance Rnj, can be obtained as [49]

Eres
n = 1

(4πε0εb)R3
nj

[3(dn · ŝ)ŝ − dn], (3)

where ŝ is the radial unit vector along the direction of the jth
MNP from the center of the nth MNP. When dn is perpendic-
ular (parallel) to the axis joining centers of the two MNPs, the
above expression simplifies to

Eres
n = sαdn

(4πε0εb)R3
nj

, (4)

where the orientation parameter sα = −1 (2) for perpendicu-
lar (parallel) polarization.

The external-field feedback dipole induced in the jth MNP
due to the above dipole response field Eres

n of the nth MNP can
be obtained by using the positive-frequency component of (4)
in (2) as

d+
j_n =

(
r3

j βjsα

)
d+

n

R3
nj

. (5)

In this study, we use the generalized nonlocal optical
response (GNOR) theory [34,36] to model the Clausius
Mossotti factor of an MNP with radius rn as

βn = εm(ω) − εb(1 + δNL)

εm(ω) + 2εb(1 + δNL)
, (6)

where the nonlocal correction δNL is given by

δNL = εm(ω) − εcore(ω)

εcore(ω)

j1(KLrn)

KLrn j′1(KLrn)
. (7)

In the above equation, j1 denotes the spherical Bessel function
of the first kind of angular momentum order 1, j′1 denotes
its first-order differential with respect to the argument, and
the longitudinal wave vector abides by the relationship K2

L =
εm(ω)/ξ 2(ω). The bound electron response of the MNP is
obtained as εcore = εexpt(ω) + ω2

p/[ω(ω + iγ )] whereas the
nonlocal parameter of the GNOR model is characterized by

ξ 2(ω) = εcore(ω)[κ2 + D(γ − iω)]

ω(ω + iγ )
, (8)

where D is the electron diffusion constant and κ2 =
(3/5)v2

F for ω � γ (in the high-frequency limit) where
vF is the Fermi velocity of the MNP. It is evident that
the Clausius Mossotti factor in the conventional local re-
sponse approximation (LRA), given by the equation βLRA =
[εm(ω) − εb]/[εm(ω) + 2εb] [3], can be obtained by setting
δNL → 0 in (6).

B. External-field-induced plasmonic dipoles

We now proceed to compute the effective external field
experienced by the QE exciton in the presence of the MNP
constellation. Under perpendicular illumination of the exter-
nal field, all induced electric fields and dipole moment vectors
lie parallel to the z axis in the xy plane. Thus, we will only be
concerned with their values in the direction of ẑ.

Let us first consider the dipole moment component dn

directly induced in the nth MNP in the assembly, due to the
perpendicularly incident external field. This can be obtained
using (2) as

dn = (4πε0εb)r3
nβnE0e−iωt + c.c., for n = 1, 2, . . . , N (9)

where c.c. denotes the complex conjugate of the preceding
expression. As the total dipole moment induced in the nth
MNP by the external field also comprises feedback via the
surrounding MNPs, let us name (9) as its 0th level (or direct)
external-field feedback dipole.

Using Eqs. (5) and (9) as outlined in Appendix A, we
can find the positive-frequency component of the pth level
external-field feedback dipole formed in the nth MNP due to
the collective (p − 1)th level external-field feedback dipoles
in the surrounding MNPs. It takes the following form:

d+
n_� f(p−1)...� f1_� f0

= d+
n sp

α

N∑
fp−1 = 1
fp−1 �= n

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r3
fp−1

β fp−1

R3
n fp−1

N∑
fp−2 = 1

fp−2 �= fp−1

⎡
⎢⎢⎢⎣

r3
fp−2

β fp−2

R3
fp−1 fp−2

. . .

N∑
f1 = 1
f1 �= f2

⎛
⎜⎜⎜⎝

r3
f1
β f1

R3
f2 f1

N∑
f0 = 1
f0 �= f1

(
r3

f0
β f0

R3
f1 f0

)
⎞
⎟⎟⎟⎠ . . .

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (10)
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The nontruncated form of the total dipole moment induced
in the nth MNP due to the external field and its feedback via
surrounding MNPs, dE

n_tot, can be obtained as

dE
n_tot = d+

n (1 + Fn_E ) + c.c., (11)

where

Fn_E =
∑∞

p=1 d+
n_� f(p−1)...� f1_� f0

d+
n

. (12)

For the convergence of dipole feedback in this model, the pth
level feedback dipole component arising due to the external
field should possess a smaller absolute value than the respec-
tive (p − 1)th level component. That is,∣∣d+

n_� f(p−1)...� f1_� f0

∣∣ <
∣∣d+

n_� f(p−2)...� f1_� f0

∣∣, ∀ p. (13)

C. Quantum-emitter-induced plasmonic dipoles

Due to exciton formation in the QE, a transition dipole
moment dQE = μ(ρge + ρeg) is assumed to be induced at
its center, where μ is the off-diagonal transition dipole ma-
trix element (assumed real), ρge = ρ̃geeiωt and ρeg = ρ̃ege−iωt

denote the off-diagonal density matrix elements of the QE
[2,50]. The positive-frequency component of the dipole
moment directly induced in the nth MNP due to dQE can be

obtained with the aid of (5) as

dQE+
n =

(
sαr3

nβn
)
μρ̃ege−iωt

εeffSR3
n

, (14)

where εeffS = (2εb + εs)/(3εb) accounts for the screening of
the emanating field due to the QE dielectric [1,2,32]. Equation
(14) denotes the 0th level feedback dipole formed in the nth
MNP due to the QE.

The positive-frequency component of the first-level QE
feedback dipole formed in the nth MNP due to the collective
0th level QE feedback dipoles in the surrounding MNPs (in-
dexed using f0 where f0 �= n) can be obtained using (14) and
(5) as

dQE+
n_� f0

=
(
s2
αr3

nβn
)
μρ̃ege−iωt

εeffS

N∑
f0 = 1
f0 �= n

(
r3

f0
β f0

R3
n f0

R3
f0

)
. (15)

By repeating this procedure as outlined in the earlier section,
we can obtain the qth level QE feedback dipole formed in
the nth MNP due to the collective (q − 1)th level feedback
dipoles in the surrounding MNPs (indexed using the subscript
fq−1 where fq−1 �= n) as

dQE+
n_� f(q−1)...� f1_� f0

= R3
ndQE+

n sq
α

N∑
fq−1 = 1
fq−1 �= n

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r3
fq−1

β fq−1

R3
n fq−1

N∑
fq−2 = 1

fq−2 �= fq−1

⎡
⎢⎢⎢⎣

r3
fq−2

β fq−2

R3
fq−1 fq−2

. . .

