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Quantum valence bond ice theory for proton-driven quantum spin-dipole liquids
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We present a theory of a hybrid quantum liquid state, the quantum spin-dipole liquid (QSDL), in a
hydrogen-bonded electron system, by combining a quantum proton ice and Anderson’s resonating valence
bond spin liquid theory, motivated by the recent experimental discovery of a quantum spin liquid with proton
fluctuations in κ-H3(Cat-EDT-TTF)2 (a.k.a. H-Cat). In our theory, an electron spin liquid and a proton dipole
liquid are realized simultaneously in the ground state called quantum valence bond ice. In this state, neither of
them can be established independently of the other. Analytical and numerical calculations reveal that this state
has a large entanglement entropy between spins and dipoles, which is far beyond the (crude) Born-Oppenheimer
approximation. We also examine the stability of QSDL with respect to perturbations and discuss implications
for experiments in H-Cat and its deuterated analog D-Cat.
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I. INTRODUCTION

Hydrogen bonds occupy a unique position in condensed
matter physics, where we can expect a huge quantum para-
electricity due to its lightness. Most hydrogen-bonded systems
so far were treated within the (crude) Born-Oppenheimer
approximation, where we ignore quantum entanglement be-
tween atomic motion and electronic states. However, recently
it was recognized that in many hydrogen-bonded materials the
quantum nature of protons plays an essential role and even af-
fects basic properties of the system [1–6]. Indeed, protons can
tunnel quantum mechanically between two stable positions of
the O-H · · · O bonding and furthermore the hydrogen bonds
are subject to the ice rule due to the frustration in a wide range
of systems, including ferroelectric KH2PO4 [4,7], hexagonal
water ice [5,8], and molecular crystals [6,9,10].

Recently, a new member of hydrogen-bonded materials,
purely organic κ-H3(Cat-EDT-TTF)2 (called H-Cat), was syn-
thesized [11–19]. H-Cat has a quasi-two-dimensional (2D)
triangular lattice structure of dimers with moderate interlayer
coupling, and each layer is connected by hydrogen bonds
which also form a triangular lattice. Experimentally, protons
are unfrozen down to the lowest temperature and the observed
quantum paraelectricity can be attributed to proton tunneling
[16]. In stark contrast to the other hydrogen-bonded materials,
H-Cat is shown to be a dimer Mott insulator, where we can
expect strong electron correlation. Moreover, in H-Cat, spins
delocalized over the π -conjugated orbital are also fluctuating
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without any magnetic order below a temperature scale close
to that of the quantum proton motion. This implies that a
quantum liquid state of unknown type is realized in H-Cat,
where both protons and electrons are quantum mechani-
cally disordered simultaneously and are strongly entangled
with each other, which makes this material far beyond the
(crude) Born-Oppenheimer approximation. On the other hand,
the deuterated counterpart D-Cat exhibits a charge density
wave (CDW) state below 185 K, where protons and elec-
trons together show a coupled charge order, indicating strong
Coulomb interaction between them [11,13,16]. Thus, such a
large isotope effect strongly suggests that the proton tunneling
is responsible for the possible hybrid quantum liquid state in
H-Cat. However, it is unclear why proton and spin fluctuations
can coexist in a quantum liquid state.

The triangular lattice of H-Cat is a prototypical example
of frustrated lattices and such a frustrated lattice can im-
pose constraints on proton and spin configurations, leading
to macroscopic degeneracy at a classical level. Quantum fluc-
tuations could potentially realize a quantum liquid state out
of the degenerate classical states as originally proposed in
Anderson’s theory of the resonating valence bond (RVB) state
[20–22]. The basic mechanism of realizing a quantum liquid
was later employed in the theories of qunatum spin ice and
water ice, where the RVB state is exactly realized by tuning a
system into the exactly solvable Rokhsar-Kivelson (RK) point
[21–26]. This observation would imply that both the electron
spin liquid and the proton dipole liquid can be treated in a
unified manner to describe a spin-dipole coupled quantum
liquid.

