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Majorana representation of adiabatic and superadiabatic processes in three-level systems
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We show that stimulated Raman adiabatic passage (STIRAP) and its superadiabatic version (saSTIRAP) have
a natural geometric two-star representation on the Majorana sphere. In the case of STIRAP, we find that the
evolution is confined to a vertical plane. A faster evolution can be achieved in the saSTIRAP protocol, which
employs a counterdiabatic Hamiltonian to nullify the nonadiabatic excitations. We derive this Hamiltonian in
the Majorana picture, and we observe how, under realistic experimental parameters, the counterdiabatic term
corrects the trajectory of the Majorana stars toward the dark state. We also introduce a spin-1 average vector and
present its evolution during the two processes, demonstrating that it provides a measure of nonadiabaticity. We
show that the Majorana representation can be used as a sensitive tool for the detection of process errors due to
ac Stark shifts and nonadiabatic transitions. Finally, we provide an extension of these results to mixed states and
processes with decoherence.
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I. INTRODUCTION

Geometric representations play a key role in modern quan-
tum information science. As far as the dynamics of quantum
states is concerned, they may be used as a probe to look into
various processes and develop intuitive ideas. For a spin-1/2,
the mapping of states to the two-dimensional Bloch sphere
is a well-known result dating back to the early work of
Bloch and Rabi [1], a representation that is ubiquitously used
nowadays for visualizing the states of qubits [2]. Clearly, for
higher-dimensional Hilbert spaces this is a nontrivial task [3].
Majorana’s key insight from 1932 [4] was to represent these
states as a “constellation” of several points (Majorana stars).
According to this idea, a pure state of a particle with spin “ j”
is represented by “2 j” points on a unit sphere [4].

This concept has proved useful in various experimental
contexts, such as for representing states of polarization of
light [5], for characterizing the symmetry of the order pa-
rameter in spinor Bose-Einstein condensates [6,7], and for
the decomposition of quantum gates used in nuclear magnetic
resonance into experimentally implementable pulses [8]. In
theoretical quantum information, the Majorana representation
has enabled the geometric study of symmetric multiqubit
states [9,10], the construction of geometrically mutually unbi-
ased bases and symmetric informationally complete positive
operator valued measures [11], the calculation of the spec-
trum of the Lipkin-Meshkov-Glick model [12,13], the study
of Berry phases [14,15], and the classification of high-
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dimensional entanglement [10,16,17]. It has also inspired the
search for alternative geometric representations of quantum
states [18–23].

Our goal in this paper is to obtain and study the
Majorana representation of single-qutrit dynamics for the
stimulated Raman adiabatic passage (STIRAP) and for its
superadiabatic version (saSTIRAP). STIRAP is a well-known
protocol [24,25], widely used to perform certain nontrivial
quantum operations such as laser-induced population ex-
change between the energy levels of atoms and molecules.
In circuit quantum electrodynamics, the protocol for STIRAP
pulses was first benchmarked in Ref. [26], where it was ex-
perimentally realized using the first three energy levels of a
transmon, and demonstrating population exchange between
the energy levels using microwave fields. With the emergence
of more and more controllable multilevel systems, and stimu-
lated by research into quantum technologies, the applications
of STIRAP are likely to expand [27].

However, adiabaticity requires ideally infinitely long oper-
ation times, and therefore for realistic finite-time experimental
conditions one expects a tradeoff between time and fidelity. It
is possible to accelerate STIRAP without loss of fidelity by
the use of an additional drive (referred to as counterdiabatic),
which exactly cancels the nonadiabatic excitations [28–31].
This superadiabatic drive, also known as transitionless driving
or assisted adiabatic passage, has recently been experimen-
tally implemented in superconducting transmons [32]. The
superadiabatic STIRAP is a specific form of quantum con-
trol from the larger class of shortcuts to adiabaticity [33],
which have found a wide variety of applications, for example
in electron transfer in quantum dots [34], state transfer in
nitrogen vacancy centers [35], for the design of fast and error-
resistant single-qubit [36] and two-qubit [37] gates, and for
the quantum simulation of spin systems [38]. Here we show
that the dynamics induced by the counterdiabatic correction
applied to the STIRAP protocol has a very intuitive picture
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when represented geometrically, as it brings the Majorana
stars closer to the path of the dark state.

The paper is organized as follows. We begin with a brief
introduction to the Majorana representation for a qutrit; see
Sec. II. Here we include the representation of the qutrit by a
symmetrized two-qubit state, and we define the spin-1 angular
momentum vector. Section III describes STIRAP, followed by
the dark-state dynamics on the Majorana sphere. We show
here that the angular momentum vector provides a useful
measure of nonadiabaticity, and we give also a derivation of
the superadiabatic protocol using the Majorana polynomial.
Results from various simulations with experimentally feasible
parameters are presented in Sec. IV, including also the case
of mixed states. We end with a review of the results and
concluding remarks in Sec. V.

II. MAJORANA REPRESENTATION

In 1932, Ettore Majorana introduced a representation of
states with any angular momentum as a starting point of his
solution to the problem of atoms in a magnetic field [4]. Con-
sider the standard basis {| jm〉} of angular momentum states,
where j and m are the quantum numbers of the total angular
momentum and its z-axis component. Specifically, setting the
units to h̄ = 1 for convenience, we have Jz| jm〉 = m| jm〉 and
J2| jm〉 = j( j + 1)| jm〉. The Majorana polynomial appears
naturally when the spin-coherent representation of angular
momentum states is considered. Writing J = Jx êx + Jyêy +
Jzêz, where êx,y,z are the unit vectors along the axes, we notice
that the average of the angular momentum operator in the
state | j j〉 equals the total angular momentum h̄ j, 〈 j j|J| j j〉 =
jêz. We can obtain a vector with the same property but
oriented along an arbitrary direction n̂ with parametrization
n̂ = (cos ϕ sin θ, sin ϕ sin θ, cos θ ) in terms of spherical an-
gles (θ, ϕ), by an appropriate rotation of | j j〉,

| j, n̂〉 = e−iθ (− sin ϕJx+cos ϕJy )| j j〉. (1)

Indeed, this transformation implements a counterclockwise
rotation by an angle θ around the axis (− sin ϕ, cos ϕ, 0),
which brings êz along n̂. To obtain an expansion in the | jm〉
basis, we introduce the lowering and raising operators J± =
Jx ± iJy, and we rewrite Eq. (1) accordingly,

| j, n̂〉 = e
1
2 θ (eiϕJ−−e−iϕJ+ )| j j〉, (2)

which resembles the standard form of Glauber bosonic coher-
ent states. Next, we make use of the SU (2) algebra identity

e
1
2 θ (eiϕJ−−e−iϕJ+ ) = eζJ−e− ln(1+|ζ |2 )Jz e−ζ ∗J+ , (3)

where ζ = tan θ
2 eiϕ , to obtain | j, n̂〉 = (1 + |ζ |2)− jeζJ−| j j〉.

Finally, by expanding the exponential and employing the
properties of the lowering operator, we get

| j, n̂〉 =
j∑

m=− j

√
(2 j)!

( j + m)!( j − m)!