N∑
f1 = 1
f1 �= f2

⎛
⎜⎜⎜⎝

r3
f1
β f1

R3
f2 f1

N∑
f0 = 1
f0 �= f1

( r3
f0
β f0

R3
f1 f0

R3
f0

)
⎞
⎟⎟⎟⎠ . . .

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (16)

Similar to the external-field-induced case, the nontruncated
form of the total dipole moment induced in the nth MNP due
to the QE and its feedback via the surrounding MNPs (dQE

n_tot)
can be obtained as

dQE
n_tot = dQE+

n (1 + Fn_QE) + c.c., (17)

where

Fn_QE =
∑∞

q=1 dQE+
n_� f(q−1)...� f1_� f0

dQE+
n

, (18)

and the QE feedback convergence requires∣∣dQE+
n_� f(q−1)...� f1_� f0

∣∣ <
∣∣dQE+

n_� f(q−2)...� f1_� f0

∣∣, ∀ q. (19)

D. Effective field experienced by the QE exciton

The total dipole moment dn_tot induced in the nth MNP
in our constellation can be found, while accounting for the
infinite series of feedback via the other MNPs, as

dn_tot = dE
n_tot + dQE

n_tot. (20)

We can then calculate the total electric field incident on the
QE exciton, accounting for both the external field E and the
collective MNP dipole response fields using (20) and (3) as

EQE ≈ 1

εeffS

(
E +

N∑
n=1

sαdn_tot

(4πε0εb)R3
n

)
. (21)

The resultant Rabi frequency (�r) experienced by the QE
exciton is obtainable using the above equation, where EQE =
Ẽ+

QEe−iωt + c.c. as

�r = μẼ+
QE

/
h̄ = � + ηρ̃eg. (22)

We can obtain the Rabi frequency in the absence of quantum
coherences (�) and the QE self-interaction coefficient (η)
using (20), (21), and (22) as

� = �0

{
1 +

N∑
n=1

[
sαr3

nβn(1 + Fn_E )

R3
n

]}
, (23)

η = s2
αμ2

(4πε0εb)h̄ε2
effS

N∑
n=1

[
r3

nβn(1 + Fn_QE)

R6
n

]
, (24)

where the Rabi frequency experienced by the isolated exciton
in the external field E (when N = 0 or R → ∞) is denoted
by �0 = μE0/(h̄εeffS) [32]. Notice that the normalized Rabi
frequency for the case of single MNP-QE nanohybrid [2,32]
can be retrieved from the above equations by setting N = 1,
where Fn_E = Fn_QE = 0.

E. Symmetric constellation

In the earlier section, we derived the resultant Rabi fre-
quency experienced by a quantum emitter surrounded by a
generic planar MNP constellation which was not necessarily
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symmetric. Let us now reduce the derived equations for a
symmetric setup where the QE lies at the center of a circular
constellation of N identical, equidistant MNPs.

Consider a symmetric version of the setup presented in
Fig. 1 where ∀ n ∈ {1, 2, . . . , N}, radius rn = r, polarizability
βn = β, MNP-QE center separation Rn = R, and the summa-
tion of the cube of distances (center separations) from the nth
MNP to all other MNPs (indexed in the summation as j where
j �= n) is commonly given by

ζ =
N∑

j = 1
j �= n

(
1

R3
nj

)
, (25)

which will be constant for a given setup due to the circular
symmetry. For N = 1, ζ = 0.

Notice that for such symmetric setups, the positive-
frequency components of the pth level feedback dipole formed
in the nth MNP due to the external field, given by Eq. (10), and
the qth level feedback dipole formed due to the QE, given by
Eq. (16), simplify to their symmetric versions[

d+
n_� f(p−1)...� f1_� f0

]
sym

= d+
n (sαr3βζ )p, (26a)[

dQE+
n_� f(q−1)...� f1_� f0

]
sym

= dQE+
n (sαr3βζ )q. (26b)

Thus, Fn_E and Fn_QE reduce to their symmetric versions

[Fn_E ]sym =
∞∑

p=1

(sαr3βζ )p, (27a)

[Fn_QE]sym =
∞∑

q=1

(sαr3βζ )q. (27b)

As they both represent infinite complex geometric series,
the summations can be simplified to

[Fn_E ]sym = [Fn_QE]sym = sαr3βζ

1 − sαr3βζ
, (28)

with the convergence condition

|sαr3βζ | < 1, (29)

which determines the usability of this model.
Using (20) and (28), the positive-frequency component of

the total dipole moment experienced by the nth MNP in a
symmetric setup can be obtained as

[d+
n_tot]sym = d+

n + dQE+
n

1 − sαr3βζ
. (30)

By substituting [d+
n_tot]sym in place of d+

n_tot in Eq. (21), and by
setting Rn = R, we can extract the slowly varying amplitude
of the total electric field experienced by a QE exciton situated
at the center of our symmetric MNP ring as

[Ẽ+
QE]sym = h̄

μ
[�r]sym = h̄

μ
([�]sym + [η]symρ̃eg), (31)

where

[�]sym = �0

{
1 + Nsαr3β

R3

(
1

1 − sαr3βζ

)}
, (32a)

[η]sym = Ns2
αr3μ2β

(4πε0εb)R6h̄ε2
effS

(
1

1 − sαr3βζ

)
. (32b)

F. Open quantum system

We treat the excitonic system at the center of the QE
quantum mechanically as a two-level atom, using the den-
sity matrix formalism [51]. The Hamiltonian of the two-level
atomic system under the influence of the MNP assembly
and the externally applied electric field can be obtained as
[32,35,52]