In this paper, motivated by the experimental discovery of
H-Cat, we present a theory of a hybrid quantum liquid state,
the quantum spin-dipole liquid (QSDL), in hydrogen-bonded
electron systems by combining the concepts of Anderson’s
RVB state of electron spins and a quantum ice of protons.
Although a hybrid quantum spin liquid itself is discussed in
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the literature [27–33], including spin-charge coupled purely
electron systems without hydrogen bonds [34–38], its en-
tangled nature has never been discussed in detail. In our
theory, the RVB state is extended to describe the entangle-
ment between spins and dipoles. We give a simple concrete
description of the QSDL based on a minimal model which
incorporates three key features of the QSDL, i.e., macroscopic
classical degeneracy, quantum proton tunneling, and electron
correlations. The resulting QSDL is named quantum valence
bond ice, and the property of this state will be discussed in
detail from analytical and numerical perspectives. Though this
unified theory does not explain everything observed in H-Cat,
especially the absence of a spin gap [16], we can understand
some basic differences between H-Cat and D-Cat based on a
universal nature of a quantum liquid. Thus, while the model
itself is idealized to some extent, it can give a clear physical
picture of the state observed in H-Cat.

II. MODEL

Since the primary purpose of the present study is to present
a firm basis for hybrid spin liquids, it is desirable to introduce
an appropriate model which is inspired by the candidate ma-
terial H-Cat or D-Cat. First, we focus on the electron sector
of H-Cat or D-Cat where there are two inequivalent dimers
(four sites) in the unit cell, and thus consider an idealized
model where tetramers are introduced as a fundamental unit
of the system. The tetramer would be regarded as a pair of
dimers, and therefore the model can describe not only the
QSDL relevant to an H-bonded system but also a CDW state
corresponding to a D-bonded system on an equal footing, as
seen in H-Cat or D-Cat. Our Hamiltonian contains both holes
and protons, and is defined by

H = Hel + Hpro + Hel–pro, (1)

Hel = tel

∑

�

∑

i, j∈�
c†

isc js + Jel

∑

�

∑

i, j∈�
Si · S j, (2)

Hpro = tpro

∑

〈i j〉
σ x

i j + Jpro

∑

〈〈i j〉,〈kl〉〉
σ z

i jσ
z
kl , (3)

Hel–pro = g
∑

〈i j〉
(n j − ni )σ

z
i j . (4)

The holes are described by the t-J model where double oc-
cupancy is prohibited by the strong on-site interaction [39]:
a real tel is a hole-hopping parameter inside a tetrahedron
denoted by �, and Jel > 0 is a spin-spin exchange interaction
between nearest-neighbor (NN) holes (see Fig. 1). c js is an
annihilation operator of a hole at the jth site with a spin s, and
S j are spin-1/2 operators defined for this hole. The summation
over s =↑,↓ is implied. σ i j are Pauli matrices defined on each
hydrogen bond 〈i j〉 connecting the NN tetrahedra, and two
eigenstates with eigenvalues ±1 of the σ z

i j operator correspond
to the stable positions of a proton on the hydrogen bond 〈i j〉
[16,19]. The tetrahedra sit on vertices of a diamond lattice and
σ z

i j is defined such that σ z
i j = +1 for the sites i ( j) belonging

to the A (B) sublattice of the diamond lattice corresponds to
a proton position away from the A-sublattice site i. A real tpro

represents quantum tunneling between the two positions, and
Jpro > 0 is a Coulomb repulsion between the protons on a

(a) (b)

FIG. 1. (a) Tetrahedron of electron sites. (b) Diamond lattice
network of proton bonds. Blue dashed lines represent proton sites
and white circles represent electron sites. In the following, yellow
ellipses represent valence bonds of holes. Blue solid lines represent
proton interactions and orange dotted lines represent electron or hole
hoppings. A red circle represent the electron-proton interaction. For
later purposes, an additional proton-proton interaction J ′

pro and an
intertetrahedron hole hopping t ′

el are also shown.

NN pair of bonds 〈〈i j〉, 〈kl〉〉. g > 0 is a Coulomb repulsion
between the hole and the proton. We will later extend the
model Eq. (1) and discuss effects of an additional proton-
proton interaction and intertetrahedron hole hopping.