(
cos

θ

2

) j+m(
sin

θ

2

) j−m

× ei( j−m)ϕ | jm〉. (4)

Now, given a general state

|�〉 =
j∑

m=− j

cm| jm〉, (5)

where cm are complex amplitude probabilities normalized
as

∑ j
m=− j |cm|2 = 1, the complex amplitude probability for

transitions to the spin-coherent state oriented along −n̂ is ob-
tained as

〈 j,−n̂|ψ〉 =
√

(2 j)!

(
cos

θ

2

)2 j

e−2i jϕP|ψ〉(ζ ). (6)

Here we define the Majorana polynomial using the same no-
tations as in the original paper [4],

P|ψ〉(ζ ) =
2 j∑

r=0

arζ
2 j−r, (7)

in the complex variable ζ = tan θ
2 eiϕ . The relation between

the coefficients of the polynomial and the complex amplitudes
of the state is

ar = (−1)r

√
(2 j − r)!r!

c j−r . (8)

Applying the fundamental theorem of algebra, it follows that
P|ψ〉(ζ ) has 2 j roots, which correspond to points in the com-
plex xOy plane.

Next, we notice that if we represent these roots by the
angles θ and ϕ as above, they can be represented by an inverse
stereographic projection on the Riemann sphere, with respect
to the South Pole as the reference. It is straightforward to
prove geometrically that a line that connects the South Pole
with a point ζ = tan θ

2 eiϕ in the xOy plane will intersect the
unit sphere at a point with spherical coordinates (θ, ϕ). This
unique configuration of 2 j Majorana stars is invariant under
rotations and achieves a geometrical representation of |�〉
called Majorana constellation. For instance, (θ = π , ϕ = 0)
is a Majorana star on the South Pole and a point at infinity
in the complex plane, while (θ = 0, ϕ = 0) is a Majorana
star placed at the North Pole and corresponds to the center
of the complex plane. The Majorana representation of the
state | jm〉 consists of j + m stars at the North Pole and
j − m stars at the South Pole. Also, for a general state of
a spin-1/2, cos(θ/2)|1/2, 1/2〉 + sin(θ/2)eiϕ|1/2,−1/2〉 one
could verify immediately that we recover the standard Bloch
representation, namely that the Majorana star is a point on the
Bloch sphere, with spherical coordinates (θ, ϕ).

Operators can also be represented in the Majorana pic-
ture by the use of differentials in the complex variable ζ .
For example, let us consider the x, y, z components Jx, Jy, Jz

of the angular momentum operator J = Jx êx + Jyêy + Jzêz

given by Jx = (|0〉〈1| + |1〉〈2| + H.c.)/
√

2, Jy = (−i|0〉〈1| −
i|1〉〈2| + H.c.)/

√
2, and Jz = (|0〉〈0| − |2〉〈2|)/2. We then get

by using the properties of spin-coherent states [39] and the
definitions above

Jx(ζ ) = 1

2
(−2ζ + ζ 2∂ζ − ∂ζ ), (9)

Jy(ζ ) = 1

2i
(−2ζ + ζ 2∂ζ + ∂ζ ), (10)

Jz(ζ ) = −1 + ζ∂ζ . (11)

043079-2



MAJORANA REPRESENTATION OF ADIABATIC AND … PHYSICAL REVIEW RESEARCH 2, 043079 (2020)

These can be verified by taking a general state |ψ〉 as in
Eq. (5), constructing the Majorana polynomial P|ψ〉(ζ ), acting
with Eqs. (9)–(11), and showing that the polynomials thus
generated Jx,y.z(ζ )P|ψ〉(ζ ) are the Majorana polynomials of
Jx,y.z|ψ〉.

Now we can introduce the geometrical picture of a qutrit
( j = 1), which is a three-level quantum system—thus its Ma-
jorana geometrical representation consists of two Majorana
stars. An arbitrary state of a qutrit in the computational basis
{|0〉, |1〉, |2〉} is given by

|�〉 = C0|0〉 + C1|1〉 + C2|2〉, (12)

where C0, C1, and C2 are complex probability amplitudes.
The second-degree Majorana polynomial P|φ〉(ζ ) = a0ζ

2 +
a1ζ + a2 associated with the state of a qutrit is obtained
by identifying the j = 1 basis | jm〉 (m = −1, 0, 1) with the
computational basis, |1m〉 = |1 − m〉 (i.e., C0 = c1, C1 = c0,
C2 = c−1), and the coefficients are given from Eq. (8) as
a2 = C2/

√
2, a1 = −C1, and a0 = C0/

√
2. The roots ζk =

tan θk
2 eiϕk , k ∈ {1, 2} can be found by solving a second-

order equation, and the polynomial takes the form P|φ〉(ζ ) =
a0(ζ − ζ1)(ζ − ζ2). For the state |0〉 both Majorana points
lie on the North Pole, |2〉 has both points lying on the
South Pole, while |1〉 is represented by one point on the
North Pole and another point on the South Pole. We define
the distance between two Majorana points as η = cos−1(Ŝ1 ·
Ŝ2) = cos−1[sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2], where
the Majorana stars Ŝk have respective spherical coordi-
nates (θk, ϕk ), k ∈ {1, 2}. This distance can be interpreted
as a direct measure of entanglement between two qubits in
the symmetrized-state representation of the qutrit [16,17].
Explicitly, any spin-1 state—and, by the identification
above, any qutrit state Eq. (12)—can be represented as
a symmetric combination of two spin-1/2 (qubit) states
|ψk〉 = cos(θk/2)|1/2, 1/2〉 + sin(θk/2)eiϕk |1/2,−1/2〉 (with
k = 1, 2), as

|�〉 = 1√
2[1 + cos2(η/2)]

∑
σ

|ψσ (1)〉 ⊗ |ψσ (2)〉, (13)

where σ are permutations of the indices k. Using the defini-
tions above, the Majorana stars of this state coincide with the
two points with spherical coordinates (θk, ϕk ), representing
the two qubits in the standard Bloch representation.

It follows immediately that the concurrence between the
two qubits is measured by the angle between the Majorana
stars,

C|�〉 = sin2(η/2)

1 + cos2(η/2)
, (14)

which is obtained by applying Wooters’ formula [40].
Majorana representation is complete and unique up to a

global phase. Given a qutrit state |�〉, one can always find a
pair of points representing the state on the Majorana sphere.
Alternatively, corresponding to any arbitrary pair of points on
the Majorana sphere, one can construct a unique |�〉 in the
three-dimensional Hilbert space of a qutrit.

We now show that there is a deeper connection between
the average of the angular momentum and the entanglement
properties in the symmetrized state representation of spin 1.

