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Phase dynamics of delay-coupled quasi-cycles with application to brain rhythms
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We consider the phase locking of two delay-coupled quasi-cycles. A coupled envelope-phase system obtained
via stochastic averaging enables a stability analysis. While for deterministic limit-cycle oscillators the coupling
can produce in-phase, antiphase, and the intermediate “out-of-phase” locking (OPL) behavior via spontaneous
symmetry breaking, such outcomes for the quasi-cycle case are shown to require instead both noise and coupling
delay. The theory, which applies the stochastic averaging method to delayed dynamics, generates stochastic
stability functions that predict the numerically observed OPL behavior as a function of all the system parameters.
OPL for coupled quasi-cycles occurs for additive or multiplicative noise, and for coupled networks of excitatory
and inhibitory neurons as well as networks of inhibitory neurons coupled to one another. Our theory also
predicts that the bifurcation at which the in-phase state becomes unstable lies at smaller delays for stronger
noise. The noise produces the realistic quasi-cycle rhythms and out-of-phase behavior, all the while causing
random reversals of the phase leader. Asymmetry in the coupling between networks, as well as heterogeneity
within each network, also allows for quasi-cycle OPL, although it produces asymmetric bifurcations that bias
the leadership towards one of the networks. These results are relevant to communication between brain areas and
other networks that rely on noise-induced rather than noise-perturbed rhythms.
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I. INTRODUCTION

Noisy oscillations are observed in a wide variety of sys-
tems. Our understanding of the behavior of these systems
in isolation and in networks is governed by the underlying
dynamical origin of the oscillation. The case in which the sys-
tem possesses a deterministic limit cycle which is perturbed
by noise has received much attention [1–3]. Much is known
about the synchronization properties of noise-perturbed limit
cycle systems, such as their ability to lock in phase (IP),
in antiphase (AP), or at phase differences in between, i.e.,
out-of-phase locking (OPL). In contrast, there may be no
underlying deterministic limit cycle, and the generation of the
observed oscillations relies on noise. Although studied to a
much lesser extent, these noise-induced oscillations, known
as “quasi-cycles,” arise in an increasing number of contexts,
from semiconductor lasers to brain dynamics and epidemics
[4–7]. Theory is particularly lacking for coupled quasi-cycles,
thought to enable, e.g., oscillation (or “rhythm”)-based com-
munication between brain areas [7,8].

In this work, the stochastic averaging method (SAM) is
used to obtain an envelope-phase description for coupled
quasi-cycles. It reveals a novel mechanism for OPL. Delays
are included as they are often non-negligible compared to
other system time scales [9,10].
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Although the findings below apply generally, we are partic-
ularly motivated by the communication between brain areas,
thought to require the phase difference between two rhythms
in separate areas being constant over some time interval [11].
The sign of this difference reveals the leadership and direction
of the information flow between the areas [12]. For identical,
symmetrically coupled networks the available theory, based
on deterministic oscillators, invokes spontaneous symmetry
breaking (SSB) to explain OPL. SSB is a deterministic effect
where the two-oscillator system loses symmetry beyond a
critical parameter value, with one becoming the leader and
the other the laggard [13,14]. Flexible, reversible bidirec-
tional communication can then be achieved with brief external
pulses that reverse the leadership [15–17].

However, there is increasing evidence that many brain
rhythms are noise induced and manifest only in brief epochs
of random duration [8,10,18,19]. OPL can also be seen, but
phase locking of quasi-cycles is not well understood, a spe-
cific motivator for our work. While SSB is here shown to not
occur for coupled quasi-cycles, OPL can arise thanks both to
delays and the smoothing by noise of the bifurcation between
IP and AP locking.

Two dominant mechanisms for rhythms in the higher
“gamma” frequency range have been reported in the exper-
imental and theoretical neuroscience literature: Pyramidal-
interneuron network gamma, which involves reciprocally and
self-coupled excitatory and inhibitory neurons (E-I networks),
and interneuron network gamma, which sees inhibitory neu-
rons coupled to one another (I-I networks), often with a delay.
The mechanism of delay and noise-induced OPL in coupled
quasi-cycles is shown below to be present in two coupled
E-I networks (our main focus), as well as in two coupled I-I
networks. In both cases, this OPL persists even if the networks
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are heterogeneous but symmetrically coupled, or identical but
asymmetrically coupled. This suggests a strong and robust
mechanism which could underlie some of the dynamic func-
tional connectivity observed in the brain of several species
at rest and when performing certain tasks [20–22]. These
coupled dynamics, in which each network exhibits quasi-cycle
behavior in isolation, also enable bidirectional exchanges of
information between networks [8]. The leadership can then
alternate randomly between the two networks following fluc-
tuations in the random inputs, as well as be biased by external
pulses as in the case of the coupled oscillator dynamics. We
thus extend to noise-induced rhythms the property of commu-
nication through coherence [23,24] and its expanded version
with propagation delay [25].

After presentation of the general PING model with
noise, we derive the envelope-phase dynamics by extend-
ing the SAM technique to delayed coupling. Analysis of
the symmetric case reveals the delay-and-noise-induced OPL
phenomenon in the coupled quasi-cycles. This is followed by
an extension to the asymmetric and heterogeneous cases. We
complete our study of coupled quasi-cycles by considering
the alternative ING model in the same cases, and end with
a discussion and outlook onto future works.

II. MODEL OF COUPLED E-I NETWORKS

We are motivated by the work on stochastic E-I networks
in Ref. [26], in which all neurons in each population are
simulated as two-state systems that are either quiescent or
active. This leads to a two-dimensional Wilson-Cowan-type
rate model with an E and an I population each with their
own finite size fluctuations. This formalism can also model
sparse connectivity through an appropriate scaling of the
mean synaptic coupling coefficients. To set the scene, we
describe their model in the microscopic, multineuron context
with specific neuron numbers. However, all the analytical and
numerical work is done on the associated two-variable model.

Each of the two networks has NE excitatory (E ) and NI

inhibitory (I) neurons with NE = 4NI , coupled to produce
oscillations near but below a Hopf bifurcation. These two
networks are further symmetrically coupled via long-range
excitatory connections with propagation delay as in Fig. 1.
The state variables are the mean activity of the neurons in
each population, i.e., Ei and Ii, i = 1, 2. The coefficients WEE

and WII are respectively the recurrent excitatory and inhibitory
synaptic coupling, while WIE and WEI are, respectively, the
feedback excitatory and inhibitory synaptic coupling in each
network. In addition, each population in each network re-
ceives a constant external input (hE and hI , respectively).
The long-range excitatory synaptic coupling between the two
E populations is LEE , and between the E population of one
network and the I population of the other network is LIE . The
activity of a neuron in one network is felt by the other network
after a delay τ .