To be concrete, we consider a range of model parameters
by referring to H-Cat or D-Cat. Since the dimer Mott insu-
lator H-Cat is a one-hole-filled system [11,13,16,18,19], we
consider two-hole filling for each tetrahedron which is a coun-
terpart with the same filling in our model. Essentially the same
argument can also be applied for a two-electron filling system.
While Hel has a form of the t-J model, Hpro is a transverse-
field Ising model on the frustrated pyrochlore lattice, and
related models have been investigated as a model for quantum
spin liquids [21–26]. g is supposed to be very large, i.e.,
g ∼ O(103–4) K, because it comes from strong Coulomb re-
pulsion. Jpro is also large enough, i.e., Jpro ∼ O(100) K, which
is taken from the antiferroelectric transition temperature in
D-Cat. In addition, we suppose |tpro| 	 Jpro and |tel| 	 g by
referring to the parameters in H-Cat where tpro ∼ 1-10 K and
tel ∼ 10-100 K [11,16,18,19,40], which allows a perturbation
theory with respect to tpro. The magnetic coupling is assumed
to be Jel ∼ 10-100 K taken from the value for H-Cat, and one
can focus only on the singlet sector of a tetrahedron when the
temperature is well below Jel. This means that we consider a
spin-gapped state for simplicity, but our theory is applicable
even to the triplet sector just by replacing singlets by triplets,
and thus our theory can be extended to the case where a
spin gap is zero. In addition, a gauge mean-field theory is
known to describe a fermionic excitation from an ice state
[41], which would potentially describe the observed exotic
excitations [16].

III. ANALYSIS OF GROUND STATE

A. QSDL as a U(1) quantum liquid

In this section, the ground state of the Hamiltonian Eq. (1)
is discussed by mapping it to a quantum vertex model based
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FIG. 2. The 6th-order perturbation process in tpro between the
flippable ice states. Blue dashed arrows represent proton configu-
ration and the corresponding valence bond configurations are also
shown. All arrows obey the ice rule.

on a perturbation theory. In the case of tpro = 0, the Hamilto-
nian is exactly solvable and the ground states are degenerate
for all proton configurations obeying the ice rule. In the limit
of tel/g → 0, the proton configuration completely couples to
the valence bonds of hole pairs, and the position of the valence
bond is fixed inside each tetrahedron in the ground states.
Since the valence bonds also form an ice configuration, this
state may be called classical valence bond ice. This basically
holds true even for a nonzero tel where one can diagonalize
the electron Hamiltonian of each tetrahedron in the valence
bond basis and the ground state of a tetrahedron will be a
dressed valence bond state with a finite excitation gap ∼g.
Thus, every degenerate ground state of the total system at
tel �= 0 is adiabatically connected from that at tel = 0.

We now introduce a quantum tunneling of protons tpro �= 0,

which will lift the macroscopic degeneracy of the classical
ground states in the same way as in the quantum spin ice
[21–26]. We can treat the effects of tpro when |tpro|/Jpro 	 1
by using the degenerate perturbation theory. Though essen-
tially the same argument is true for a moderate tel, we assume
the condition |tel|/g 	 1, which makes a physical picture
clear. Then, if a proton moves from its ground-state position
to break the ice rule, a hole in the nearby tetrahedron will
be pushed away from the proton because of the repulsive
interaction g between them. In this way, the proton motion is
always accompanied by the hole hopping inside a tetrahedron
and vice versa. We note that such a charge-correlated hopping
leads to effective coupling between spins and protons despite
the absence of an explicit spin-orbit interaction. In this sense,
spin fluctuations and proton fluctuations are tightly connected
with each other, which will eventually lead to the QSDL
state. A nontrivial contribution appears from the 6th-order
perturbation in tpro/Jpro. This process results in the following
effective Hamiltonian in addition to a constant energy shift of
the degenerate ground states,

Heff = −K
∑

plaquette

[|�〉 〈�| + |�〉 〈�|], (5)

where the flipping operator is given by the product of the
hole and proton operators along a hexagonal plaquette loop
as shown in Fig. 2: |�〉 〈�| = c†

1σ
+
12c2c†

3σ
−
34c4 · · · c†

11σ
−
11,12c12

with σ± = (σ x ± iσ y)/2 in the lowest-order approximation
for tel/g (see Fig. 2 for the definition of the site numbers). The

sum runs over the hexagonal plaquettes of the diamond lattice,
and the coefficient K > 0 is estimated to be O(t6

pro/J5
pro) with

a prefactor O(t6
el/g6) when |tel| is small (see Appendix A for

details).
The effective Hamiltonian Eq. (5) is formally equivalent to

the quantum ice model, which has been extensively studied
in the context of the quantum spin ice [21–26]. We stress,
however, that the physical constituents of the low-energy de-
grees of freedom |�〉 , |�〉 are very different from those in
the quantum spin ice; they are spin-dipole coupled degrees
of freedom in the former, while solely spins in the latter.
The ground state of the effective Hamiltonian is known to be
the quantum liquid state, which is described by an emergent
compact U(1) electromagnetic field which is deconfined in
3 + 1 dimensions. Thus, we have theoretically established that
the quantum proton motion can indeed drive the system into a
QSDL, namely the quantum valence bond ice, and form a sta-
ble three-dimensional (3D) phase. It is stressed that both spins
and protons are unfrozen simultaneously, forming a hybrid
liquid state. The coupled spins and dipoles behave as gapless
“photons” of the emergent U(1) gauge theory, while local
proton excitations which break the ice rule with an energy gap
∼Jpro are regarded as “monopoles” [21–26].