Starting from Eq. (13), we take the partial trace of the total
density matrix |�〉〈�| over one of the spin-1/2. The resulting
reduced density matrix ρ does not depend on which spin-1/2
we traced out, and it reads

ρ = I2

2
+ 1

2
rσ, (15)

where

r = 1

1 + cos2(η/2)
(Ŝ1 + Ŝ2). (16)

We see that the vector r that parametrizes the reduced den-
sity matrix can be obtained, up to a normalization factor, by
the vectorial addition of the Majorana vectors. We can now
calculate immediately the average

〈J〉 = 〈Jx〉êx + 〈Jy〉êy + 〈Jz〉êz (17)

of the total angular momentum on the state |�〉, where 〈Jk〉 =
〈�|Jk|�〉, k ∈ {x, y, z}. Since this is a sum of the angular
momenta σ/2 of each of the two qubits, we get

〈J〉 = Tr(ρσ ) = r. (18)

Thus, the average vector angular momentum is given by the
vector r that parametrizes the reduced density matrix. This
leads to a geometric representation of the average angular
momentum as the vector

〈J〉 = 2

3 + S1 · S2
(S1 + S2), (19)

with length

|〈J〉| = 2| cos(η/2)|
1 + cos2(η/2)

. (20)

This vector is manifestly invariant under rotations generated
by Jx, Jy, Jz [8]. It is interesting to point out that S1 and S2 can
themselves be regarded as vectors resulting from averaging
the Pauli matrices over the constituent spin-1/2 states, Sk =
〈ψk|σ|ψk〉, k ∈ {1, 2}. Thus, Majorana representation offers a
remarkable way of writing the quantum-mechanical addition
of angular momenta as a geometrical vector addition.

Finally, the purity of the reduced state 1 − Tr(ρ2) =
1/2 − |r|2/2 can be used to calculate the concurrence C|�〉 =√

2[1 − Tr(ρ2)], with the result C|�〉 = sin2(η/2)/[1 +
cos2(η/2)], identical with the one calculated above in
Eq. (14).

Next, we closely follow the dynamics of the Majorana stars
and its corresponding spin-1 average vector, as our single-
qutrit pure state undergoes unitary evolution generated by
STIRAP and superadiabatic(sa)-STIRAP Hamiltonians.

III. ADIABATIC AND SUPERADIABATIC PROCESSES
FOR QUTRITS

A. Stirap

The stimulated Raman adiabatic passage (STIRAP) is
a fundamental quantum-mechanical process for transferring
population between the single-qutrit ground state |0〉 and
the second excited state |2〉 without populating the inter-
mediate state |1〉. This is achieved via a counterintuitive
sequence [24,25], whereby the driving between levels |1〉 −
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|2〉 commences prior to that of |0〉 − |1〉. Artificial atoms
based on Josephson junctions are suitable for this task, since
they are essentially multilevel systems in which the transi-
tions can be driven by microwaves [41–45]. For example,
consider a transmon irradiated with two such GHz-frequency
fields with time-dependent Rabi couplings 01(t ) and 12(t ),
phases φ01 and φ12, and driving frequencies ω

()
01 and ω

()
12 ,

coupling the levels |0〉 − |1〉 and |1〉 − |2〉, respectively [46].
These microwave fields can be slightly detuned from the re-
spective transmon transition frequencies ω01 and ω12, and the
robustness of STIRAP can be studied with respect to these
detunings [26]. However, for simplicity we consider here the
fully resonant case. Then, under the rotating-wave approxi-
mation, the effective Hamiltonian governing STIRAP is given
by

H0 = h̄

2
01eiφ01 |0〉〈1| + h̄

2
12eiφ12 |1〉〈2| + H.c. (21)

The time-varying amplitudes of the microwave drives are
chosen of Gaussian form in the time domain, with the same
standard deviation σ , and therefore the same width. They are
separated in time by an amount ts, which, when negative, leads
to the counterintuitive sequence. The corresponding Rabi cou-
plings read

01(t ) = ̄01e−t2/2σ 2
and 12(t ) = ̄12e−(t−ts )2/2σ 2

.

An adiabatic evolution is ideally infinitely slow and would
require the system to be in an eigenstate of the instantaneous
Hamiltonian at all times. By fixing the gauge to φ01 = φ12 =
0 [38], we obtain the eigenvectors of H0 in the form

|n±〉 = 1√
2

[sin �|0〉 + cos �|2〉] ± 1√
2
|1〉,

|D〉 = cos �|0〉 − sin �|2〉, (22)

with eigenvalues E± = ±h̄
√

2
01 + 2

12/2 and ED = 0, re-
spectively. Here the STIRAP angle � is given by

tan � = 01

12
. (23)

A convenient choice for the state to be followed adiabatically
is the dark state |D〉, which does not contain any compo-
nent from the intermediate level |1〉. Interestingly, |D〉 is the
same as the single-qutrit canonical state [8], up to a change
of variables � → � − π/2. The canonical state is a single-
parameter state that spans the entire qutrit Hilbert space under
SO(3) rotations generated by Jx, Jy, and Jz. These unitary
operations rotate the Majorana stars like a rigid body in three-
dimensional real space (R3) [8]; thus, any qutrit state can
be parametrized with one parameter from the canonical state
and three parameters from the three rotations. In other words,
any arbitrary state of a qutrit can be obtained from the set of
canonical states (or dark states) via SO(3) rotations.

Under adiabatic evolution, as a consequence of the adi-
abatic theorem [47], the system remains in the state |D〉 at
all times. To transfer the population from |0〉 to |2〉, one can
initialize the system in a state corresponding to � = 0 at
t = ti, which eventually transforms into � = π/2 at t = t f ,
with the total duration of the sequence being T = t f − ti, with
ti = −110 ns and t f = 80 ns as shown in Fig. 1. The Gaussian

FIG. 1. (a) Variation of the Rabi couplings with time, (b) corre-
sponding variation of �, and (c) the probabilities p0 = cos2 � and
p2 = sin2 �, plotted in real time.

pulse profiles 01(t ) and 12(t ) are shown in Fig. 1(a) for
ts = −30 ns, σ = 20 ns, and ̄01 = ̄12 = 2π × 25.5 MHz.
The corresponding variation of � from 0 to π/2 is clearly
reflected from Fig. 1(b), and the probabilities of occupation of
the energy levels in terms of the squares of the absolute values
of the coefficients, p0 = cos2 � and p2 = sin2 �, are plotted
in Fig. 1(c). The rate of change of the populations is

ṗ0 = −ṗ2 = −�̇ sin 2�, (24)

which tends to zero as the mixing angle approaches its
extreme values � = 0 and π/2. The rate of change of pop-
ulations attains its maximum value at t = T/2 = (t f − ti )/2.
A geometrical picture of this dynamics may be obtained on
the Majorana sphere, which is discussed further in Sec. III B.

B. Majorana representation of the dark state |D〉
Recalling that the dark state is |D〉 = cos �|0〉 − sin �|2〉,

the Majorana polynomial is P|D〉(ζ ) = (1/
√

2)(cos �ζ 2 −
sin �). The Majorana representation of |D〉 consists of two
stars S1(θ, π ) and S2(θ, 0), where θ = π − 2 tan−1

√
cot �.