The model is schematized in Fig. 1(a) and described by the
stochastic Wilson-Cowan (SWC) equations [26]:

Ėi(t ) = −αE Ei(t ) + [1 − Ei(t )]βE f
(
sEi (t )

) + g1ξEi (t ),

İi(t ) = −αI Ii(t ) + [1 − Ii(t )]βI f
(
sIi (t )

) + g2ξIi (t ),

FIG. 1. Model. (a) Two delay-coupled E-I networks. (b, c) Fluc-
tuation time series of E1 (blue) and E2 (red) around their equilibrium
points, modeling local field potentials (LFPs), from simulations of
the SWC system [Eqs. (1)] with LEE = 2.0, LIE = 0.5. The in-phase
synchronization seen in (b) for τ = 1 ms is replaced by out-of-phase
behavior for τ = 3.5 ms in (c). Other parameters are WEE = 27.4,
WII = 1.3, WIE = 32, WEI = 26.3, hE = −3.8, hI = −8, αE = 0.1,
αI = 0.2, βE = 1, βI = 2, and σ = 0.006. All simulations in our
paper are done with the Euler-Maruyama method with time step 0.05
ms, except for Fig. 3, where the time step is shorter. A second-order
Butterworth bandpass filter was applied to the fluctuations in (b) and
(c) to limit frequencies to the gamma band (30–100 Hz).

sEi (t ) = WEE Ei(t ) − WEI Ii(t ) + hE + Li, j
EE E j (t − τ ),

sIi (t ) = WIE Ei(t ) − WII Ii(t ) + hi
I + Li, j

IE E j (t − τ ), (1)

for identical and symmetrically coupled networks described
in this section, Li, j

EE = LEE , Li, j
IE = LIE and hi

I with i, j =
1, 2 and i �= j. The total synaptic inputs to E and I popu-
lations in each network are sEi (t ) and sIi (t ), i = 1, 2. The
sigmoidal response of a neuron to its total input is f (x) =
1/(1 + exp(−x)), ξEi (t ) and ξIi (t ) are independent Gaussian
white noises, and g1 and g2 are population-size-dependent
multiplicative noise intensities,

g1(Ei, Ii ) =
√

[1 − Ei(t )]βE f
(
sEi (t )

) + αE Ei(t )

NE
,

g2(Ei, Ii ) =
√

[1 − Ii(t )]βI f
(
sIi (t )

) + αI Ii(t )

NI
. (2)

We define the noise intensities as

σE ≡ 〈(g1(Ei, Ii ))〉, σI ≡ 〈(g2(Ei, Ii ))〉 ,
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where 〈 〉 means the time average. Simulations reveal that the
distributions of these multiplicative noise intensities are very
close to Gaussians, and the values of σE and σI are close to the
means of these distributions. We then defined the total noise
as

σ ≡
√

σ 2
E + σ 2

I . (3)

Our results below also hold for constant functions
g1(Ei, Ii ) = σE and g2(Ei, Ii ) = σI (additive noise).

The rightmost eigenvalues of the deterministic part of
Eqs. (1) are complex conjugate with negative real part (λ =
−ν ± jω0, ν > 0), and imaginary part in the gamma band
(30 < ω0/(2π ) < 100 Hz). Without noise, activities converge
to a fixed point (E10, I10, E20, I20). We focus on fluctua-
tions around this point: Ṽ i

E (t ) = cE (Ei(t ) − Ei0) and Ṽ i
I (t ) =

cI (Ii(t ) − Ii0), where cE = √
NE and cI = √

NI for the case
of the multiplicative noise and cE = cI = 1 for additive noise.
Time series of these local field potentials (LFPs) are illustrated
in Figs. 1(b) and 1(c) with IP behavior for the smaller delay
and OPL for the slightly larger one.

III. ENVELOPE-PHASE DECOMPOSITION

In contrast to the case ν < 0 where the limit-cycle en-
velopes are almost constant (in the weak noise limit), in

the quasi-cycle regime the envelopes and phases (and there-
fore frequencies) fluctuate over a larger range. We extend a
recent single quasi-cycle analysis using the SAM approxima-
tion [19,27] to the coupled case of interest here, noting that
the coupled system still has a deterministic fixed point. A
synchronization transition study for a population of coupled
quasi-cycles was recently done in this regime using a different
method [28]. We write the E and I LFPs as

V 1
E (t ) = Z1(t ) cos(ω0t + φ1(t )),

V 1
I (t ) = α1Z1(t ) cos(ω0t + φ1(t ) + δ1),

V 2
E (t ) = Z2(t ) cos(ω0t + φ2(t )),

V 2
I (t ) = α2Z2(t ) cos(ω0t + φ2(t ) + δ2) . (4)

These trial solutions are motivated by our previous study
[19] where the results using these solutions yielded good
agreement with simulations both near and far from the Hopf
bifurcation, and reproduced many features of the data. The
system to which this trial solution is applied [see Appendix
A, Eqs. (A2)] is also linear and stochastic, and thus harmonic
solutions are a good place to start. An alternate form could be
used if one wishes that a certain feature of the data needs to
be reflected in the model. Inserting these expressions in the
dynamics of the LFPs sustained by noise and applying the
SAM we obtain the following dynamics for the amplitude and
phase dynamics:

dZ1(t ) =
(

− λ1Z1(t ) + D1

2Z1(t )
+ M1

1

[
φ1(t ) − φ2(t − τ )

]
Z2(t − τ )

)
dt + √

D1dWZ1 (t )

dφ1(t ) =
(


1 + M2
1

[
φ1(t ) − φ2(t − τ )

]Z2(t − τ )

Z1(t )

)
dt +

√
D1

Z1(t )
dWφ1(t )

dZ2(t ) =
(

− λ2Z2(t ) + D2

2Z2(t )
+ M1

2

[
φ2(t ) − φ1(t − τ )

]
Z1(t − τ )

)
dt + √

D2dWZ2 (t )

dφ2(t ) =
(


2 + M2
2

[
φ2(t ) − φ1(t − τ )

]Z1(t − τ )

Z2(t )

)
dt +

√
D2

Z2(t )
dWφ2 (t ) , (5)

where the functions M1
1 , M2

1 , M1
2 and M2

2 are given by

M1
1 [x] = γ1

[
α1C

12
EE sin(x + ω0τ + δ1) − C12

IE sin(x + ω0τ )

]

M2
1 [x] = γ1

[
α1C

12
EE cos(x + ω0τ + δ1) − C12

IE cos(x + ω0τ )

]

M1
2 [x] = γ2

[
α2C

21
EE sin(x + ω0τ + δ2) − C21

IE sin(x + ω0τ )

]

M2
2 [x] = γ2

[
α2C

21
EE cos(x + ω0τ + δ2) − C21

IE cos(x + ω0τ )

]

with the coefficients

λ1 = −A1
EE + A1

II

2
, λ2 = −A2

EE + A2
II

2
,

γ1 = 1

2α1 sin(δ1)
, γ2 = 1

2α2 sin(δ2)
,

and

D1 =
√

α2
1σ

2
E1

+ σ 2
I1

2(α1 sin(δ1))2
, D2 =

√
α2

2σ
2
E2

+ σ 2
I2

2(α2 sin(δ2))2
,


1 = −ω0 + γ1
(
α1 cos(δ1)

(
A1

EE − A1
II

) + α2
1A1

EI − A1
IE

)
,


2 = −ω0 + γ2
(
α2 cos(δ2)

(
A2

EE − A2
II

) + α2
2A2

EI − A2
IE

)
.