One of the most characteristic features of the QSDL is a
large entanglement between protons and holes. The corres-
ponding entanglement entropy defined by SEE =
−Trel ρel ln ρel with ρel = Trpro |�〉 〈�| for the ground
state |�〉 can provide essential information of its
entanglement structure. Now one can estimate that
SEE ∼ ln(the number of flippable ice states) = O(Ntot ), where
Ntot = Npro + Nel and Npro/el is the total number of proton
bonds or electron sites. This is easily understood for
example based on the explicit calculation of SEE for the
Rokhsar-Kivelson state [42] (see Appendix B). Therefore,
the QSDL has an entanglement entropy with a volume law in
contrast to the area law for a real-space bipartition [43,44].
Such a large entanglement between protons and holes is an
intrinsic nature of the QSDL, which is far beyond the (crude)
Born-Oppenheimer approximation.

B. Stability of QSDL

Up to here, we have been based on the idealized model
Eq. (1) where a minimal number of terms are included to de-
scribe the QSDL. However, we can consider additional terms
in general, and considerations on such terms are important
to discuss the relevance of our model to real materials. Here,
we try to study the stability of the QSDL by introducing two
types of perturbations into the model Eq. (1): (i) an additional
interaction between protons which favors a classical order
by lifting the macroscopic degeneracy of protons, and (ii) an
intertetrahedron hole hopping which may also lift the macro-
scopic degeneracy of electrons. The following discussions
will be supplemented with numerical calculations later.

First, we examine effects of additional proton interactions
such as J ′

pro

∑
σ z

i jσ
z
kl shown in Fig. 1(b), and discuss impli-

cations for the qualitative difference in X -Cat (X = H, D).
The additional interaction lifts the macroscopic degeneracy
of the classical ground states, and an infinitesimal J ′

pro will
lead to an ordered state when tpro = 0 by the order-by-disorder
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FIG. 3. (a) Schematic phase diagram for the 3D thermodynamic
system in the tpro-J ′

pro plane. The entanglement entropy SEE is small
in the AFE-VBS phase, while it is large exhibiting the clear volume
law SEE = O(volume) in the QSDL phase. “Polarized proton” in the
large-tpro region means that protons are aligning in the direction of
the “transverse field” tpro. (b) Entanglement entropy for the finite-
size 2D system Eq. (10) calculated by the exact diagonalization. The
parameters used are (tel, g, t ′

el ) = (0.3, 2.0, 0.0) in units of Jpro = 1.0.

mechanism. Indeed, classical (tpro = 0) spin ice models with
additional interactions have been extensively studied, where
several ordered states are stabilized depending on types of
the additional interactions [45,46]. In the present system, we
consider the J ′

pro interaction which favors an antiferroelectric
(AFE) state of protons, but it competes with the quantum
tunneling tpro [9,22,41]. Based on these observations, one can
draw a schematic phase diagram of the perturbed model with
both J ′

pro and tpro as shown in Fig. 3(a), where the QSDL with
a large entanglement entropy remains stable for J ′

pro 	 K,

while the AFE state with a small entanglement is favored for
J ′

pro � K. Note that, because g � |tel|, holes simultaneously
show a valence bond solid (VBS) state corresponding to the
proton AFE state when J ′