Ĥ = h̄ω0σ̂
+σ̂− − μEQE(σ̂+ + σ̂−), (33)

where σ̂− = |g〉〈e|, σ̂+ = |e〉〈g|, |g〉 = (1, 0)T, and |e〉 =
(0, 1)T denote the exciton annihilation and creation operators,
and the atomic ground and excited states, respectively. The
above Hamiltonian, when taken in isolation describes a closed
quantum system where the impact of the environment is not
yet taken into consideration. It couples with the environment
to form an open quantum system exhibiting irreversible dy-
namics that can be accounted for using Lindblad terms in
the master equation of the QE density matrix ρ̂ as follows
[2,30,32]:

˙̂ρ = i

h̄
[ρ̂, Ĥ] + λ1Lσ̂− + λ2Lσ̂+ + λ3Lσ̂+σ̂− . (34)

The three Lindblad terms λ1Lσ̂− , λ2Lσ̂+ , and λ3Lσ̂+σ̂− rep-
resent bath-induced decay of the two-level atomic system
from the excited to ground state, bath-induced excitation vice
versa, and elastic scattering processes between the bath and
the quantum system, respectively. Their expansion takes the
form

LÂ = 2Âρ̂Â† − Â†Âρ̂ − ρ̂Â†Â. (35)

For optical frequencies, even near room temperature, λ2 ≈
0 [2]. Let,

T1 = 1/(2λ1), (36a)

T2 = 1/(λ1 + λ3), (36b)

where T1 is the energy or population relaxation time of the QE
which leads to a mixing between (populations or the diagonal
density matrix elements) ρgg and ρee [2]. T2 is the polar-
ization relaxation or dephasing time which causes losses in
the off-diagonal density matrix elements [21,53]. With these
definitions, the matrix form of the master equation (34) in the
basis space {|g〉, |e〉} reads as [2,32]

˙̂ρ = i

h̄

[ −μEQE(ρge − ρeg) −μEQE(ρgg − ρee ) + h̄ω0ρge

−μEQE(ρee − ρgg) − h̄ω0ρeg −μEQE(ρeg − ρge)

]
−
[(ρgg − 1)/T1 ρge/T2

ρeg/T2 ρee/T1

]
. (37)
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By solving this, we can analyze the behavior of the two-level
excitonic system under the influence of the MNP assembly
and the external illumination.

G. Steady-state analysis

In this section, we summarize the approach outlined in [32]
to obtain the steady-state solution of the QE master equation
for completeness. Using elementwise comparison of the left-
and right-hand sides of (37) and the definition of effective
Rabi frequency �r = μẼ+

QE/h̄, we can arrive at the following
Bloch equations for the two-level excitonic system:

ρ̇ee = −ρee

T1
+ i�r ρ̃ge − i�r∗ρ̃eg, (38a)

ρ̇gg = ρee

T1
− i�r ρ̃ge + i�r∗ρ̃eg, (38b)

˙̃ρeg = −[i(ω0 − ω) + 1/T2]ρ̃eg + i�r�, (38c)

where � = ρgg − ρee denotes the population difference.
Defining the real-imaginary separations ρ̃ge = A + iB, ρ̃eg =
A − iB, � = �re + i�im, and η = ηre + iηim, we can recast
(38) to the following form [2,32]:

Ȧ = −A
T2

+ δB − (�im + ηimA − ηreB)�, (39a)

Ḃ = − B
T2

− δA − (�re + ηreA + ηimB)�, (39b)

�̇ = 1 − �

T1
+ 4[�imA + �reB + ηim(A2 + B2)], (39c)

where the detuning is denoted by δ = ω − ω0. In the steady
state where Ȧ = Ḃ = 0, we can manipulate (39a) and (39b)
to obtain [32]

A = −Re

(
��

δ + η� + i/T2

)
, (40a)

B = Im

(
��

δ + η� + i/T2

)
. (40b)

By substituting (40) in (39c) and setting �̇ = 0, we can obtain
the following steady-state equation for the QE population
difference �:

�3 + w̄2�
2 + w̄1� + w̄0 = 0, (41)

where

w̄2 = 2T 2
2 δηre + 2T2ηim − T 2

2

(
η2

re + η2
im

)
T 2

2

(
η2

re + η2
im

) , (42a)

w̄1 = T2(4T1|�|2 − 2ηim) + T 2
2 (δ2 − 2δηre) + 1

T 2
2

(
η2

re + η2
im

) , (42b)

w̄0 = −T 2
2 δ2 − 1

T 2
2

(
η2

re + η2
im

) . (42c)

By solving (41) for −1 � � � 1 we can obtain the QE
population difference, substitution of which in (40) yields A
and B, and hence the off-diagonal density matrix elements ρeg

and ρge.
Let us now look at how the obtained solutions for the den-

sity matrix elements can be used to analyze the steady-state

behavior of the excitonic system. First, the energy absorption
rate of the QE can be computed as [2]

QQE = h̄ω0ρee/T1 = h̄ω0(1 − �)/(2T1). (43)

Second, we recast the QE Bloch equation (38c) in the follow-
ing form:

˙̃ρeg = −[i(� − ω) + �]ρ̃eg + i��, (44)

where

� = ω0 − ηre�, (45a)

� = 1/T2 + ηim� (45b)

denote the effective energy and dephasing rate of the QE
excitonic transition under the influence of the neighboring
MNP assembly [33]. Let us call the two factors � f = ηre�

and � f = ηim� as the exciton transition energy (red)shift and
the dephasing rate (blue)shift, respectively [32].

We conclude the formalism section recalling that all the
above equations can be converted to their LRA based forms
by setting δNL → 0 as mentioned in Sec. II A. Moreover, the
time-averaged energy absorption rate of the nth MNP in the
symmetric setup can be estimated as (see Appendix B for a
detailed derivation)

Qn =
{

(4πε0εb)r3(iω)β∗
LRA

εeffM

∣∣∣∣(E0 + sαμρ̃ge

(4πε0εb)εeffSR3

)

× 1

(1 − sαr3β∗
LRAζ )

∣∣∣∣
2}

+ c.c., (46)

where εeffM = (2εb + εm)/(3εb) and the total-energy absorp-
tion rate of the entire symmetric MNP-QE constellation can
thus be obtained as

Qtot ≈ NQn + QQE. (47)

III. RESULTS AND DISCUSSION

In this section, we study the behavior of coherently illu-
minated QEs under the influence of planar, symmetric MNP
assemblies using the presented analytical equations. We fo-
cus our attention on small MNPs where nonlocal effects
are prominent and comparatively large inter-MNP distances
within the quasistatic limit where hybridization of the dipole
mode of one MNP with higher-order multipoles of a neigh-
boring pair (resulting in additional higher-order terms to the
plasmon coupling [54]) can be safely neglected.