(6)

Here dWk , k = Z1,2, φ1,2, are independent Brownian motions,
and the parameters λ1,2, 
1,2, δ1,2, α1,2, C12

EE , C21
EE , and C12

IE ,
C21

IE depend on the network parameters described above (see
Appendix A). Specifically, α1,2 and δ1,2 are the amplitude
ratio and phase difference between the I and E populations
in networks 1 and 2, respectively.

The dependencies of the parameters of the envelope-phase
equations on those in the original SWC system are not trivial,
as their definitions that follow Eqs. (A2) in the full derivation
in Appendix A reveal. And a number of parameters depend
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FIG. 2. Coupled envelope and phase dynamics. Envelope time series for E1 (blue) and E2 (red) populations for coupling LEE = 2.0,
LIE = 0.5 and delay (a) τ = 1 ms and (c) 3.5 ms. Corresponding phase dynamics are shown in (b) and (d). In-phase locking is seen for τ = 1
ms, and out-of-phase locking for τ = 3.5 ms as in Figs. 1(b) and 1(c). (e) Envelope and (f) phase probability distributions from simulations of
the SWC model [Eqs. (1), solid lines] through the Hilbert transform and the SAM theory [Eqs. (7), dashed lines], for τ = 1 ms (magenta) and
τ = 3.5 ms (black). Parameters are as in Fig. 1.

on the fixed point, which is a function of all the parameters.
For the symmetric case, we have α1 = α2 = α, δ1 = δ2 = δ,
λ1 = λ2, 
1 = 
2 = 
0, D1 = D2 = D, C12

EE = C21
EE = CEE ,

and C12
IE = C21

IE = CIE . The envelope-phase dynamics there-
fore simplify to

dZ1

dt
= −λ1Z1 + D

2Z1
+ M1[φ1 − φ2τ ]Z2τ +

√
DξZ1 ,

dφ1

dt
= 
0 + M2[φ1 − φ2τ ]

Z2τ

Z1
+

√
D

Z1
ξφ1 ,

dZ2

dt
= −λ1Z2 + D

2Z2
+ M1[φ2 − φ1τ ]Z1τ +

√
DξZ2 ,

dφ2

dt
= 
0 + M2[φ2 − φ1τ ]

Z1τ

Z2
+

√
D

Z2
ξφ2 , (7)

where φiτ ≡ φi(t − τ ), Ziτ ≡ Zi(t − τ ), and

M1 = 1

2α sin(δ)
[αCEE sin(x + ω0τ + δ) − CIE sin(x + ω0τ )],

M2 = 1

2α sin(δ)
[αCEE cos(x + ω0τ + δ) −CIE cos(x + ω0τ )].

Here again, λ1, D, 
0, CEE , and CIE depend on network
parameters and are the same for both networks, but ξk , k =
{Z1,2, φ1,2}, are again independent Gaussian white noises as
in the general case above.

The E envelopes and phases from Eqs. (7) are shown in
Figs. 2(a)–2(d). In Figs. 2(e) and 2(f), good agreement is
found between probability distributions of the envelopes and
phases from simulations of the SAM Eqs. (7) and of the
SWC Eqs. (1). Agreement improves for weaker noise and
closer proximity to the Hopf bifurcation. The phase dynamics
φi(t ) here differs from that of the usual Hilbert transform by
the deterministic rotation ω0t . The phase difference �φ(t ) =

φ1(t ) − φ2(t ) describes the same quantity as the difference of
the phases extracted using the Hilbert transform.

IV. QUASI-CYCLE PHASE SYNCHRONIZATION

We first derive phase-locking dynamics from the envelope-
phase system in Eqs. (7) using �φ(t ) ≡ φ1(t ) − φ2(t ), θ (t ) ≡
φ1(t ) + φ2(t ), X ≡ (θ (t ) − θ (t − τ ))/2, and Y ≡ (�φ(t ) +
�φ(t − τ ))/2:

d�φ(t ) = −2M1[X (t )] sin[Y (t )] dt +
√

D

Z1(t )
dW1(t ),

dθ (t ) = 2(
0 + M2[X (t )] cos[Y (t )] )dt +
√

D

Z1(t )
dW2(t ),

(8)

where we assumed Z1 ∼ Z2, W1 = Wφ1 − Wφ2 , and W2 =
Wφ1 + Wφ2 . Following Ref. [29], we seek the deterministic
solutions of Eqs. (8) in the form (�φ(t ), θ (t )) = (�φ∗,
t ).
Stability is governed by

F (�φ∗) = −2M1[
τ/2] sin(�φ∗), (9)

where 
 is a solution to 
 = 2(
0 + M2[
τ
2 ] cos(�φ∗)),

CIE ,CEE , ω0, τ � 0 and δ � 0. Either IP or AP stable so-
lutions exist, depending on CIE , CEE , ω0, τ , and δ. The
transition between IP and AP occurs at a critical delay τ ∗ =
(2/(2ω0 + 
))atan[( −α sin(δ)CEE

αCEE cos(δ)−CIE
)]. This implies the neces-

sary condition CEE > CIE/(α cos(δ)) for the existence of AP
solutions. For τ = 0, the deterministic stability function is
reduced to F (�φ∗) = −[CEE ] sin[�φ∗]. The only stable so-
lutions correspond to IP. The noise-free quasi-cycle phase
dynamics converge to a fixed point, and thus do not allow
spontaneous symmetry breaking. SAM theory leads to the
stochastic stability function

F̃ (�φ) = M2[φ1 − φ2τ ]
Z2τ

Z1
− M2[φ2 − φ1τ ]

Z1τ

Z2
, (10)
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FIG. 3. OPL for quasi-cycles. (a–c) Phase difference probability
distributions for τ = 0, 1, and 3.5 ms from SAM theory (solid blue)
and Hilbert transforms of simulations of SWC Eqs. (1) (dashed red
lines). For small τ (a, b), densities peak at �φ = 0 (IP), while for
larger τ (c) OPL is seen with two symmetric peaks away from zero
(IP) and ±π (AP) (see vertical black arrows). Good agreement is
seen in all cases. (d–f) Stability functions for, respectively, (a–c).
Deterministic stability functions, Eq. (9) (solid blue), with stable
fixed points (black dots) located at zero for IP (d, e) and at ±π

for AP (f). The stochastic stability function, Eq. (10) (dashed blue),
evaluated from simulations with noise, followed by smoothing with
a third degree polynomial, show the same fixed points for (d, e), but
OPL instead of AP for (f) as in (c). Parameters are as in Fig. 1, except
that the time step has been reduced to 0.01 ms for both the SAM and
SWC simulations.

which can be evaluated from simulations. Figures 3(d) and
3(e) reveal that for weak delay, the stochastic and determin-
istic stability functions have the same stable fixed points,
which correspond to IP states. But for the larger delay in
Fig. 3(f), F̃ exhibits two symmetric stable fixed points at
locations �φ∗ = −β, β with 0 < |β| < π , corresponding to
OPL states. Thus, for quasi-cycles, OPL relies on both delay
and noise.