These points lie in the xz plane with Cartesian coordinates
(±xD, yD, zD), such that

xD =
√

2 sin 2�

cos � + sin �
, yD = 0, zD = cos � − sin �

cos � + sin �
, (25)

where � ∈ [0, π/2].
Majorana stars representing |D〉 lie on the great circle in

the plane y = 0, with the same latitude θ . The angle η formed
by the vectors S1 and S2 is given by η = 2θ . As � varies
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FIG. 2. A cross-section of the Majorana sphere in the plane y =
0, which shows the Majorana representation of the dark state |D〉
and its dynamics under STIRAP Hamiltonian. (a) Majorana stars are
labeled by S1(x1, y1, z1) and S2(x2, y2, z2) with a red circle and a blue
square, respectively, such that −x1 = x2 = xD, y1 = y2 = 0, and z1 =
z2 = zD. (b) Trajectory of both points on the Majorana sphere as �

varies from 0 to π/2. (c) Variation in real time of the coordinates
of Majorana points S1(x1, yD, zD ) and S2(x2, yD, zD) is plotted as �

changes from 0 to π/2 as in Fig. 1(b).

from 0 � � � π/2, η assumes values from 0 to π and then
0 again. Thus the two points S1 and S2 lie all along the great
circle in the plane y = 0 as shown in Fig. 2(a). This readily
leads to the fact that the dynamics of |D〉 under the STIRAP
Hamiltonian is confined to the plane y = 0 on the Majorana
sphere, i.e., the longitudes remain unchanged while sweeping
the latitudes θ1 = θ2 = θ from 0 to π ; see Fig. 2(b). Under
STIRAP, both stars representing |D〉 on the Majorana sphere
move symmetrically with varying �, and any deviation from
this behavior signals a loss of adiabaticity. The trajectories of
these Majorana stars in the coordinate space under the action
of STIRAP are shown in Fig. 2(c). The trajectories are plotted
in time with the same scales as described in Sec. III A.

The dark state can also be represented using symmetrized
spin-1/2 states, as described in Sec. II, in the form |D〉 =
cos �|1/2, 1/2〉|1/2, 1/2〉 − sin �|1/2,−1/2〉|1/2,−1/2〉.
Thus, the resulting symmetrized dark state is manifestly
in the Schmidt form [40]. The concurrence is obtained as
C|D〉 = sin 2� and the r-parameter of the reduced density
matrix is r = cos 2�. Given a qutrit state |ψ〉 with Majorana
polynomial roots ζk = tan(θk/2) exp(iϕk ), where k ∈ {1, 2},
the fidelity of this state with respect to the dark state is
obtained as

F = |〈ψ |D〉|2

= 1

2[1 + cos2(η/2)]
[1 + (cos θ1 + cos θ2) cos 2�

+ cos θ1 cos θ2 − sin θ1 sin θ2 sin 2� cos(ϕ1 + ϕ2)].

(26)

The Majorana representation of the spin-1 average vector
in the dark state |D〉 is obtained using the bisector of angle η

as shown with OO′ in Fig. 2(a), such that

〈J〉 = 2OO′

1 + |OO′|2 . (27)

We note that this relation is in fact valid for any general qutrit
state, since it follows from Eq. (19) with OO′ = (Ŝ1 + Ŝ2)/2.
Specifically for the dark state |D〉, we get from Eq. (17) that
〈Jx〉 = 0, 〈Jy〉 = 0, and 〈Jz〉 = cos 2�.

The magnitude of the spin-1 average vector is given by
|〈J〉| = | cos 2�|, which varies with time as

∂t |〈J〉| = 2�̇ sin 2�. (28)

This is twice the rate of change of populations 2 ṗ2(t ) from
Eq. (24), which puts in evidence that the Majorana geomet-
rical picture reflects the rate of evolution of a quantum state
with time. Indeed, the coordinates of the Majorana stars vary
slowly with time near the starting and end points, and they
change significantly faster in between, as expected for an
adiabatic evolution.

The Majorana representation also offers a geometric tool
for quantifying the degree of nonadiabaticity of STIRAP.
Indeed, for a general state Eq. (12) we have C1 = C0(ζ1 +
ζ2)/

√
2, and therefore the nonadiabatic population on the

intermediate state is p1 = |C0|2|(ζ1 + ζ2)|2/2. Thus, devia-
tions from adiabaticity in the case of STIRAP are signaled
by nonzero x, y components of the vector Ŝ1 + Ŝ2 or, equiv-
alently, 〈Jx〉 and 〈Jy〉; see Eq. (19). These deviations from
zero can be immediately seen in the plots, as we will discuss
extensively later. Thus, once the roots are calculated, this is
a simple and exact method, in contrast to other approximate
ways of quantifying the degree of nonadiabaticity based, for
example, on the Dykhne-Davis-Pechukas technique [48]. The
well-established STIRAP local adiabaticity condition �̇ 
√

2
01 + 2

12 [24] can be derived as well in the Majorana pic-
ture by noticing that P|n±〉(ζ ) = 1

2 sin �ζ 2 ∓ 1√
2
ζ + 1

2 cos �

and Ṗ|n±〉(ζ ) = 1√
2
�̇P|D〉(ζ ). Thus the nonadiabatic coupling

is |〈n±|∂t |D〉| = |〈ṅ±|D〉| = �̇/
√

2, which has to be much
smaller than the splitting between the dark state and the states
|n±〉, |E±|/h̄ =

√
2

01 + 2
12 .

C. Superadiabatic(sa)-STIRAP

It is interesting to observe on the Majorana sphere the
dynamics of the quantum state under the combined effect
of STIRAP Hamiltonian and a counterdiabatic drive. When
acting together, this realizes the so-called superadiabatic(sa)-
STIRAP. The counterdiabatic part achieves the cancellation
of spurious nonadiabatic excitations, leading to the expected
final state with high precision at finite times. The counterdia-
batic term in the case of a three-level quantum system requires
a very simple form [38],

Hcd = h̄

2
02eiφ02 |0〉〈2| + H.c. (29)

with 02(t ) = 2�̇(t ) and φ02 = π/2, leading overall to a
purely imaginary Rabi coupling. This is experimentally
realized by a two-photon pulse resonant with the 0-2

043079-5



DOGRA, VEPSÄLÄINEN, AND PARAOANU PHYSICAL REVIEW RESEARCH 2, 043079 (2020)

energy level difference [38], which simultaneously drives the
|0〉 − |1〉 and |1〉 − |2〉 transitions with detunings ∓�, re-
spectively, where � = (ω1 − ω2)/2. The Hamiltonian in the
doubly rotating frame driven by tones with frequencies ω1 and
ω2 is given by

H2ph = h̄

2
2phe(iφ2ph−�t )|0〉〈1|

+ h̄

2

√
22phe(iφ2ph + �t )|1〉〈2| + H.c. (30)

with effective coupling |2ph| =
√√

2�02 and phase
φ2ph = (φ02 − π )/2.