The common parameters used for the presented analysis
are as follows: electric field strength of the external illumi-
nation E0 = 1 × 105 V m−1, orientation parameter sα = −1
(perpendicular illumination), polarization relaxation (dephas-
ing) time of the isolated QE T2 = 0.3 ns, energy or population
relaxation time of the isolated QE T1 = 0.8 ns [2], dielectric
constant of the QD material εs = 6 and QE dipole mo-
ment μ = 2 e nm [2]. Our analysis uses an assembly of gold
MNPs, each with radius r = 3 nm, bulk plasma frequency
h̄ωp = 9.02 eV, bulk damping rate h̄γ = 0.071 eV, Fermi ve-
locity v f = 1.39 × 106 m s−1, and diffusion constant D ≈
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8.62 × 10−4 m2 s−1 [34]. The experimentally measured bulk
dielectric data εexpt for gold are obtained using the tabulations
by Johnson and Christy [55].

In our analysis, we vary the number of MNPs N in our
planar-symmetric constellation from 1 to 6 to obtain the pre-
sented graphical results, while utilizing the symmetry of the
hybrid nanosystem to calculate the inter-MNP distances (Rnk),
in terms of the center separation between each MNP and QE
(R). We list these distances below, in the notations used in our
analytical equations, for the convenience of the readers:

For all n, k, Rnn = 0 and Rnk = Rkn,

N = 2 ⇒ R12 = 2R,

N = 3 ⇒ R12 = R13 = R23 =
√

3R,

N = 4 ⇒ R12 = R14 = R23 = R34 =
√

2R,

R13 = R24 = 2R,

N = 5 ⇒ R12 = R23 = R34 = R45 = R15 = 2R sin
π

5
,

R13 = R14 = R24 = R25 = R35 = 2R12 sin
3π

10
,

N = 6 ⇒ R12 = R23 = R34 = R45 = R56 = R16 = R,

R13 = R24 = R35 = R46 = R15 = R26 =
√

3R,

R14 = R25 = R36 = 2R.

Thus, it is evident that we can obtain the inter-MNP dis-
tances for one side of a symmetric setup as 2R sin (kπ/N )
where k = 1, 2, . . . , �N/2� up to and beyond N = 6. If one
intends to use N > 6, it is worth noticing that the cen-
ter separation between adjacent MNPs will be less than
R for a symmetric setup. The distances for such assem-
blies should be cautiously chosen when using this model
to stay within the quasistatic limit while maintaining weak
inter-MNP coupling. A surface-separation/diameter ratio at
least �1 between adjacent gold MNPs is consistent with
weak near-field plasmon coupling [48] where our model is
applicable.

Throughout this section, we use the GNOR model to
characterize the optical polarizability β of the gold nanopar-
ticles, except where we explicitly mention the use of the
LRA model for comparison purposes. In Fig. 2, we have
illustrated the variation of GNOR based |β| for three dif-
ferent (relative) permittivity values of submerging media,
εb = 1.78, 3.3, and 5.45. It is useful to notice that the
plasmonic peak amplifies and redshifts with increasing sub-
merging medium permittivity. We have also depicted the
variation of |β| as predicted by the conventional LRA model
for εb = 3.3, which is seen to possess a larger, redshifted peak
compared to its nonlocal counterpart, as is also suggested by
literature [34].

A. Narrow-band analysis

Let us first analyze the optical response of a QE placed
at the center of an equispaced, planar MNP ring, when the
external coherent illumination sweeps a narrow frequency
band of 5 meV around the QE resonance. Figure 3 depicts

FIG. 2. Variation of the absolute polarizability (|β|) for a gold
nanoparticle of radius 3 nm as predicted by the nonlocal GNOR (NL)
model at submerging medium (relative) permittivities εb = 1.78, 3.3,
5.45, and by the local response approximation (LRA) model at εb =
3.3.

such sample plots we have obtained for QE absorption rate
QQE, population difference �, and the real (A) and imaginary
(B) parts of the slowly varying off-diagonal density matrix
element component (ρ̃ge = A + iB), for a system with bare
excitonic resonance energy h̄ω0 = 2 eV, submerging medium
permittivity εb = 5.45 and MNP-QE center separation R =
15 nm. Notice (using Fig. 2) that for these sample plots, the
bare excitonic resonance energy lies close to the plasmonic
resonance energy of a 3-nm radius MNP at εb = 5.45 (h̄ωsp ≈
2.09 eV).

Figure 3(b), which depicts the variation of the QE pop-
ulation difference � = ρgg − ρee shows that � → 1 as the
absolute detuning of the incident field frequency from the
QE resonance gets larger, for all values of N. Moreover,
� → 0 when the detuning → 0 (that is, when ω → ω0),
tracing a singly dipped spectral shape. As is also suggested
by (43), QE absorption rate depicted in Fig. 3(a) follows a
singly peaked spectral shape with its peak aligning with the
dip of � at resonance, and tending to zero as the detuning
increases. Also note from Figs. 3(c) and 3(d) that A and B
possess Fano-type line shapes around QE resonance which
tend to zero with increasing detuning, for all values of N
considered.