V. DELAY AND NOISE INDUCE OUT-OF-PHASE LOCKING

A. Out-of-phase locking in E-I networks

1. Limit-cycle regime

The delay and noise intensity are now varied to reveal their
effect on phase locking. We first confirm previously published
findings that OPL occurs via SSB in the limit-cycle regime
[13,14] in Fig. 4(a). This is done by looking at the deter-
ministic situation where each network is in the limit-cycle
regime prior to its coupling to the other network. The coupling
induces OPL at a critical value of the delay τcrit ≈ 1.6 ms
[Fig. 4(a), black dots]. One network becomes the leader and
the other the laggard; the identity of each one depends on the
initial conditions. There is no need for noise to observe such

FIG. 4. Noise and delay-induced OPL. (a) Coupled limit cycles.
In the deterministic case (σ = √

σ 2
E + σ 2

I = 0, solid black dots), a bi-
furcation occurs from IP to OPL via spontaneous symmetry breaking
at a critical delay value. OPL is further delayed (and IP stabilized) as
σ increases (red, 0.0006; green, 0.0018; magenta, 0.0156). (b) Cou-
pled quasi-cycles. Only a bifurcation from IP to AP is seen for σ = 0
(black). OPL is observed only in the noisy case. Phase differences are
computed by applying Hilbert transforms to simulations of the SWC
system [Eqs. (1)] [solid dots in (a) and (b), except for the black dots
in (b)] and from the solutions of the SAM theory [open circles in (b)].
Parameters for (a) are LEE = 1, LIE = 0.5, and WEE = 30.4. In (b),
we have LEE = 2, LIE = 0.5, and WEE = 27.4. Other parameters are
as in Fig. 1. Due to the transient synchrony nature of the oscillations,
phase differences were computed using the correlation function in
(b) and other bifurcation diagrams below.

OPL states; i.e., OPL is a deterministic nonlinear phenomenon
[13,14].

However, there is no reversal of leadership unless there
is an external intervention to induce it [14,15]. Such lack of
leadership exchange is thought to be problematic for inter-
areal brain communication, since information is preferentially
shared when one network leads the other, and dynamic ex-
change of leadership is required for an efficient bidirectional
communication between areas [8]. The main effect of noise
on the deterministic SSB property is to postpone the transi-
tion between the IP and OPL regimes, in proportion to the
noise intensity, as well as induce changes in leadership. The
initial condition will bias the solution towards one leader. At
low noise, leadership changes can occur but are increasingly
rare as τ moves further beyond the deterministic bifurcation
point τcrit .

2. Quasi-cycle regime

The underlying deterministic dynamics of the quasi-cycles
decay to the fixed point in an underdamped manner, but a
phase relationship between the two networks can nevertheless
be computed during such decays. Then, only IP and AP are
seen, with a transition from IP to AP at a critical delay τ = τ ∗.
This is shown in Fig. 4(b) using linear stability analysis of the
SWC system (solid black dots), as well as the SAM-derived
stability function F (�φ∗) in Eq. (9) (black circles). Noise
then shifts the trivial IP and AP locations and induces OPL.

043067-5



ARTHUR S. POWANWE AND ANDRÉ LONGTIN PHYSICAL REVIEW RESEARCH 2, 043067 (2020)

The noise allows the dynamics to sample both the IP and
the neighboring AP attractors, yielding on average two OPL
states. At τ ∗, the noise samples each attractor similarly, with
OPL around ±π/2. Below τ ∗, the IP attractor in the full SWC
simulations appears destabilized by noise, but it is difficult to
resolve whether this also represents an advancement of the
bifurcation. This is due to critical slowing down near the bi-
furcation, which makes the simulations converge prohibitively
slowly to pinpoint the bifurcation exactly in the presence of
noise. But clearly the situation differs qualitatively from the
postponement observed in Fig. 4(a) for the limit cycles.

Beyond τ ∗, the noise increasingly samples the AP attractor.
The OPL asymptotically tends to the deterministic AP value
�φ∗ = |π | in a time proportional to noise strength. The abrupt
IP-AP transition observed in the transient deterministic dy-
namics is smoothed by the noise and arises for smaller delays.
It is important to mention that when the delay is varied in
Fig. 4, the intrinsic frequency of the networks remains almost
constant. The main effect of the propagation delay is to induce
AP states which are smoothed by noise to give rise to OPL
states.

Such OPL attractors reflect a noise-induced transition
where the parameter range for OPL increases with noise inten-
sity. The networks also exchange leadership over time due to
the noise, without external pulses, yielding a “dynamic OPL”
for quasi-cycles. This suggests that coupled quasi-cycles are
good candidates for flexible inter-areal network communi-
cation. OPL states are also excitation dependent, since the
aforementioned necessary condition implies that strong LEE

and weak LIE values promote OPL.
Additive rather than multiplicative noises in the model

formulation lead to similar results (not shown), as can be ver-
ified by replacing g1(Ei, Ii ) and g2(Ei, Ii ) by their respective
numerically determined means σE and σI (these densities are
approximately Gaussian).

The mechanism of OPL in the coupled quasi-cycle regime
is thus different from the one in the limit-cycle regime. The
presence of noise is critical for OPL. The noise also al-
lows a continual random exchange of leadership between the
two networks; in fact, since the noise is required for sus-
tained quasi-cycle behavior, OPL is always present. As in the
coupled limit-cycle case, the initial condition will bias the
leadership towards one network, and subsequent leadership
exchanges are increasingly rare as the delay moves beyond
the bifurcation point, or when the noise intensity is small.
But in principle, each network spends half the time being
the leader, as could be verified with long simulations (and
perhaps unreasonably long when the noise is small or the
delay is large). This has already been observed in another
purely computational study [8].