D. Derivation of the superadiabaticity condition in the
Majorana representation

Before proceeding to investigate in detail the motion of
Majorana stars under the saSTIRAP drive corresponding to
realistic experimental conditions, we notice that the Majo-
rana representation enables an alternative derivation of the
counteradiabatic condition. For simplicity, in this subsec-
tion we consider as before the all-resonant STIRAP case
with the gauge [38] fixed to φ01 = φ12 = 0, and we set
φ02 = π/2 by adjusting the phase of the two-photon pulse
to φ2ph = −π/4. Thus, the available Hamiltonians are H0 =
h̄
2 [01|0〉〈1| + 12|1〉〈2|] + H.c., and Hcd = ih̄

2 02|0〉〈2| +
H.c. is generated as well [32,38]. These Hamiltonians have
a convenient Majorana representation in a frame defined by
the unitary transformation, which in the basis {|0〉, |1〉, |2〉}
has the form

R = 1√
2

⎛
⎝1 0 1

0
√

2 0
i 0 −i

⎞
⎠ (31)

with R†R = RR† = I. In the R frame, the wave functions
become |ψ〉(R) = R†|ψ〉, while the Hamiltonians transform as
H (R)

0 = R†H0R and Hcd = R†HcdR. It is straightforward now
to verify that Jx = R†(|0〉〈1| + |1〉〈0|)R, Jy = R†(|1〉〈2| +
|2〉〈1|)R, and Jz = R†(−i|0〉〈2| + i|2〉〈0|)R are, respectively,
the x, y, and z angular momenta Jx, Jy, Jz in the standard rep-
resentation (see Sec. II). Thus, in the R-frame the Hamiltonian
H (R)

0 + H (R)
cd with

H (R)
0 =

h̄
√

2
01 + 2

12

2
(sin �Jx + cos �Jy) (32)

and

H (R)
cd = − h̄02

2
Jz (33)

describes a spin-1 particle in a vector magnetic field
(01(t ),12(t ),−02(t )). Here we recall that tan � =
01/12.

Consider now a general state |ψ〉(R), to which we can
associate a Majorana polynomial P|ψ〉(R) . Using the Majorana
representation for the angular momentum Eqs. (9)–(11), we
get

H (R)
0 (ζ ) = −

ih̄
√

2
01 + 2

12

4
[ei�(−2ζ + ζ 2∂ζ ) + e−i�∂ζ ]

(34)

and

H (R)
cd (ζ ) = h̄02

2
(ζ∂ζ − 1). (35)

To obtain the dark state of the STIRAP process, we solve the
time-independent Schrödinger equation H0|ψ〉 = E |ψ〉 in the
R-frame and in the Majorana representation

H (R)
0 (ζ )P|ψ>(R) (ζ ) = EP|ψ>(R) (ζ ). (36)

This is a first-order differential equation that can be
solved immediately. The solutions are P|D〉(R) (ζ ) = 1

2 ei�ζ 2 +
1
2 e−i� with ED = 0 and P|n±〉(R) (ζ ) = − i

2
√

2
ei�ζ 2 ∓

√
2

2 ζ +
i

2
√

2
e−i� with E± = ±h̄/2. In the case of the dark state,

the roots are ±ie−i�, thus corresponding to the points
(± sin �,± cos �, 0) in the xOy plane. Transforming to the
Dirac representation and back from the R-frame, we recover
the usual solutions Eq. (22) of the eigenvectors-eigenenergies
for the on-resonance STIRAP Hamiltonian.

With these preparations, the derivation of the counterdia-
batic term is straightforward. We impose the condition that
the time-dependent Schrödinger equation ih̄(d/dt )|ψ (t )〉 =
[H0(t ) + Hcd(t )]|ψ (t )〉 admits a solution that follows exactly
the dark state |ψ (t )〉 = |D(t )〉. In the R frame and in the
Majorana representation, this condition becomes

ih̄
d

dt
P|D〉(R) (ζ ) = Hcd(t )(ζ )P|D〉(R) (ζ ), (37)

which, when using the results above, yields the correct condi-
tion 02 = 2�̇.

IV. SIMULATIONS OF ADIABATIC AND
SUPERADIABATIC DYNAMICS

Here we present the results of simulating the trajectory of
the Majorana stars for STIRAP and saSTIRAP under experi-
mentally realistic conditions.

A. Majorana trajectories under H0 and H2ph

We simulate the dynamics of a qutrit with transition
frequencies ω01/2π = 5.27 GHz and ω12/2π = 4.82 GHz.
This may be considered as a three-level systems with un-
equally spaced energy levels with energy-level spacings ω01

and ω12 and anharmonicity ω01 − ω12. This system, initial-
ized in the state |0〉, is driven resonantly by the STIRAP
Hamiltonian with σ = 35 ns, ̄01/2π = ̄12/2π = 45 MHz,
ts/σ = −1.2, and it is evolved from ti = −182 ns to t f =
140 ns in 1800 time steps. The driving frequencies of the
Gaussian pulses are taken to be resonant to the respective
qutrit transition frequencies. We calculate the dynamics of
a qutrit and plot the corresponding trajectories on the Ma-
jorana sphere as shown in Fig. 3(a). We see that STIRAP
alone is not working perfectly, with cusps appearing along
the trajectory, and as a result the final state misses the South
Pole. These are due to nonadiabatic transitions, resulting in
nonzero populations on state |1〉 at certain times, as we show
in Fig. 3(b). This is reflected in a nonzero y-component of
the angular momentum 〈Jy〉 at exactly those times. We have
verified numerically for a wide range of STIRAP parame-
ters that nonzero p1 populations of up to 0.05 are obtained
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FIG. 3. The qutrit, initialized in the state |0〉 at the North Pole
of the Majorana sphere, evolves under the STIRAP Hamiltonian
and the two-photon drive H2ph, such that its expected final state is
−|2〉—the South Pole of the Majorana sphere. (a) STIRAP—driven
trajectories of the Majorana stars (in red and blue) and the spin-1
angular momentum vector (in black), and correspondingly (b) the
population of the first excited state p1 with a solid black line, fidelity
loss (1 − F )/2 ≈ |〈ψ (t )|n±〉|2 with a dot-dashed black line, and the
y component of the angular momentum vector 〈Jy〉 with a dotted blue
line. Here p1 and (1 − F )/2 follow the left vertical scale, while 〈Jy〉
follows the right vertical scale. (c) Majorana trajectories resulting
from the H2ph drive with a detuning � = 2π × 225 MHz with respect
to the single-photon drives. The plots in (d)(i) present the populations
in state |1〉 resulting from different detunings �/2 (thick red line), �

(dashed black line), and 2� (thin green line), respectively, under the
H2ph drive. The corresponding projections of the angular momentum
vector 〈J〉 in the xy-plane are shown in (d)(ii) with red diamonds,
(iii) with black triangles, and (iv) with green circles, respectively.

when, in the region of maximum transfer, �̇ becomes about
half the value of |E±|, i.e., when the standard adiabaticity
condition (see Sec. III B) becomes not so well satisfied. In-
stances of occurrence of these nonadiabatic transitions are
further characterized using the measure of infidelity, 1 − F =
|〈ψ (t )|n+〉|2 + |〈ψ (t )|n−〉|2 ≈ 2|〈ψ (t )|n±〉|2 (the latter ap-
proximation is well satisfied numerically), which corresponds
to the overlap between the STIRAP driven single-qutrit state
and other eigenvectors of H0 [Eq. (22)] as presented in
Fig. 3(b). Note also that the Majorana representation is very
sensitive to all these errors. For example, the final state in
Fig. 3(a) has populations p0(t f ) = 0.010, p1(t f ) = 0.003, and
p2(t f ) = 0.987 on the states |0〉, |1〉, and |2〉, respectively, yet
the stars appear clearly distinct and separated from the South
Pole. Also the value of the angular momentum, which signals
the departure from adiabaticity, is one order of magnitude
larger that the population of state |1〉. This sensitivity is a
general feature of the Majorana representation, which will be
visible in all the following figures.