We examined a range of QQE, �, A, and B plots in a wide
parameter region where εb was varied from 1.78–5.45 and h̄ω0

was varied from 1.5–3 eV. In regions of reduced plasmonic
impact on the QE, resulting from parameters/parameter com-
binations such as high detunings of ω0 from the plasmonic
resonance (ωsp), low εb (resulting in diminishing plasmonic
peaks as depicted in Fig. 2), or large values of R, the am-
plitudes of both the Fano peak and trough of B was seen to
reduce, accompanied by distortions to the Fano shape with
higher trough amplitudes in comparison to the respective
peaks. In the entire parameter space examined, the singly
peaked, singly dipped, and Fano-type line shapes around QE
resonance observed for QQE, �, and A, respectively, were pre-
served (similar to the sample plots in Fig. 3). However, meV
scale linewidth variations were observable for QQE and �, as
shown in the inset in Fig. 3(a). We analyze these linewidth
variations in the next section.
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FIG. 3. Sample plots depicting the variation of (a) QE absorption rate QQE, (b) QE population difference �, (c) real and (d) imaginary
parts of the slowly time-varying off-diagonal density matrix element component ρ̃ge = A + iB (where ρge = ρ̃geeiωt ) under the influence of
N = 1, . . . , 6 MNPs, plotted against the energy h̄ω of the coherent external illumination in a narrow band of 5 meV around the QE resonance
h̄ω0. For these sample plots, the QE resonance h̄ω0 = 2 eV, submerging medium permittivity εb = 5.45 and the distance from QE to all MNPs,
R = 15 nm.

B. Analysis of linewidth variations

We analyzed, using both nonlocal GNOR (NL) and local
response approximation (LRA) based models, the variation of
the full width at half-maximum (FWHM) of QQE against the
bare excitonic resonance energy (h̄ω0) and MNP-QE center
separation (R) for a number of cases, where the submerging
medium permittivity εb was varied from 1.78–5.45. For all
cases within the aforementioned parameter range, the conver-
gence factor lay below 0.5, suggesting feedback convergence
and hence the safe usability of our model. Sample results
obtained in our analysis for εb = 3.3 (using both NL and
LRA formalisms) and εb = 5.45 (using NL formalism), are
presented in Fig. 4.

Observation of all surface plots depicted in Fig. 4 reveals
the existence of linewidth variation hot spots (in compari-
son to the respective far-field linewidths) near the regions
where the bare excitonic resonance lies close to the relevant
plasmonic resonance (ω0 ≈ ωsp). Moreover, it can be seen
that these linewidth variations amplify with decreasing R and
increasing N which clearly implies contribution of the plas-
monically induced fields. We also observe that for some cases
(for example, the nonlocally modeled εb = 3.3 case in Fig. 4)
the linewidth decreases with decreasing MNP-QE separation
(R) for all values of ω0 under study, whereas for other cases
(generally, with larger max |β| values), both increasing and
decreasing of linewidth against decreasing R were observable
in different regions of ω0. To analyze these variations fur-
ther and gain more insight into the plasmonic contributions,
we studied both horizontal and vertical cross sections of the
FWHM surface plots, a few samples of which are shown in
the fourth and fifth rows of Fig. 4.

As it is observable from the horizontal surface plot cross
sections in the the fourth row of Fig. 4, linewidth variation of
the QQE spectrum (in comparison to the respective far-field
value) increases with the number of MNPs N for a given
value of R and ω0. That is, irrespective of whether FWHM
shows an increasing or a decreasing trend against decreasing
R, curves with larger values of N show larger linewidth varia-
tions [observe how N = 6 curves are the outermost and N = 2
curves are the innermost in all three subplots (d), (i), and (n)
of Fig. 4]. This is a clear indication of the observed linewidth

variation phenomenon being driven by the resultant plasmonic
field experienced by the QE.

When we shifted our attention toward the vertical FWHM
surface plot cross sections (a few samples of which are de-
picted in the last row of Fig. 4), we observed a striking
resemblance between the shapes of FWHM vs h̄ω0 plots and
the respective � vs h̄ω plots. This observation was consistent
across the entire parameter range we studied. Compare the
shape of Fig. 4(e) against Fig. 5(b) and Fig. 4(o) against
Fig. 5(e) to observe this resemblance. It is evident that this
observation further validates our earlier claims of plasmonic
field influencing the QE absorption linewidth variations. Fur-
thermore, we observed that the increase or decrease of FWHM
with decreasing R (see the sample plots in the fourth row
of Fig. 4) was associated with the narrow Fano line shape
observed near ω ≈ ω0 in the respective Rabi frequency (�r)
spectra, throughout the parameter region studied. Let us ana-
lyze this association using the sample spectra of �r , �, and η

in Fig. 5.
The first row of Fig. 5 depicts the spectra for �r (when

h̄ω0 = 2 eV), � and η for the (nonlocally modeled) case
where εb = 3.3. We can readily observe that the absolute
values of both �r and � closely align with the respective
real-valued components, suggesting a minimal contribution
from the respective imaginary parts. Notice again how the
shape of Re{�} spectrum strikingly resembles the shape of
the FWHM vs h̄ω0 curve for εb = 3.3 in Fig. 4(e). Let us now
recall from our formalism section that �r = � + η(A − iB),
extraction of the real part of which yields Re{�r} = Re{�} +
Re{η}A + Im{η}B. As � is independent of QE contributions,
the narrow Fano-shaped signature of �r near ω ≈ ω0 forms
mainly due to the contributions from Re{η}A + Im{η}B when
|�r | ≈ Re{�r}, where A and B take the narrow Fano-type line
shapes around QE resonance we observed in Fig. 3.