Figure 4(b) also shows that the SAM theory predicts OPL
states in the quasi-cycle regime. Further, it shows that the
bifurcation is advanced to smaller and smaller delay values
the stronger the noise is; this contrasts with what is seen
in the coupled limit-cycle case. More extensive simulations
of the full network SWC equations are needed [i.e., more
closed symbols closer to the zero axis need to be computed
from very long simulations in Fig. 4(b)] to determine whether
advancement occurs, and if so, how well it agrees with the
SAM theory. The advancement here also contrasts with other

FIG. 5. Dip statistic and phase-locking value show signatures of
OPL. (a) Dip statistic versus lag assesses the presence of bimodality
in the density of the time series, which is in agreement with the
appearance of OPL in Figs. 3 and 4. (b) Phase-locking value versus
lag measures the degree of phase synchronization between two time
series. The PLV was computed from the phase time series φ1(t ) and
φ2(t ) using both the Hilbert transform (solid dots) and the SAM
(circles). The PLV values are weaker at the transition between IP
and AP locking, revealing the appearance of OPL states. All the
parameters are the same as in Fig. 4(b).

delay-differential equations where additive or multiplicative
noise postpones a Hopf bifurcation [30].

The dip test for bimodality was performed on the �φ(t ) =
φ1(t ) − φ2(t ) time series [Fig. 5(a)]. It is a statistical test
that measures the level of multimodality of the density of
a given time series (see Appendix D). A value near zero
indicates a unimodal time series, while increasing values of
the dip statistic are associated with more than one mode in
the density. We observe an increase of the dip values close
to the deterministic transition between IP and AP locking.
This shows the presence of multimodality (bimodality in this
specific case) in the distribution of phase-difference values in
the time series, and therefore the presence of OPL. In fact,
it exposes a transition from zero to nonzero dip values very
near the same points as in Fig. 4, as well as in Fig. 3(c)
with modes located at 0 < |β| < |π |. The dip statistic thus
corroborates the conclusion of bimodality, and therefore OPL.
We also computed the phase-locking value (PLV) to measure
the synchronization strength [12] (see Appendix D). Higher
values of the PLV correspond to strong synchronization. The
PLV is seen to capture well the transition between IP and
OPL. PLV analysis reveals that the synchronization strength
increases away from the IP-AP bifurcation in either direction
[Fig. 5(b)]. The PLV is nonzero, and shows a minimum near
the same transition points as in Fig. 4(b). We also observe a

043067-6



PHASE DYNAMICS OF DELAY-COUPLED QUASI-CYCLES … PHYSICAL REVIEW RESEARCH 2, 043067 (2020)

discrepancy between the SAM and the Hilbert transform at
large noise intensity for both the dip value and the PLV.

We finally note that the coupling delay has little effect on
the oscillation frequency of each network. The frequency of
the coupled network is mainly determined by the parameters
of each network and the connection coefficients.

B. Effect of asymmetric coupling and network heterogeneity

The case we have considered so far involves two iden-
tical networks that are coupled reciprocally using the same
delays and coupling strengths. This is an oversimplification,
as real neural networks are never identical and the connec-
tivity is rarely symmetric. Is the mechanism of delay and
noise-induced OPL still present when symmetry and homo-
geneity conditions are not present? Much work is required
to fully address these issues. Our immediate, more restricted
goal here is to show a generic effect of relaxing the re-
quirement of symmetric coupling or network homogeneity.
Specifically, we first consider the case where identical net-
works are asymmetrically coupled. Afterwards, we look at the
heterogeneous case when nonidentical networks are symmet-
rically coupled.

The asymmetric case is set up by slightly decreasing the ex-
citatory coupling from the first to the second network (L21

EE =
1.5, L12

EE = 2). Figure 6(a) shows that the asymmetry induces
a small phase difference between the two networks even for
the smallest delays, leading to a dominant directionality. Nev-
ertheless, the mechanism of delay- and noise-induced OPL is
still present, although with an intrinsic bias compared to the
symmetric case. When the delay increases, a second branch
eventually appears; i.e., another OPL state is induced. As in all
the bifurcation diagrams up to now for stochastic dynamics,
we plotted only the local extrema of the phase difference
distribution. For a given delay, the two states are not symmet-
ric as in the former case, but rather one state is more stable
than the other.

In the heterogeneous case in Fig. 6(b), the external in-
hibitory input to the second network is slightly increased,
but the connectivity coefficients are symmetric, and all other
parameters identical. As in the asymmetric case, this also
induces a phase difference between the networks. The mech-
anism of noise- and delay-induced OPL is still present, but
again with a bias. The heterogeneous case is qualitatively sim-
ilar to the asymmetric case. All branches increase (decrease)
towards ±π when the delay is large.

Hence, for both of these specific examples of asymmetry
and heterogeneity, the mechanism of delay- and noise-induced
OPL occurs, along with dynamical changes in leadership.
However, the amount of time one network leads the other
is not the same as in the homogeneous and symmetric case.
In fact one network leads the other one most of the time
depending on the phase relation induced by the asymmetry
or the heterogeneity. This mechanism is observed and persists
when the asymmetry is weak and the heterogeneous networks
are nearly identical. If the asymmetry is strong or the two
networks are too different, the phase relation will be imposed
by such asymmetry or heterogeneity. Then, one network will
almost always be the leader, as the noise will rarely induce
switches to the less stable state. Dynamic OPL is revealed

FIG. 6. Noise- and delay-induced OPL in homogeneous asym-
metrically coupled or heterogeneous but symmetrically coupled E-I
networks. (a) The asymmetric case where the excitatory connectivity
from the first to second network is slightly decreased compared to
the reverse excitatory connectivity (L21

EE = 1.5, L12
EE = 2). The other

parameters are identical for the two networks. (b) The heterogeneous
case where the inhibitory input to the second network is slightly in-
creased compared to the same input applied in the first network (h1

I =
−8, h2

I = −7.85). Connectivities are kept symmetric as previously
in Fig. 4. For all panels and figures, solid dots are phase-locking
states obtained using the Hilbert transform, while circles are obtained
through the SAM [Eqs. (5)]. Red corresponds to weak, green to
intermediate, and magenta to strong values of the noise intensity
(values are as in Fig. 4).

using numerical simulations of Eqs. (1) followed by Hilbert
transforms, as well as the SAM in Eqs. (5) (for the heteroge-
neous and asymmetric case) and Eqs. (7) (for the symmetric
and homogeneous case).

Results from the Hilbert transform and the SAM are in
good agreement for weak and intermediate values of the noise
intensity (see red and green solid dots and circles in Fig. 6).
From the large noise intensity, the results for the SAM and the
Hilbert transform start to diverge as observed in the magenta
solid dots and circles in Fig. 6. The dynamics derived from
the SAM [Eqs. (5) and (7)] provide a good approximation
for the envelope and phase of the LFPs derived in Eqs. (1)
for weak and intermediate values of the noise for the E-I
network. However, quasi-cycles are also present in purely
inhibitory networks. A natural question will be to understand
the phase-locking mechanism of such quasi-cycles.