pro � K. Experimentally, an H bond
will have a larger tpro and hence a larger K than a D bond.
Therefore, an H-bonded system can exhibit a QSDL, while a
D-bonded system shows a classically ordered AFE-VBS state.
This is a generic feature of proton-driven quantum liquids
and therefore may be relevant to the experimentally observed
isotope effect in X -Cat, where H-Cat is a QSDL while D-Cat
exhibits an AFE CDW order [11,13,16]. The observed isotope
effect can be attributed to this competition. Note that, ac-
cording to the previous studies of the pyrochlore spin liquids
[47,48], a sufficiently large tpro will lead to the trivial polarized
state of protons where they are simply aligned in the direction
of the “transverse field,” which is nothing but the proton
tunneling tpro. In this state, the proton sector will be decoupled
from the electron sector, resulting in vanishing entangle-
ment between them. This state is not a quantum liquid state,
although the protons are fluctuating in the σz basis. We ob-
served reduction of the entanglement entropy for tpro/Jpro � 1
in our numerical calculations of the finite-size system (not
shown). However, the polarized proton state seems irrelevant
to H-Cat since tpro is estimated to be 1–10 K and tpro 	 Jpro is
easily satisfied [16].

Next, we consider the intertetrahedron hole hopping along
the hydrogen bonds, t ′

el

∑
〈i j〉 c†

iσ c jσ as shown in Fig. 1(b),
within a perturbative regime |t ′

el| 	 |tel|. The intertetrahedron
hole hopping will induce several possible interactions be-
tween the valence bonds on neighboring tetrahedra. To see
this, we consider an extended Hubbard model of holes from

which the t-J model in Eq. (1) is derived. The Hubbard Hamil-
tonian for holes is

H̃el = Ht + HU , (6)

Ht = tel

∑

�

∑

i, j∈�
c†

isc js + t ′
el

∑

〈i j〉
c†

isc js, (7)

HU = U
∑

i

ni↑ni↓ + V
∑

�

∑

i, j∈�
nin j, (8)

where t ′
el is an intertetrahedron hopping along a hydrogen

bond 〈i j〉. Here U > 0 is an on-site interaction and V (< U )
is an intersite interaction within each tetrahedron.

The 2nd-order perturbation in Ht gives rise to sev-
eral terms, Jel[Si · S j − nin j/4] with Jel = 2t2

el/(U − V ),
J ′

el[Si · S j − nin j/4] with J ′
el = 2t ′2

el /U , and J ′′
el[ni(n j − 1) +

(ni − 1)n j] with J ′′
el = t ′2

el /V . The first term is an exchange
interaction inside each tetrahedron, which is included in
Eq. (1), while the other two terms are new intertetrahedron
interactions. Sufficiently large U � |tel| and V � |t ′

el| lead to
constraints on possible hole filling so that ni � 1 for all sites i,
and

∑
i∈� ni = 2 for each tetrahedron assuming quarter filling

of holes. The resulting state can be considered as a “tetramer
Mott insulator,” as expected.

The perturbed Hamiltonian is now reduced to

H̃el  tel

∑

�

∑

i, j∈�
c†

isc js + Jel

∑

�

∑

i, j∈�
[Si · S j − nin j/4]

+ J ′
el

∑

〈i j〉
[Si · S j − nin j/4]

+ J ′′
el

∑

〈i j〉
[ni(n j − 1) + (ni − 1)n j]. (9)

In the following, we only consider a singlet-pair state of
holes on each tetrahedron since there is an energy gap
∼Jel � J ′

el, J ′′
el between singlet and triplet states. We note

that −(Jel/4)
∑

i, j∈� nin j terms do not matter in the present
system where the total fermion number inside a tetrahedron �
is fixed.

The J ′
el term is nonzero only when both of the two sites

connected by the hydrogen bond 〈i, j〉 are occupied, and
similarly the J ′′

el term is nonzero only when one of the two
sites connected by the hydrogen bond is occupied. Effects of
the J ′

el term will be strongly suppressed by a large interaction
g � J ′

el between holes and protons included in the original
model, because of the energy cost due to g for a configuration
favored by J ′

el. On the other hand, the J ′′
el term effectively adds

to the interaction g, because the J ′′
el term also favors common

local charge configurations as the g term does. Therefore,
these two potential interactions between singlet pairs on the
nearest-neighbor tetrahedra could effectively be absorbed into
the interaction g, or equivalently the intratetrahedron hopping
tel. Then, it is concluded that thanks to the stability of the
QSDL for a wide range of tel/g, the QSDL is also stable with
respect to the intertetrahedron hopping t ′

el. This behavior is
numerically confirmed by exact diagonalization in the next
section.
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(a) (b)

FIG. 4. (a) 2D lattice model used for the exact diagonalization.
Blue dashed lines represent hydrogen bonds and white circles are
electron sites. The interaction Jpro (blue) leads to the 2 in 2 out
ice rule, while an additional interaction J ′

pro (green) favors an AFE
state. (b) Proton AFE state (blue dashed arrows) and corresponding
hole VBS state (yellow ellipses) stabilized by J ′

pro.