If we vary h̄ω0 in Fig. 5(a) from 1.5–3 eV, the narrow
Fano-type line shape now observed around h̄ω ≈ 2 eV will
traverse from ≈1.5–3 eV without a reversal of shape. That is,
the Fano-type line shape we observed for A and B, where a
peak is followed by a trough, will be qualitatively retained in
Re{�r}’s Fano signature around QE resonance. However, as
h̄ω0 traverses from 1.5–3 eV, the amplitude variation of the
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FIG. 4. Variation of full width at half-maximum (FWHM) of the QE absorption rate (QQE) in the presence of N equispaced spherical
MNPs. Subplots (a), (b), and (c) of the first column depict the top view of the FWHM surface plots in the presence of N = 2, 4, and 6 MNPs,
respectively, plotted against the center separation of each MNP from the QE (R) and the bare excitonic resonance energy (h̄ω0), when the
system is submerged in a medium of permittivity εb = 3.3 and the polarizability of each MNP is modeled nonlocally (NL), using the GNOR
formalism. (d) Depicts the 2D view of the horizontal cross sections (denoted as black dotted lines at h̄ω0 = 2 and 2.3 eV) in the three preceding
FWHM surface plots, where solid lines of respective color represent the cross sections at h̄ω0 = 2 eV and the dotted-dashed lines represent
those at h̄ω = 2.3 eV, for N = 2, 4, and 6. Similarly, (e) depicts the vertical cross sections shown as dashed lines in the FWHM surface plots
(a), (b), and (c), where the solid lines represent the cross sections at R = 15 nm and the dotted-dashed lines represent those at R = 20 nm.
The second and third columns represent similar arrangements of plots for cases where εb = 3.3 with the MNP polarizability modeled using
the local response approximation (LRA), and for εb = 5.45 modeled using the nonlocal GNOR formalism, respectively. The legends shown in
(d) and (e) are common to all plots in the row.
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FIG. 5. (a) Effective or normalized Rabi frequency �r experienced by a quantum emitter with bare excitonic energy h̄ω0 = 2 eV under the
influence of N = 2, 4, and 6 equispaced MNPs, each located at a distance R = 15 nm from the QE, when the entire system is submerged in a
medium of relative permittivity εb = 3.3. (b) The corresponding Rabi frequency in the absence of coherences (�). (c) The coefficient of QE
self-interaction (η). The legend in the middle subplot is common to the entire row where the solid, dotted-dashed, and dotted lines correspond
to the relevant absolute, real, and imaginary quantities, respectively. The second row depicts an arrangement of plots similar to the earlier, for
the parameters εb = 5.45, h̄ω0 = 2.3 eV, and R = 15 nm. Insets in (a) and (d) are enlargements along the frequency axis around h̄ω0, for better
visibility of the spectral signatures.

Fano peak and trough will be governed by Re{η} and Im{η}
indicated in Fig. 5(c). When both Re{η} and Im{η} take large
positive values, the similarly shaped Fano patterns of A and B
will be linearly (additively) combined to give the enhanced
Fano pattern we observe for Re{�r} = Re{�} + Re{η}A +
Im{η}B around ω ≈ ω0 when h̄ω0 = 2 eV in Fig. 5(a). When
h̄ω0 → 1.5 eV or 3 eV (the two extreme points along the x
axis), the peak and trough amplitudes of Re{�r}’s narrow
Fano pattern will comparatively reduce due to the diminishing
but positive Re{η} and Im{η} values observed in Fig. 5(c)
at the two extreme ends along the x axis. Notice how the
Fano signature of Re{�r} enhances with increasing N due to
increased plasmonic impact, which is also explainable by the
aforementioned formula for Re{�r}. In essence, when both
Re{η} and Im{η} are positive, the Fano signature of Re{�r}
will not reverse in shape along the x axis, but its magnitude
will be governed by Re{η} and Im{η}.

If we now shift our attention to Fig. 5(d) which depicts
the variation of real and absolute spectra of �r at εb = 5.45
and h̄ω0 = 2.3 eV, we can observe a reversed and diminished
Fano signature around h̄ω0 in comparison to our earlier obser-
vation in Fig. 5(a). This variation too can be explained using
our earlier formula Re{�r} = Re{�} + Re{η}A + Im{η}B as
follows. Comparison of Fig. 5(d) against Fig. 5(f) reveals that
Re{η} is now negative near h̄ω0 = 2.3 eV. Such negation of
Re{η} is highly likely to reverse the Fano line shape resulting
from the Re{η}A + Im{η}B component of Re{�r} as A is
usually sufficiently larger in magnitude than B (for example,
see Fig. 3). The diminishing of Fano amplitude results from
the competition between the now differently signed A and B.

For all our observations in the wide parameter region
considered (for both LRA and GNOR based models), the
MNP-QE constellations exhibiting patterns of increasing
FWHM against decreasing R [for example, the dotted dashed
lines in Figs. 4(i) and 4(n)] could be mapped to regions of
negative Re{η}, and hence reversed Fano shapes of Re{�r}
near the respective excitonic resonance h̄ω0, as explained
above. On the contrary, the cases exhibiting patterns of de-
creasing FWHM against decreasing R [for example, all curves
in Fig. 4(d) and the solid lines in Figs. 4(i) and 4(n)] could be
mapped to regions of positive Re{η}, and hence nonreversed
Fano shapes of Re{�r} near h̄ω0.

C. Coupled-plasmon-induced excitonic energy and dephasing
rate shifts

Let us analyze the influence of the weakly intercoupled
plasmonic ring of equispaced spherical MNPs on the excitonic
energy and the dephasing rate of the QE at the center. In the
first and second rows of Fig. 6, we have shown the spectra of
QE exciton transition energy redshift (� f = Re{η}�) and QE
dephasing rate blueshift (� f = Im{η}�) due to the surround-
ing N = 1, . . . , 6 MNPs, for three sample cases where εb =
3.3, h̄ω0 = 2 eV (first column), εb = 5.45, h̄ω0 = 2 eV (sec-
ond column), and εb = 5.45, h̄ω0 = 2.3 eV (third column).
As is also suggested by their equations, � f and � f exactly
follow the variations of Re{η} and Im{η}, respectively, except
at the sharp narrow slits toward zero around QE resonance,
resulting from the spectrum of � (which goes to zero near
QE resonance and to 1 as the external field detunes from
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FIG. 6. (a) The exciton transition energy redshift (� f ) experienced by a quantum emitter with bare excitonic energy h̄ω0 = 2 eV
surrounded by N = 1, 2,...,6 MNPs, each located at a distance R = 15 nm and submerged in a medium of relative permittivity εb = 3.3.
(b) Exciton dephasing rate blueshift (� f ) experienced by the same QE. The second and third columns show similar constellations of plots for
εb = 5.45, h̄ω0 = 2 eV and εb = 5.45, h̄ω0 = 2.3 eV, respectively. The insets in (b), (c), and (e) are enlargements along the frequency axis
around h̄ω0, for better visibility of the spectral signatures.

the QE resonance, as we saw in Fig. 3). As Im{η} > 0 for
all three cases observed, the QE experiences dephasing rate
blueshifts in the entire range where h̄ω varies from 1.5 to 3 eV,
except when ω = ω0 where � f = 0, for all values of N . The
observed dephasing rate blueshift is seen to increase with N ,
throughout the spectral region studied.