C. OPL in inhibitory networks

We finally considered two coupled identical inhibitory (I-I)
networks. Each isolated I-I population with its all-to-all de-
layed inhibition can also exhibit either a noisy limit cycle or
quasi-cycle [9,10,31,32]. We coupled the two I-I populations
with delayed long-range excitatory connections in the quasi-
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FIG. 7. Noise-induced out-of-phase locking in two purely inhibitory networks coupled via long-range delayed excitatory connections (ING
mechanism). For all curves, red corresponds to weak, green to intermediate, and magenta to strong noise. The respective values of the noise
intensities are specified in the legend of the left panel. (a) The symmetric case with black dots corresponds to the deterministic phase locking
computed through linear stability analysis. (b) The asymmetric case where the connectivity is enhanced in one direction compared to the other.
(c) The heterogeneous case where the external current applied to the second network is slightly greater. We observe that noise and delay induce
out-of-phase locking; phase locking persists for the asymmetric and heterogeneous cases. Simulations are performed using the phase signal
extracted through the Hilbert transform. For the symmetric case, the parameters are chosen as follows: αI = 0.1, βI = 2, W = 30, τ̂ = 5.5
ms, h1 = h2 = −2, and L1 = L2 = 2. For the asymmetric case, we have slightly decreased L2 to 1.5 and for the heterogeneous case we have
increased h2 to −7.85. The noise intensities are σ ≈ σ1 ≈ σ2.

cycle regime as for the E-I networks discussed until now. The
dynamics of the model is given by

dI1(t )

dt
= −αI I1(t ) + [1 − I1(t )]βI f

(
sI1 (t )

) + g1(I1)ξI1 (t ),

dI2(t )

dt
= −αI I2(t ) + [1 − I2(t )]βI f

(
sI2 (t )

) + g2(I2)ξI2 (t ),

sI1 (t ) = h1 − W I1(t − τ̂ ) + L1I2(t − τ ),

sI2 (t ) = h2 − W I2(t − τ̂ ) + L2I1(t − τ ), (11)

g1(I1) =
√

αI I1(t ) + [1 − I1(t )]βI f
(
sI1 (t )

)
N

,

g2(I2) =
√

αI I2(t ) + [1 − I2(t )]βI f
(
sI2 (t )

)
N

. (12)

As in the case of the coupled E-I networks, we define the noise
intensities for each network as

σ1 = 〈(g1(I1))〉 and σ2 = 〈(g2(I2))〉 .

For this case, an envelope-phase decomposition using the
SAM as in the case of the coupled E-I networks is not
yet available. We thus only consider numerical simulations
and linear stability analysis. We define the LFPs as ṼI1 (t ) =
c(I1(t ) − I10) and ṼI2 (t ) = c(I2(t ) − I20), where I10 and I20 are
the stable fixed points of networks 1 and 2, c = √

N for the
case of the multiplicative noise, and c = 1 for the additive
noise. The phase difference is again �φ(t ) = φ1(t ) − φ2(t ),
where φ1(t ) is the phase of the signal ṼI1 (t ) and φ2(t ) the one

of ṼI2 (t ), both extracted through the Hilbert transform. We
perform the same analysis as in the case of the coupled E-I
networks.

We first consider the symmetric case, choosing the delay
as the bifurcation parameter for different noise intensities σ .
We observe in Fig. 7 that the mechanism of delay and noise-
induced OPL is qualitatively the same as that observed in the
case of coupled E-I networks. The noise smoothes the abrupt
transition between the deterministic IP and AP locking states,
and induces OPL states. We also consider the symmetric and
heterogeneous cases as previously described for the coupled
E-I networks. The mechanism of delay- and noise-induced
OPL again survives these losses of symmetry, but with a bias
compared to the symmetric case. The presence of this mech-
anism in the case of purely inhibitory networks suggests that
it only depends on the dynamical regime of the oscillations
in each network, i.e., on their noise-induced nature. We then
expect to observe similar delay- and noise-induced OPL more
generally if the corresponding networks in isolation exhibit
quasi-cycles.

VI. DISCUSSION

In summary, a robust noise-induced, delay-dependent OPL
mechanism was revealed by an envelope-phase decomposition
of the coupled quasi-cycle dynamics. Although no sponta-
neous symmetry breaking arises, the noise samples attractor
dynamics corresponding to both IP and AP dynamics, leading
to OPL well before the deterministic bifurcation point. The
lead-lag relationship displays random reversals, an intrinsic
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property of the coupled system. This mechanism is observed
in both coupled PING- and ING-type systems. It persists but
with a bias when the networks are weakly asymmetrically
coupled, or when they are heterogeneous but nearly identical.

The SAM used here requires underdamped oscillatory mo-
tion in each network prior to coupling. It has been extended
here to include delays. It allows an accurate description of
the envelope and phase dynamics of the nonlinear PING LFPs
for weak and intermediate value of the noise. It constitutes
an appropriate theoretical framework for the study of phase
synchronization in quasi-cycles. However, we found that for
strong values of the noise intensity, the agreement with the
Hilbert transform was not so good. There may be many rea-
sons for discrepancy. First, we compare the SAM equations
which are derived from the linear equations sustained by noise
[see Appendix A, Eqs. (A2)] with the full SWC which is
a stochastic nonlinear model. Neglecting nonlinear terms to
calculate the SAM could lead to some discrepancy. In fact,
for high values of the noise intensity, the agreement between
the network frequencies from the full nonlinear SWC model
and the linear noise approximation (LNA) dynamics signifi-
cantly worsens (not shown). Since the phase relation depends
on the network frequencies, the immediate consequence is a
disagreement between the SAM and the full nonlinear SWC
model.

Second, we found that numerical simulations of the
envelope-phase dynamics obtained via the SAM can be prob-
lematic. The classical Euler-Maruyama iterative scheme was
inaccurate in the sense that the envelope process could be
negative during the simulation process. To deal with this
pathological issue, we consider a very small time step, and
replace the envelope processes by their absolute values at
each simulation time step. This allows the processes to re-
main positive. This numerical scheme may cause convergence
inaccuracies when the amplitude process is close to zero,
particularly for strong noise.