Further, we examine the counterdiabatic Hamiltonian
Eq. (29), which, when acting separately, would drive the
system along the dark state. Due to the fact that the direct
transition 0-2 is forbidden in the transmon, we produce this
coupling via a two-photon drive Eq. (30), a process that brings
in its own nonidealities. With the same parameters for the
Gaussian pulses, we simulate the two-photon resonant drive
H2ph at different values of the detunings �. From Eq. (30)
we see that the constant part of the phase, φ2ph, shifts the
overall plane of the trajectory, while time-dependent effects
arise from �t . This produces a rapidly oscillating phase of
the drive, yielding a wiggling trajectory on the Majorana
sphere as shown in Fig. 3(c). The frequency of this wiggling
is �/2π , which, as expected, is the same as the frequency
of the rotating frame. Thus, for a system with larger (smaller)
anharmonicity (ω1 − ω2), or for a two-photon resonance pulse
that is more (less) detuned from the respective |0〉 − |1〉 and
|1〉 − |2〉 transitions, the rate of wiggling is higher (lower),
which further corresponds to the rate of wiggling in p1(t ) as
shown in Fig. 3(d)(i) for detunings �/2, �, and 2�. Interest-
ingly, we observe similar oscillations also in the black curve
representing the angular momentum vector. Unlike the case
of Majorana sphere trajectories (trajectories traversed by the
Majorana stars on the sphere), the rate of wiggling in this case
relates to the speed of the single-qutrit evolution, which in
a given time interval is directly proportional to the pitch of
the wiggling black line. Thus, we can observe visually that
the evolution is faster in the middle while slower close to
the initial and the target states. Further, the amplitude of the
wiggles in the trajectory is more pronounced in the middle
of the drive, when the first excited state |1〉 gets populated.
We closely observe these oscillations by plotting the projec-
tion of the angular momentum vector in the plane z = 0, as
shown in Fig. 3(d)(ii-iv), where each point corresponds to the
combination (〈Jx〉, 〈Jy〉) at a given time, and the consecutive
points in time are connected by lines (in yellow). For larger
detunings, the rate of wiggling is faster and hence the result-
ing network is more dense. The amplitude of the wiggles is
reflected in the area occupied by these projections (〈Jx〉, 〈Jy〉),
which is largest in Fig. 3(d)(ii), where the detuning of the
two-photon drive is relatively small and the system possesses
lesser anharmonicity—making it more likely for the first ex-
cited state to get populated. A reverse situation may be seen in
Fig. 3(d)(iv). Thus, this demonstrates visually the advantage
of using a system with large anharmonicity.

The two-photon pulse is also responsible for producing ac-
Stark shifts of the energy levels. These can be compensated by
using a dynamical phase corrections [32,36,49]. The correc-
tion is applied to the phases of the drives, such that φnk (t ) =
φnk + ∫ t

∞ εnk (t )dt/h̄, where n, k = 0, 1, 2 are the labels of
energy levels and εnk (t ) is the ac Stark shift resulting from
the n − k drive at a given time t . As shown in Refs. [32,36],
respective ac Stark shifts are given by ε01(t ) = h̄|2ph|2/�,
ε12(t ) = −5h̄|2ph|2/4�, and ε02(t ) = −h̄|2ph|2/4�. The
corresponding dynamic phase corrections are thus obtained
as φ01(t ) = φ01 + 2

√
2h̄�(t ), φ12(t ) = φ12 − (5h̄/

√
2)�(t ),

and φ02(t ) = φ02 − (h̄/
√

2)�(t ).
The trajectories on the Majorana sphere of a qutrit driven

by the two-photon resonant pulse H2ph and corrected for the
ac Stark shifts are shown in Fig. 4. We simulate the Majorana
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FIG. 4. (a) Majorana trajectories (in red and blue) resulting from
the two-photon drive with a constant phase φ2ph as in Eq. (30).
The dynamically phase-corrected Majorana trajectories, with a time-
dependent phase φ2ph(t ), are shown in (b). Plots in (c) and (d) present
the corresponding variation of distance between the Majorana stars
and the evolution of occupation probabilities with time. The dashed
lines are uncorrected values, while the continuous lines include the
ac Stark shift correction. Parameters: qutrit transition frequencies,
ω01/2π = 5.27 GHZ, ω12/2π = 4.82 GHz, σ = 35 ns, ̄01/2π =
̄12/2π = 45 MHz, ts/σ = −1.2, and the state is evolved from
ti = −182 ns to t f = 140 ns with T = t f − ti in 1800 time steps.
Driving frequencies of the Gaussian pulses are taken to be the same
as that of the respective qutrit transition frequencies.

trajectory with the same parameters of the two-photon reso-
nance as used in Fig. 3(c) and plot the trajectories under H2ph

with and without the dynamically corrected phases compen-
sating the ac Stark shifts in Figs. 4(b) and 4(a), respectively.
The relative distance η between the Majorana points is shown
in Fig. 4(c). As expected, η first increases from 0 to π and then
decreases from π to lower values tending to approach 0 in the
solid black curve with ac Stark shift correction, performing
much better than that of the dashed curve that represents the
distance without the dynamical phase corrections. The corre-
sponding variation in the populations of the ground state (p0 in
red), the first excited state (p1 in blue), and the second excited
state (p2 in black) are shown in Fig. 4(d), where again solid
lines represent the respective populations with the dynami-
cally modified phases, while dashed lines correspond to the
constant phase φnk . The advantage of the dynamic phase cor-
rection is quite evident from the highly improved population
values as well as from the Majorana trajectories. However, for
simplicity we will not employ it in the following—as we will
see, the combined action of H0 and H2ph leads already to high
enough transfer fidelities.

B. Majorana trajectory under sa-STIRAP

We observe the single-qutrit dynamics under the sa-
STIRAP Hamiltonian,

HsaSTIRAP = H0 + H2ph, (38)

S1
S2

JTrajectory of
S1(x1, y1, z1)

Trajectory of
S2(x2, y2, z2)

Final state

Initial state

(a)

(b) t = 0.25 × T (c) t = 0.50 × T

(d) t = 0.75 × T (e) t = T

FIG. 5. (a) Majorana trajectories in saSTIRAP, and (b)–(e) their
evolution at different moments of time. Parameters: qutrit transition
frequencies, ω01/2π = 5.27 GHz, ω12/2π = 4.82 GHz, σ = 35 ns,
̄01/2π = ̄12/2π = 45 MHz, ts/σ = −1.2, φ01 = φ12 = 0, φ2ph =
−π/4, and the state is evolved from ti = −182 ns to t f = 140 ns in
1800 time steps. The driving frequencies of the Gaussian pulses are
the same as that of the respective qutrit transition frequencies.