It is evident that the QE experiences plasmon-induced
transition energy redshifts in the regions where Re{η} > 0
and blueshifts where Re{η} < 0 (except at ω = ω0). Thus, our
results suggest that, for QEs under the influence of weakly
intercoupled symmetric planar MNP systems, parameter
regions exhibiting trends of decreasing QQE linewidths
against decreasing MNP-QE center separations R are likely
to be associated with plasmon-induced excitonic energy
redshifts [for example, compare Fig. 4(d) with Fig. 6(a)],
as both these phenomena occur when Re{η} > 0. Similarly,
regions exhibiting trends of increasing QQE linewidths
against decreasing MNP-QE center separations R are likely
to be associated with plasmon-induced excitonic energy
blueshifts [compare the dotted-dashed lines in Fig. 4(n) with
Fig. 6(e)], as both these phenomena occur when Re{η} < 0.
Moreover, irrespective of the shift type (redshift/blueshift),
the magnitude of the plasmon-induced excitonic energy shift
tends to increase with N .

D. Collective absorption

Even though the main objective of this paper is to analyze
the influence of a planar metal nanoparticle assembly on the
optical response of a quantum emitter, we briefly discuss the
absorption properties of the entire system in this section.

Figure 7 depicts the estimated absorption rate spectra (Qtot)
for symmetric planar MNP-QE nanohybrids immersed in an
aqueous medium (εb = 1.78), separate MNP (NQn) and QE
(QQE) contributions to the aforementioned spectra, as well as
the collective MNP spectra (Qn_wc) in the absence of the QE
(or coherences). The juxtaposition of Qtot against NQn reveals
that the combined spectrum of the entire planar nanohybrid
is largely dominated by the MNP absorption component,
whereas the contribution of the QE is minute when considered
solely in the context of magnitude. However, a comparison be-
tween the collective MNP absorption spectra in the presence
and absence of the QE (or coherences) reveals that the large
Fano-type interference pattern in the MNP spectra (and hence
in the collective MNP-QE nanohybrid spectra) is entirely at-
tributable to the alteration of the resultant field caused by the
sharp QE response. This phenomenon of dramatic modifica-
tion of the nanohybrid spectrum by a small QE spectrum is
similarly observed for a single MNP-QE nanohybrid in the
context of scattering [28].

E. Practical considerations and potential applications

The quantum emitter considered here for the MNP-QE
constellation was a generic two-level system of negligible
radius embedded in a homogeneous effective medium (ma-
terial) with relative permittivity εs. In a real-world system,
the aforementioned emitter can be a small quantum dot or
a photoactive molecule. Optical properties of semiconductor
quantum dots are usually described using homogeneous ef-
fective medium approximation, which is applicable as long
as the optical wavelength in the structure is much larger

043092-11



HARINI HAPUARACHCHI AND JARED H. COLE PHYSICAL REVIEW RESEARCH 2, 043092 (2020)

2 2.5 3
0

1

2

3

4

5

6

7

8

2 2.5 3
0

1

2

3

4

5

6

7

8

2 2.5 3
0

1

2

3

4

5

6

7

8

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6

2.3 2.302

0.1

0.2

2.298

2

4

6

8

2.3052.295 2.3

ћω (eV) ћω (eV) ћω (eV)

(a) Qtot (nW) (b) N Qn (nW) (c) N Qn_wc (nW)

6.497 6.387

8

2.3

FIG. 7. (a) Estimated average absorption rate (Qtot) for a symmetric planar MNP-QE setup comprising N = 1, 2, . . . , 6 equidistant MNPs
immersed in an aqueous medium (εb ≈ 1.78), each located at a distance of 15 nm from a QE of excitonic energy h̄ω0 = 2.3 eV. The inset is
an enlargement along the x axis near h̄ω ≈ 2.3 eV. (b) Collective absorption rate spectra of N = 1, 2, . . . , 6 MNPs under the influence of the
QE and the external field. The inset shows the corresponding QE spectra. (c) Collective absorption rate spectra of N = 1, 2, . . . , 6 MNPs in
the absence of the QE (or without coherences). The legend is common to all three subplots.

than the relevant length scales of the system [56]. However,
the nonlocal character of the relation between the electric
field and the polarization of the QD comes into play near
sharp excitonic resonances when the QD becomes comparable
with the exciton Bohr radius [56,57]. Fluorescent molecules
could also possess nonlocal optical polarizabilities of the form
α(r, r′, ω), which relates the polarization at each point r in the
molecule to the electric field at all r′ points in the molecule
E (r′) [58]. Thus, a possible future extension of the presented
generic formalism could be incorporation of emitter nonlocal
effects for specific types of molecular emitters.

As a concluding remark, we recall that the unique op-
tics of QEs related to absorption and fluorescence can be
tailored for a broad range of potential applications such as
plasmonic lasers [14,15,59], quantum information processors
[2], various in vivo nanodevices such as sensors and switches
[5,11,60], and photovoltaic cells [61] using the near fields of
plasmonic nanoparticles. Our fully analytical model capable
of accommodating multiple MNPs enables easy optimization
of the large system parameter space for such applications.
This is vital for the advancement of the aforementioned tech-
nologies toward the level of device realization [15].