C. Numerical calculations

The above discussions on the stability can be supplemented
by numerical calculations using exact diagonalization for a
finite-size system with perturbations, such as the J ′

pro term. To
this end, we consider a 2D version of our model Eq. (1) which
consists of 8 proton bonds and 16 electron sites (8 holes)
with a periodic boundary condition. Although the system size
is very small, this model can reproduce many of the main
results in the previous sections and thus supports the above
discussions. The Hamiltonian used in the numerical exact
diagonalization is written as

Htot = H + Hpert, (10)

where H is a two-dimensional (2D) version of Eq. (1), in
which tetrahedra are located on vertices of a square lattice as
shown in Fig. 4. Hpert describes perturbations,

Hpert = J ′
pro

∑

〈i j〉,〈kl〉
η

i j
klσ

z
i jσ

z
kl + J ′

el

∑

〈i j〉
[Si · S j − nin j/4]

+ J ′′
el

∑

〈i j〉
[ni(n j − 1) + (ni − 1)n j]. (11)

The J ′
pro term represents an additional interaction between

protons with properly chosen η
i j
kl = ±1 which favors an an-

tiferroelectric state, and the J ′
el, J ′′

el terms are intertetrahedron
interactions between holes taken from Eq. (9). Note that for a
large g, holes simultaneously exhibit the valence bond solid
state out of the classical valence bond ice manifold corre-
sponding to the proton AFE state. In the present finite-size
system, there are 18 ice states at tpro = J ′

pro = J ′
el = J ′′

el = 0,

and 16 are connected by the 2nd-order perturbation in tpro. The
2nd-order tunneling is possible because the linear system size
for one direction is 2 and the periodic boundary condition has
been imposed. Furthermore, the conservation of the total spin
for each tetrahedron, [H, S�] = 0 for S� = ∑

i∈� Si, greatly
reduces the computational cost for the unperturbed Hamilto-
nian H. Taking this advantage, we focus only on the subspace
where S� = 0 for every tetrahedron also for the perturbed
Hamiltonian Htot, since there is an energy gap ∼Jel between
the S� ≡ 0 sector and other sectors in H. From now on, we

omit Jel because the triplet sectors of the original Hilbert space
are all projected out.

When J ′
pro is moderately strong, the 2D model shows an

AFE state of the protons and the holes simultaneously form a
VBS state for a large g. This state will have a corresponding
long-range order in the thermodynamic limit. On the other
hand, for a small J ′

pro, it can exhibit a QSDL-like state which
is a superposition of many flippable ice states. Indeed, we find
that out of the total N = 18 ice states there are Nflip = 16
ice states, which are connected by the lowest-order pertur-
bation in tpro. The QSDL-like state is essentially given by a
superposition of these 16 reduced ice states. The AFE-VBS
state is clearly distinguished from the QSDL-like state even
in the present finite-size system, which is well captured by
the entanglement entropy SEE(tpro, J ′

pro) between protons and
holes. The entanglement entropy is given by

SEE = −Trel ρel ln ρel

= −
∑

n

λn ln λn, (12)

where {λn} are the squared singular values of the Schmidt
decomposition of the ground state wave function |�〉 into the
proton and electron subspaces,

|�〉 =
∑

n

√
λn |pron〉 ⊗ |eln〉 . (13)

The results are shown in Fig. 3(b), where the two ground
states—the AFE-VBS state and the QSDL state—are well
characterized by SEE. The saturated value SEE  ln 16 for a
large tpro means that the ground state is essentially given by
the superposition of 16 flippable ice states with a nearly equal
weight, and the ground state can be considered as a QSDL in
this sense. Note that the QSDL is a stable phase extended in
the parameter space, although it is parametrically small as ex-
pected from other quantum ice systems. In the limit of tpro →
0, the ground state is given by a superposition of simple AFE-
VBS states with fourfold degeneracy due to the translational
and rotational symmetries. Therefore, SEE(tpro → 0) → ln 4
for such a state, while SEE → lnNflip = ln 16 deeply inside
the QSDL region with a moderately large tpro. This qualita-
tively reproduces the phase diagram in Fig. 3(a) proposed to
describe the difference between H-Cat and D-Cat.