Despite these limitations, the SAM method remains a good
theoretical framework for the study of envelope and phase
dynamics of isolated and coupled quasi-cycles. It exhibits
all the qualitative behavior of phase and amplitude dynamics
present in the full nonlinear SWC model. The mechanism of
delay-dependent, noise-induced out-of-phase locking exposed
here through the SAM and the Hilbert transform of Eqs. (1) is
robust, flexible, and general for rhythm-based communication
purposes. The potential ability to communicate under the re-
alistic conditions reported here opens the way for information
transfer studies to obtain deeper insights into activity coordi-
nation in complex networks. This would require extending the
methods used here to dimensions greater than two and with
the necessary network topology. Also, the inclusion of more
realistic external signals, such as correlated noise or periodic
inputs, promises to yield interesting phenomena.
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APPENDIX A: LINEAR NOISE APPROXIMATION

We first consider the deterministic part of Eqs. (1) (gi = 0,
i = 1, 2). Their corresponding fixed points (E10, I10, E20, I20)

can be obtained as the solutions of the following system:

−αE E10 + (1 − E10)βE f
(
sE10

) = 0,

−αI I10 + (1 − I10)βI f
(
sI10

) = 0,

−αE E20 + (1 − E20)βE f
(
sE20

) = 0,

−αI I20 + (1 − I20)βI f
(
sI20

) = 0, (A1)

with

sE10 = WEE E10 − WEI I10 + hE + L12
EE E20,

sI10 = WIE E10 − WII I10 + h1
I + L12

IE E20,

sE20 = WEE E20 − WEI I20 + hE + L21
EE E10,

sI20 = WIE E20 − WII I20 + h2
I + L21

IE E10.

We are interested in the parameter regime where such a fixed
point is a stable focus. The dynamics therefore converge in
a decaying oscillatory manner toward the fixed point in the
absence of noise. When noise is added, the dynamics are
fluctuations around the fixed points. Following the system size
expansion [33–36], these fluctuations can be sought in the
following form:

Ṽ i
E = √

NE (Ei − Ei0), Ṽ i
I = √

NI (Ii − Ii0), i = 1, 2.

Plugging theses expressions into Eqs. (1), and keeping terms
of order O(

√
NE ,I ), we obtain the following dynamics for the

LFPs fluctuations:

dṼ 1
E

dt
= A1

EEṼ 1
E (t ) + A1

EIṼ
1

I (t ) + C12
EEṼ 2

E (t − τ ) + σE1ξE1 (t )

dṼ 1
I

dt
= A1

IEṼ 1
E (t ) + A1

IIṼ
1

I (t ) + C12
IEṼ 2

E (t − τ ) + σI1ξI1 (t )

dṼ 2
E

dt
= A2

EEṼ 2
E (t ) + A2

EIṼ
2

I (t ) + C21
EEṼ 1

E (t − τ ) + σE2ξE2 (t )

dṼ 2
I

dt
= A2

IEṼ 2
E (t ) + A2

IIṼ
2

I (t ) + C21
IEṼ 1

E (t − τ ) + σI2ξI2 (t ) ,

(A2)

where ξk (t ), k = E1, I1, E2, I2 are independent gaussian white
noises and the parameters of each network are given by

A1
EE = −αE − βE f

(
sE10

) + (1 − E10)βE f ′(sE10

)
WEE ,

A1
EI = −cEI (1 − E10)βE f ′(sE10

)
WEI ,

A1
IE = cIE (1 − I10)βI f ′(sI10

)
WIE ,

A1
II = −αI − βI f

(
sI10

) − (1 − I10)βI f ′(sI10

)
WII ,

A2
EE = −αE − βE f

(
sE20

) + (1 − E20)βE f ′(sE20

)
WEE ,

A2
EI = −cEI (1 − E20)βE f ′(sE20

)
WEI ,

A2
IE = cIE (1 − I20)βI f ′(sI20

)
WIE ,

A2
II = −αI − βI f

(
sI20

) − (1 − I20)βI f ′(sI20

)
WII ,

and

σE1 =
√

2αE E10, σI1 =
√

2αI I10,

σE2 =
√

2αE E20, σI2 =
√

2αI I20,

cEI =
√

NE/NI , cIE =
√

NI/NE .
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The effective couplings are

C12
EE = (1 − E10)βE f ′(sE10

)
L12

EE ,

C12
IE = cIE (1 − I10)βI f ′(sI10

)
L12

IE ,

C21
EE = (1 − E20)βE f ′(sE20

)
L21

EE ,

C21
IE = cIE (1 − I20)βI f ′(sI20

)
L21

IE .

This system of four linear equations sustained by noise is
a good representation of the dynamics of excitatory and in-
hibitory LFPs in the quasi-cycle regime. This can be seen
as a system of two connected networks of excitatory and
inhibitory populations with effective intrapopulation connec-
tivity coefficients Ai

EE , Ai
EI , Ai

IE , and Ai
II , i = 1, 2. The noise

intensities in the E and I populations are, respectively, σEi and
σIi , i = 1, 2. The effective long-range excitatory connections
from the first network to the E and I populations of the second
network are C21

EE and C21
IE , respectively, while the effective

long-range excitatory connections from the second network to
the excitatory and inhibitory populations of the first network
are respectively C12

EE and C12
IE . Following the expressions of the

effective long-range excitatory connections Ci j
EE and Ci j

IE , i �=
j = 1, 2, the two networks have effective connectivities that
are different from the anatomical connectivity since Ci j

EE �=
Li j

EE and Ci j
IE �= Li j

IE . Moreover, C12
EE �= C21

EE and C12
IE �= C21

EE for
the asymmetric and heterogeneous cases.

APPENDIX B: LINEAR STABILITY

In the quasi-cycle regime, the dynamics of the LFPs con-
verge to zero in the absence of noise. However, we can
still extract important properties from the deterministic decay
dynamics. Here, we investigate the properties of the decay
dynamics in the absence of noise. The dynamics of such
decays are given by (σE1 = σE2 = σI1 = σI2 = 0)

dṼ 1
E (t )

dt
= A1

EEṼ 1
E (t ) + A1

EIṼ
1

I (t ) + C12
EEṼ 2

E (t − τ ),

dṼ 1
I (t )

dt
= A1

IEṼ 1
E (t ) + A1

IIṼ
1

I (t ) + C12
IEṼ 2

E (t − τ ),

dṼ 2
E (t )

dt
= A2

EEṼ 2
E (t ) + A2

EIṼ
2

I (t ) + C21
EEṼ 1

E (t − τ ),

dṼ 2
I (t )

dt
= A2

IEṼ 2
E (t ) + A2

IIṼ
2

I (t ) + C21
IEṼ 1

E (t − τ ). (B1)

We look for solutions of these equations in the form of
exponential decays:

Ṽ 1
E (t ) = Ã1

E exp(λt ), Ṽ 1
I (t ) = Ã1

I exp(λt ),

Ṽ 2
E (t ) = Ã2

E exp(λt ), Ṽ 2
I (t ) = Ã2

I exp(λt ).