IV. CONCLUSION

We developed an analytical framework to study the in-
fluence of a weakly intercoupled in-plane spherical metal
nanoparticle (MNP) assembly on a coherently illuminated
quantum emitter (QE), using the generalized nonlocal optical
response (GNOR) theory. We reduced the derived equations
into simple and concise expressions representing a QE me-
diated by a symmetric MNP setup. Using the derived model,
we analyzed the optical properties of a coherently illuminated
QE at the center of an in-plane symmetric MNP setup. We ob-
served that the QE experiences plasmon-induced absorption
rate spectral linewidth variations that increase in magnitude
with decreasing MNP-QE center separation and increasing
number of MNPs. We could also observe that the parameter
regions where the QE exhibits trends of decreasing linewidth
against decreasing MNP-QE center separation are likely to be

associated with plasmon-induced excitonic energy redshifts,
and vice versa. The magnitude of the observed exciton energy
redshift/blueshift was seen to increase with the number of
MNPs in the constellation. We also demonstrated the ability of
the QE to dramatically modify the collective absorption rate
spectrum of the entire nanohybrid, even when the magnitude
of the QE spectrum is considerably smaller than that of the
isolated MNPs.
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APPENDIX A: EXTERNAL FIELD FEEDBACK DIPOLES

The 0th level external field feedback dipole, or the dipole
moment component formed directly due to the external field
(with a positive-frequency component E+ = E0e−iωt ), in an
f0th MNP can be found using (2) as

d+
f0

= (4πε0εb)r3
f0
β f0 E0e−iωt . (A1)

Collective first-level feedback dipole induced in the nth MNP
due to all such 0th level dipoles (where the dipole index f0 �=
n) can be obtained with the aid of (5) as

d+
n_� f0

= (4πε0εb)r3
nβnsαE0e−iωt

N∑
f0 = 1
f0 �= n

(
r3

f0
β f0

R3
n f0

)

= d+
n sα

N∑
f0 = 1
f0 �= n

(
r3

f0
β f0

R3
n f0

)
. (A2)

Similarly, using the first-level feedback pattern above, the
second-level external-field feedback dipole induced in the nth
MNP due to the collective first-level external-field feedback
dipoles induced in all surrounding MNPs (indexed in the sum-
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mation using the subscript f1, where f1 �= n) can be obtained
as

d+
n_� f1_� f0

= d+
n s2

α

N∑
f1=1
f1 �=n

⎛
⎜⎝ r3

f1
β f1

R3
n f1

N∑
f0=1

f0 �= f1

r3
f0
β f0

R3
f1 f0

⎞
⎟⎠. (A3)

By repeating the above procedure, the pth-level feedback
dipole formed in the nth MNP due to the collective (p − 1)th
level dipoles in the surrounding MNPs (indexed in the sum-
mation using the subscript fp−1) can be found, which results
in Eq. (10) in the main text.

APPENDIX B: ESTIMATING THE MNP
ABSORPTION RATE

In this Appendix, we extend the procedure followed in
literature [2,53] to obtain the MNP absorption rate for a single
MNP-QE nanohybrid toward our symmetric multiple MNP
constellation.

The total dipole moment induced in the jth MNP in a
symmetric constellation can be obtained using (30) by substi-
tuting j in place of n. The total field incident on the nth MNP
comprises the sum of the dipole response fields of all such jth
MNPs (where j �= n), transition dipole response field of the
QE, and the externally illuminated field. Its positive-frequency
component can be computed as

E+
n_out =

N∑
j = 1
j �= n

sα[d+
j_tot]sym

(4πε0εb)R3
nj

+ sαd+
QE

(4πε0εb)R3εeffS
+ E0e−iωt .

(B1)

Positive-frequency component of the field inside the nth
MNP can be found by accounting for the screening of the
incident field by the MNP dielectric, in the same way we
accounted for the screening of the QE material as follows
[2,53]:

E+
n_in = E+

n_out

εeffM
, where εeffM = 2εb + εm

3εb
. (B2)

It is worth noticing that the total dipole moment of the jth
MNP obtained using Eq. (30) embeds the nonlocally mod-
eled Clausius Mossotti factor β, whereas the MNP screening
factor εeffM contains the local MNP permittivity εm outside
the aforementioned β where nonlocality has been accounted
for. It is therefore important to avoid this local-nonlocal in-
compatibility by estimating the MNP absorption rate using
LRA by setting δNL → 0 and hence β → βLRA only when
using the MNP (or collective hybrid molecule) absorption rate
equation(s) derived in this paper.

We simplify (B2) using d+
QE = μρ̃ege−iωt , (9), (14), and

(30) to obtain

En_in = Ẽ+
n_oute

−iωt

εeffM
+ Ẽ−

n_oute
+iωt

ε∗
effM

, (B3)

where Ẽ−
n_out = (Ẽ+

n_out )
∗

and

Ẽ+
n_out =

(
E0 + sαμρ̃eg

(4πε0εb)R3εeffS

) 1

(1 − sαr3βLRAζ )
.

We now obtain the polarization current density of the nth
MNP in our constellation as the time derivative of its polar-
ization (dipole moment per unit volume) [2,53] as follows:

j = ∂

∂t

{
[d+

n_tot]sym + c.c.

V

}
, (B4)

where V = (4/3)πr3 is the volume of the nth MNP. This can
be simplified using (9), (14), and (30) to obtain

j = j̃+e−iωt + j̃−e+iωt , (B5)

where j̃− = ( j̃+)∗ and

j̃+ =
[
E0 + sαμρ̃eg

4πε0εbεeffSR3

]4πε0εbr3(−iω)βLRA

V (1 − sαr3βLRAζ )
. (B6)

Now, the average energy absorption rate of the nth MNP
can be obtained using the volume integral [2,53]

Qn = 〈Qn(t )〉 =
〈∫

jEn_indv
〉
, (B7)

where 〈. . .〉 is the time average defined as

〈 f (t )〉 = (ω/2π )
∫ 2π/ω

0
f (t )dt . (B8)

It is evident that Qn takes the form

Qn =
[

j̃−Ẽ+
n_out

εeffM
+ j̃+Ẽ−

n_out

ε∗
effM

]
V, (B9)

which can be further simplified to arrive at Eq. (46) in the
main text. We can obtain the MNP absorption rate equation for
the single MNP-QE nanohybrid already available in literature
[2,53] by setting ζ = 0 in Qn:

QMNP

∣∣
N=1 = 2πε0εbr3ω

(
E2

c + E2
s

)
Im

{
βLRA

ε∗
effM

}
, (B10a)

Ec = 2E0 + sαμA
(2πε0εb)εeffSR3

, (B10b)

Es = sαμB
(2πε0εb)εeffSR3

, (B10c)

where 2E0 should be replaced by E0 where the incident field
takes the form E = E0 cos(ωt ).
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