In the 3D thermodynamic system, Nflip, N ∼ eNtot and the
present QSDL-like state will be replaced by a true quantum
liquid state where a macroscopic number of ice states are in-
volved, resulting in a large entanglement entropy, SEE ∼ Ntot.

Note that similar crossover behaviors in the finite-size system
can also be seen in correlation functions, and those quantities
will characterize the corresponding phase transition in the
thermodynamic limit. We can also discuss the effects of an
intertetrahedron hopping t ′

el, and numerical results suggest
that induced intertetrahedron valence bond interactions have
only small effects on the QSDL if |t ′

el| 	 |tel|, and the QSDL
is parametrically stable. Detailed studies on the stability of the
QSDL would require more elaborate investigations, such as
cluster-based calculations [49], and are left for a future study.
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FIG. 5. Correlation functions (a) 〈O2
AFE〉 for protons and (b)

〈O2
VBS〉 for holes. The parameters are the same as used in Fig. 3,

(tel, g, t ′
el ) = (0.3, 2.0, 0.0), in units of Jpro = 1.0.

Similar characterization is also possible by correlation
functions corresponding to the long-range order of the AFE
and VBS. We consider the following two order parameters,

OAFE = 1

Npro

∑

〈i j〉
ηi jσ

z
i j, (14)

OVBS = 4

Nel

∑

�
|VBS�〉 〈VBS�| , (15)

where ηi j = ±1 characterizes the proton AFE configuration
and |VBS�〉 is the VBS configuration of the holes
on a tetrahedron corresponding to the proton AFE
shown in Fig. 4(b). The calculation results are shown in
Fig. 5. Note that the AFE correlation function can be
evaluated explicitly for an extreme AFE state of protons,
|AFE〉 = (1/

√
4)

∑4
k=1 ⊗〈i j〉 |σ z

i j = η
(k)
i j 〉 with {η(k)

i j }4
k=1

being 4 degenerate AFE configurations, and it is given
by 〈AFE| O2

AFE |AFE〉 = 1/2. Similarly, for an extreme
QSDL state |QSDL〉 = (1/

√
Nflip)

∑
C∈flip |proC〉 ⊗ |elC〉

which is the equal-weight superposition of Nflip = 16
flippable ice states, the AFE correlation is given by
〈QSDL| O2

AFE |QSDL〉 = 1/4. These behaviors are
reproduced in the numerical calculations. Note that
〈QSDL| O2

AFE |QSDL〉 → 0 in the thermodynamic limit.
The same thing happens for 〈O2

VBS〉.
Next, we discuss the effect of the intertetrahedron in-

teractions J ′
el, J ′′

el arising from the hole hopping |t ′
el| 	 |tel|.

Figure 6 shows entanglement entropies SEE for different val-
ues of (g, J ′

el ) at J ′′
el = 0 and (g, J ′′

el ) at J ′
el = 0. The other

parameters used are tpro = 0.2Jpro, J ′
pro = 0. Here SEE(g, J ′

el )
is only slightly decreased by the introduction of J ′

el, because
it competes with g, but is negligible for a large g. We see that
SEE(g, J ′′

el ) is a little enhanced by J ′′
el, since it favors valence

FIG. 6. Entanglement entropies (a) SEE(g, J ′
el ) at J ′′

el = 0 and
(b) SEE(g, J ′′

el ) at J ′
el = 0. The other parameters are tpro = 0.2Jpro,

J ′
pro = 0.

bond configurations including the flippable ice states. These
behaviors are consistent with the qualitative discussion in
the previous section. Therefore, the QSDL is parametrically
stable for a small intertetrahedron hole hopping t ′

el.

IV. SUMMARY AND DISCUSSION

We have developed a theory of a hybrid quantum liquid,
QSDL, by combining the quantum proton ice and Anderson’s
RVB state, motivated by the recent experimental discovery of
the quantum spin liquid with proton fluctuations in H-Cat. We
proposed an idealized model and demonstrated that proton
tunneling drives the system into the quantum valence bond
ice, a QSDL described by an emergent U(1) gauge theory.
Our theory sheds light on the essential roles of protons in the
realization of QSDLs by proposing a coherent understand-
ing of spin-dipole coupled systems, and thus can provide a
basis for future developments not only for X -Cat but also
for other QSDL candidate systems [31,50]. For example, a
hydrogen-assisted Kitaev spin liquid material H3LiIr2O6 was
recently discovered [31], and proton tunneling is suggested to
be important to stabilize the quantum spin liquid [51–54]. In
addition, although we have been based on the idealized model
Eq. (1) to elucidate the impacts of H bonds, such a model
itself could be designed in metal-organic frameworks (MOFs).
Indeed, there are a variety of H-bonded MOFs and the nature
of the H bonds have been discussed extensively [55,56]. Re-
alization of an ideal system for a hybrid quantum liquid by
utilizing the flexibility of MOFs would be an interesting future
direction.