with the qutrit initialized in the dark state |D〉 with � = 0.
HsaSTIRAP preserves the robustness of the STIRAP Hamilto-
nian H0, while concurrently H2ph improves the performance,
and precisely returns the expected final state |D〉 with � =
π/2 in an experimentally feasible time. The corresponding
trajectory of the qutrit on the Majorana sphere is presented
in Fig. 5. The simulation is performed with the same set
of parameters as before, as specified in the figure caption.
Figure 5(a) shows the full trajectories as the qutrit initialized
in |0〉 (North Pole of the Majorana sphere) evolves under
HsaSTIRAP and tends to approach the second excited state
|2〉 (South Pole of the Majorana sphere). Figures 5(b)–5(e)
present the same simulation at four equally spaced values of
time. As expected, the dynamics of Majorana stars is slower
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FIG. 6. Process characterization as a function of time. STIRAP
is represented with red dotted lines, while saSTIRAP is shown with
blue continuous lines. (a) Variation of the angle η during STIRAP
and saSTIRAP. In addition, the black continuous line represents the
two-photon process, while the thin gray line shows a corresponding
ideal adiabatic following of the dark state. (b) Fidelity between the
dark state |D〉 and the time-evolved state of a qutrit |�(t )〉, under
STIRAP and saSTIRAP. (c) Magnitude of the average spin-1 vector
for the two processes, showing a dip to nearly zero. The time evo-
lution of the projections of this vector in the xOy plane is shown in
the inset, where the ideally expected state −|2〉 is represented by a
red square and the actual state reached by saSTIRAP is shown by a
blue square. (d) Concurrence in the symmetrized-state representation
showing a peak to nearly 1 in the middle.

close to the start and to the end of the process and becomes
faster in the middle.

C. STIRAP vs saSTIRAP

A thorough comparison between the STIRAP and saSTI-
RAP processes (with the same parameters as in Fig. 5) is
carried out in Fig. 6. We start with the time dependence of
the distance η between the Majorana stars of a qutrit starting

from |0〉 as it evolves under H0, H2ph and HsaSTIRAP. The
plots are shown in Fig. 6(a), where the dashed red curve
presents the variation of η under H0, the black dot-dashed
curve corresponds to H2ph, and the blue continuous curve
corresponds to the evolution under the HsaSTIRAP Hamiltonian.
The continuous blue curve of saSTIRAP clearly gives the best
result. For comparison, we present with a gray continuous line
an ideal saSTIRAP process, where the dark state is followed
perfectly.

Further, we compare systematically the imperfections re-
sulting from practically feasible STIRAP and saSTIRAP
drives with respect to an ideal adiabatic dynamics, which
strictly follows the dark state |D〉. At various values of the time
t we calculate the fidelity F (t ) = |〈�(t )|D〉|2, where |�(t )〉
represents either the STIRAP- or saSTIRAP-evolved state at
an arbitrary time t ; see also Eq. (26). The plots presenting
the variation of fidelity F (t ) are shown in Fig. 6(b). A closer
look at the fidelity curves reveals that, despite the remaining
small oscillations, the state under saSTIRAP is closer to the
dark state, while under STIRAP it is relatively far from the
desired behavior. The oscillations of fidelity seen in STIRAP
coincide with the appearance of cusplike structures in the
Majorana trajectories shown in Fig. 3(a). The magnitude of
the spin vector |〈J〉| is another way to characterize the two
processes, as shown in Fig. 6(c). Finally, the concurrence in
the symmetrized state picture is obtained in Fig. 6(d). Corre-
sponding to the dip in |〈J〉| in the middle of the evolution, the
concurrence develops a peak. The two spin-1/2 particles be-
come maximally entangled, and as a result the partial density
matrix is almost maximally mixed I2/2 with the r-parameter
close to zero.

D. Majorana representation of mixed states

In real experiments, due to decoherence, the states are
mixed. However, the problem of extending the Majorana pic-
ture to mixed states does not have a straightforward solution.
Several proposals have been put forward, for example using
multiaxial representations [50], probability simplexes [51],
elimination methods [52], and projective spaces of polynomi-
als [53]. Here we address this problem with the goal of finding
a solution that is of closest relevance to experimental practice.
In experiments, the usual situation is that decoherence exists
but measures are taken to reduce it as much as possible. The
manipulation of qubits and qutrits by applying quantum gates
is done on shorter times than the decoherence times. Thus,
the system approximately follows the intended pure state, and
the mixedness can be regarded as a perturbative effect. To
account for this situation, we consider a mixed qutrit state ρ

and perform a spectral decomposition

ρ =
∑

i=d,e, f

λi|χi〉〈χi|, (39)

where λi � 0. This means that we regard our mixed state as a
statistical ensemble of states |χ〉 occurring with probabilities
λi. For low levels of decoherence, one of these probabilities
(say λd ) will be the largest, and it will correspond to the state
along which we intend to drive the system (the dark state
in our case). Then, we represent this state, together with the
remaining two states, as stars on three Majorana spheres, with
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radiuses λd , λe, and λ f , respectively. For example, in the case
of a spin-1/2 (qubit) mixed state, with standard representation
I/2 + rσ/2, where r = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ ),
we obtain λe = (1 + r)/2, λ f = (1 − r)/2, and |χe〉 =
cos(θ/2)|0〉 + sin(θ/2) exp(iϕ)|1〉, |χ f 〉 = sin(θ/2)|0〉 −
cos(θ/2) exp(iϕ)|1〉. The representation produces two points
in opposite directions on two spheres with subunit radiuses
λe and λ f . Eigenvalue degeneracy (maximally mixed state)
occurs when the two spheres overlap, in which case we do
not know which point to associate to which sphere, and any
two orthogonal vectors could be used to represent the state;
this corresponds, in the standard representation, to the Bloch
sphere shrinking to a point.

To illustrate this concept, we consider a qutrit
initialized in the ground state (|0〉), and driven by the
saSTIRAP Hamiltonian in the presence of decoherence.
The evolution of the system is governed by the
Lindblad master equation, ρ̇ = −i/h̄[H, ρ] + L[ρ],
where L[ρ] = �21ρ22(|1〉〈1| − |2〉〈2|) + �10ρ11(|0〉〈0| −
|1〉〈1|) − ∑

j,k∈0,1,2, j �=k γ jkρ jk| j〉〈k| with γ10 = �10/2 + �
φ

10,

γ20 = �21/2 + �
φ

20, and γ21 = (�10 + �21)/2 + �
φ

21 is the
Lindblad qutrit superoperator [26]. We simulate the evolution
of this equation with relaxation rates �10 = 0.5 MHz
and �21 = 0.71 MHz and with pure dephasing rates
�

φ

10 = 0.4 MHz, �
φ

21 = 0.56 MHz, and �
φ

20 = 0.96 MHz,
which correspond to realistic experimental values for
transmons. Due to the interaction between the system
and the environment, our single-qutrit state becomes mixed.
Applying the spectral decomposition Eq. (39), we obtain
ρ(t ) at any time t as a linear combination of mutually
orthogonal states |χi(t )〉〈χi(t )|. The time variation of the
weights λi’s of the various component vectors |χi〉’s are
shown in Fig. 7(a), together with the measure of purity
Tr[ρ(t )2] = λd (t )2 + λe(t )2 + λ f (t )2. The fidelity with
which the final state matches the ideally expected saSTIRAP
dynamics is obtained using F (t ) = |〈D(t )|ρ(t )|D(t )〉|, and
it is found out to be 0.88. Further, we obtain the Majorana
representation of the eigenvectors [|χd (t )〉, |χe(t )〉, |χ f (t )〉].
Each of these eigenvectors has two Majorana roots, S1i and
S2i, which correspond to pairs of Majorana stars on spheres
with radiuses λd (t ), λe(t ), λ f (t ). For clarity, we plot these
starts as separate pictures; see Figs. 7(b)–7(d). From Fig. 7(b)
one can see that the state |χd〉, which has the largest statistical
weight in ρ, follows closely the dynamics of the dark state
|D〉. Under the saSTIRAP drive, this pair of Majorana
stars starts from the North Pole at t = 0 [λd (0) = 1] and
would ideally move symmetrically toward the South Pole,
along the plane y = 0. However, as the decoherence sets in,
λd < 1, and trajectories of the Majorana stars go inside the
radius-1 sphere; see Fig. 7(b). As λd decreases, λe( f ) become
nonzero, and correspondingly trajectories of the Majorana
stars representing the dynamics of states |χe〉 and |χ f 〉 appear
to emerge from the center of the Majorana mixed sphere with
radiuses λe(t ) and λ f (t ) as is clearly evident from Figs. 7(c)
and 7(d). We have also performed simulations for only the
STIRAP drive in the same decohering environment, and we
have obtained similar results. Also in this case the statistical
mixture of ρ(t ) consists predominantly of the dark state
|D(t )〉. A final-state fidelity (at t = T ) of 0.868 is reached in
this case.
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Tr(ρ2)
λd

λe
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FIG. 7. Majorana representation of the eigenvectors of the
single-qutrit state ρ(t ) driven by the saSTIRAP Hamiltonian in a
decohering environment. The parameters of the drive are the same
as in Fig. 6. (a) Time variation of the purity Tr[ρ(t)2] and the
eigenvalues λi(t ) with i ∈ {d, e, f } of ρ(t ). (b) saSTIRAP-driven
trajectories of the Majorana stars of |χd (t )〉 shown on a sphere of
radius λd (t ). This radius is unity in the beginning of the process,
and gradually decreases with time. The black asterisk at the bottom
of the sphere marks the South Pole. The dynamics of the Majorana
stars of |χd (t )〉 clearly are very close to that of the dark state. Parts
(c) and (d) present the corresponding trajectories of states |χe(t )〉
and |χ f (t )〉, respectively. The spherical surfaces shown correspond
to λe, f (t ) at the end of the process.

Furthermore, our geometric representation for the angular
momentum can be extended to mixed states in a straightfor-
ward way. The Majorana stars S1i, S2i are now defined on
spheres with radiuses λi. Correspondingly, the bisector of the
angle ηi = cos−1(S1i · S2i ) is OO′

i = (S1i + S2i )/2 and the
total averaged angular momentum 〈J〉 = ∑

i=d,e,f〈Ji〉 can be
obtained geometrically via

〈Ji〉 = 2λiOO′
i

λ2
i + |OO′

i|2 , (40)

which generalizes Eq. (27) to mixed states. The 〈Ji〉 vectors
are shown separately in Figs. 7(b)–7(d) with black lines.

To summarize, we introduced a geometrical representation
that requires the specification of three pairs of Majorana stars
and three radiuses that add up to unity in order to completely
and uniquely determine the single-qutrit state ρ in the three-
dimensional Hilbert space. This procedure can be generalized
to larger dimensions in a straightforward way.

We have also performed quantum process tomography [54]
to characterize the STIRAP and saSTIRAP protocols for the
case of open-system qutrit. We prepare our qutrit in nine
initial states (ρi, i ∈ {1, 9}}), which form the complete basis
for single-qutrit density matrices. Each of these initial states
are allowed to evolve under the same process, which is to be
characterized. We simulate the evolution of the system under
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the STIRAP and saSTIRAP dynamics, both in the presence
and absence of the system-environment interaction, governed
by the Lindblad master equation, and we obtain the corre-
sponding process matrices. For both STIRAP and saSTIRAP,
we find that the process matrices for the case of decoherence
with the parameters above match with the process matrices for
the no-decoherence case with a fidelity of ≈0.77 (correspond-
ing to a trace distance of ≈0.25).

To conclude this subsection, we see that even in the pres-
ence of decoherence, the Majorana representation can be
extended to describe the STIRAP and saSTIRAP dynamics.

E. Discussion

Although the simulations presented in this section
were done with parameters specific to one experimental
setup—a three-level superconducting circuit driven by three
microwaves—we emphasize that the results are more general.
Indeed, processes such as STIRAP and most recently also sa-
STIRAP have been implemented on a remarkable large array
of experimental platforms [27,33]. For example, while in our
analysis the introduction of the symmetrized-state represen-
tation appears as an abstract mathematical construct, leading
to the concurrence result plotted in Fig. 6(c), there are well-
established experimental cases when STIRAP does involve
two physically distinct objects. One example is the qubit-
cavity system, which appears in both atomic physics [55]
and circuit QED [56]. Another experimental realization is the
transfer of population between two spatially distant qubits
via a lossy transmission line [57]. Stopping these processes
midway [36] results in a maximally entangled state between
the cavity and the atom (qubit), as predicted by our approach.
Another experimental platform is ultracold atomic gases. In
the case of bosonic atoms, the spin-coherent state introduced
in Sec. II is a Bose-Einstein condensate of N = 2 j particles,
with macroscopic wave function

| j, n̂〉 = 1√
N!

[
cos

θ

2
a† + sin

θ

2
eiϕb†

]N

|∅〉, (41)

where | j, m〉 = [1/
√

( j + m)!( j − m)!](a†) j+m(b†) j−m|∅〉,
|∅〉 is the vacuum state, and the angular momentum
can be written in the Schwinger representation as Jx =
(a†b + b†a)/2, Jy = (a†b − b†a)/2, and Jz = (a†a − b†b)/2.
The operators a and b typically correspond either to internal

atomic states or to the localized states of a two-well
potential [58–60]. The case N = 2 is relevant for the
formation of ultracold molecules by STIRAP [61–63] and
has further attracted a lot of interest due to the experimental
possibilities of realizing, controlling, and observing only two
atoms in an optical lattice [64–68]. We note that, for this
system, the signature of Bose-Einstein condensation is zero
concurrence, while finite concurrence signals the appearance
of a fragmented state [69–71].

V. CONCLUSIONS

We have investigated the Majorana representation of the
evolution under STIRAP and superadiabatic STIRAP. We
have shown that the dark states are represented by two stars
on the circle defined by the intersection of the xOz plane
with the Majorana sphere. We have also introduced a repre-
sentation of the spin-1 average vector, which evolves along
the Oz axis, and we have shown how its rate of change in
the three-dimensional space is a measure of a state change
of the qutrit in the Hilbert space. This vector can be used to
characterize the degree of nonadiabaticity of the processes.
The representation puts clearly into evidence the role of the
counterdiabatic drive in saSTIRAP that corrects the deviations
of the trajectory from the adiabatic path, and as such it offers
a sensitive visual diagnosis tool for errors caused by nonadi-
abaticity and ac Stark shifts. Interestingly, this drive can be
derived by using the Majorana polynomial. We have done an
in-depth analysis of the Majorana trajectories resulting from
STIRAP and saSTIRAP with and without the dynamically
corrected phases used to compensate for the ac Stark shifts,
and also for evolutions that include decoherence. We have
also analyzed the effectiveness of the STIRAP and saSTIRAP
processes via the distance between the Majorana stars.
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