The large entanglement predicted by our theory charac-
terizes a QSDL in general, and it would lead to spin-dipole
coupled dynamics such as a magnetoelectric effect, which
could provide an experimental signature of the entangled
spins and protons. Other experimentally observable quantities
characterizing a QSDL are dynamical ones, which can be
captured by neutron scattering or nuclear magnetic resonance.
Further investigation is necessary to discover a smoking gun
signature for the strong entanglement between the two degrees
of freedom.
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APPENDIX A: DERIVATION OF A QUANTUM ICE MODEL

Here we derive the effective low-energy Hamiltonian
Eq. (5) from the original Hamiltonian Eq. (1), based on the
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FIG. 7. Overlap matrix element | 〈ela|elb〉 |1/6 as a function of tel

and g. For large values of g, the overlap is linear in tel.

degenerate perturbation theory with respect to tpro. The 6th-
order perturbation in tpro gives

Heff = PVt
1 − P

E0 − H0
Vt · · ·Vt

1 − P
E0 − H0

VtP, (A1)

where we decompose the original Hamiltonian H (tpro) given
by Eq. (1) into H (tpro) = H0 + Vt , and H0 = H (tpro = 0).
Here P is a projection operator onto the degenerate ice state
manifold with an energy E0.

Though an intratetrahedron hole hopping tel has been in-
cluded in H0 and the perturbation itself is done for a small
tpro/Jpro, we concentrate on a principal contribution coming
from the lowest order of tel/g. To do this, we take a basis
set consisting of product states of hole and proton sectors
{|pro〉 ⊗ |el〉}. Each hole state |el〉 can be explicitly obtained
by diagonalizing the hole Hamiltonian of each tetrahedron
for a given proton configuration |pro〉 . By inserting an iden-
tity operator, 1 = ∑ |pro〉 ⊗ |el〉 〈pro| ⊗ 〈el| , we find for two

flippable ice states |a〉 , |b〉 ,

hab  −12t6
pro(21J3 + 118GJ2 + 214G2J + 120G3)

(J + G)3(J + 2G)2(J + 3G)(J + 4G)(J + 5G)

× 〈ela|elb〉 , (A2)

where hab = 〈a|Heff|b〉 , J = 4Jpro, and G = 2g. Here |ela(b)〉
is the hole wave function in the ice state a (b). The overlap
matrix element can be calculated numerically and is O(t6

el/g6)
for a small |tel| as shown in Fig. 7. Amplitude of the overlap
takes the same value for any pair of electron states connected
by the 6th-order perturbation of tpro, and therefore we simply
denote K ≡ −hab to obtain Eq. (5) in the main text as Heff =
−K

∑ |a〉 〈b| . The effective Hamiltonian can explicitly be
expressed in terms of hole operators c(†)

is , and |ela〉 〈elb| =∏
plaquette c†

isc js (i, j ∈ �) is simply a ring-hopping operator
for each hexagonal plaquette loop in the leading order of the
perturbation in tel/g.

APPENDIX B: ENTANGLEMENT ENTROPY FOR THE
ROKHSAR-KIVELSON STATE

The entanglement entropy between protons and electrons
can be calculated explicitly for an extreme limit of a quantum
spin-dipole liquid (QSDL), the Rokhsar-Kivelson (RK) state.
The RK state is the exact ground state of the ice model Eq. (5)
in the main text with an additional potential μ

∑
[|�〉 〈�| +

|�〉 〈�|] fine-tuned to μ = K. The RK state is a superposi-
tion of all possible ice states, |RK〉 = (1/

√
N )

∑
C |proC〉 ⊗

|elC〉 , where C represents an ice configuration and N is the
dimension of the ice manifold. |proC〉 and |elC〉 are proton and
electron wave functions for a fixed ice configuration C. The
entanglement entropy between protons and holes is given by
SEE = lnN and it obeys a clear volume law SEE = O(Ntot ).
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