Replacing these expressions into the noise-free dynamics
[Eqs. (B1)] above yields the following relationships:

α̃1
IE = Ã1

I

Ã1
E

= A1
IEC12

EE − C12
IE

(
A1

EE − λ
)

A1
EIC

12
IE − C12

EE

(
A1

II − λ
) ,

α̃21
E = Ã2

E

Ã1
E

=
(
A1

EE − λ
)(

A1
II − λ

) − A1
IE A1

EI

A1
EIC

12
IE − C12

EE

(
A1

II − λ
) exp(λτ ),

α̃2
IE = Ã2

I

Ã2
E

= A2
IEC21

EE − C21
IE

(
A2

EE − λ
)

A2
EIC

21
IE − C21

EE

(
A2

II − λ
) ,

α̃12
E = Ã1

E

Ã2
E

=
(
A2

EE − λ
)(

A2
II − λ

) − A2
IE A2

EI

A2
EIC

21
IE − C21

EE

(
A2

II − λ
) exp(λτ ).

Using the relation α̃12
E = (α̃21

E )−1 we obtain the following
characteristic equation:[(

A2
II − λ

)(
A2

EE − λ
) − A2

EI A
2
IE

]
× [(

A1
II − λ

)(
A1

EE − λ
) − A1

EI A
1
IE

]
= e−2λτ

[
A1

EIC
12
IE − C12

EE

(
A1

II − λ
)]

× [
A2

EIC
21
IE − C21

EE

(
A2

II − λ
)]

.

The value of the amplitude ratio can be obtained by first
solving the characteristic equation. The solution of interest is
the eigenvalue with the largest real part (note that this real part
should be negative since we are in the quasi-cycle regime).
Replacing this particular eigenvalue in the expression of the
amplitude ratio above allows us to obtain the right expression
for these ratios. Note that the ratios are complex quantities and
can therefore be put in exponential form, with the argument of
the exponential being the phase difference and its modulus the
real amplitude ratio. We then obtain the amplitude ratio and
phase difference between the inhibitory and excitatory LFPs
in each network as

α1 = abs
(
α̃1

IE

)
, α2 = abs

(
α̃2

IE

)
, (B2)

δ1 = arg
(
α̃1

IE

)
, δ2 = arg

(
α̃2

IE

)
, (B3)

and the phase difference between excitatory populations of
different networks (1 and 2, respectively) as

�φ = arg
(
α̃12

E

)
. (B4)

Similar analysis was done for the case of purely inhibitory
populations (not shown here) to compute the deterministic
phase difference in solid black dots [Fig. 7(a)].

APPENDIX C: STOCHASTIC AVERAGING METHOD
(SAM) AND ENVELOPE-PHASE DECOMPOSITION

We are interested in the fluctuations from the baseline ac-
tivities (LNA): Ṽ i

E (t ) = cE (Ei(t ) − Ei0); Ṽ i
I (t ) = cI (Ii(t ) −

Ii0), where Ei0 and Ii0 are the deterministic fixed point activi-
ties. We are further interested in the slow envelope and phase
dynamics of the fluctuations. For that, we seek solutions in the
form of Eqs. (4) and plug these expressions in the equations
for the LFPs, Eqs. (A2). This yields a system of differential
equations in terms of Z1, Z2, φ1, and φ2 as follows:

Ż1(t ) = F 1
1 (Z1,2, φ1,2) + G1

1(Z1,2, φ1,2, ξE1,2 , ξI1,2 ),

φ̇1(t ) = F 1
2 (Z1,2, φ1,2) + G1

2(Z1,2, φ1,2, ξE1,2 , ξI1,2 ),

Ż2(t ) = F 2
1 (Z1,2, φ1,2) + G2

1(Z1,2, φ1,2, ξE1,2 , ξI1,2 ),

φ̇2(t ) = F 2
2 (Z1,2, φ1,2) + G2

2(Z1,2, φ1,2, ξE1,2 , ξI1,2 ), (C1)
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where

F 1
1 (Z1,2, φ1,2) = 1

α1 sin(δ1)

[
α1 f 1

1 (Z1,2, φ1,2) sin(ω0t + φ1(t ) + δ1) − f 1
2 (Z1,2, φ1,2) sin(ω0t + φ1(t ))

]
,

F 1
2 (Z1,2, φ1,2) = 1

α1Z1 sin(δ1)

[
α1 f 1

1 (Z1,2, φ1,2) cos(ω0t + φ1(t ) + δ1) − f 1
2 (Z1,2, φ1,2) cos(ω0t + φ1(t ))

]
,

F 2
1 (Z1,2, φ1,2) = 1

α2 sin(δ2)

[
α2 f 2

1 (Z1,2, φ1,2) sin(ω0t + φ2(t ) + δ2) − f 2
2 (Z1,2, φ1,2) sin(ω0t + φ2(t ))

]
,

F 2
2 (Z1,2, φ1,2) = 1

α2Z2 sin(δ2)

[
α2 f 2

1 (Z1,2, φ1,2) cos(ω0t + φ2(t ) + δ2) − f 2
2 (Z1,2, φ1,2) cos(ω0t + φ2(t ))

]
,

G1
1(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) = 1

α1 sin(δ1)

[
α1g1

1(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) sin(ω0t + φ1(t ) + δ1)

− g1
2(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) sin(ω0t + φ1(t ))

]
,

G1
2(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) = 1

α1Z1 sin(δ1)

[
α1g1

1(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) cos(ω0t + φ1(t ) + δ1)

− g1
2(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) cos(ω0t + φ1(t ))

]
,

G2
1(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) = 1

α2 sin(δ2)

[
α2g2

1(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) sin(ω0t + φ2(t ) + δ2)

− g2
2(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) sin(ω0t + φ2(t ))

]
,

G2
2(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) = 1

α2Z2 sin(δ2)

[
α2g2

1(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) cos(ω0t + φ2(t ) + δ2)

− g2
2(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) cos(ω0t + φ2(t ))

]
,

f 1
1 (Z1,2, φ1,2) = ω0Z1(t ) sin(ω0t + φ1(t )) + A1

EE Z1 cos(ω0t + φ1(t )) + A1
EIα1Z1 cos(ω0t + φ1(t ) + δ1)

+ C12
EE Z2(t − τ ) cos(ω0t − ω0τ + φ2(t − τ )),

f 1
2 (Z1,2, φ1,2) = α1ω0Z1(t ) sin(ω0t + φ1(t ) + δ1) + A1

IE Z1 cos(ω0t + φ1(t )) + A1
IIα1Z1 cos(ω0t + φ1(t ) + δ1)

+ C12
IE Z2(t − τ ) cos(ω0t − ω0τ + φ2(t − τ )),

f 2
1 (Z1,2, φ1,2) = ω0Z2(t ) sin(ω0t + φ2(t )) + A2

EE Z2 cos(ω0t + φ2(t )) + A2
EIα2Z2 cos(ω0t + φ2(t ) + δ2)

+ C21
EE Z1(t − τ ) cos(ω0t − ω0τ + φ1(t − τ )),

f 2
2 (Z1,2, φ1,2) = α2ω0Z2(t ) sin(ω0t + φ2(t ) + δ2) + A2

IE Z2 cos(ω0t + φ2(t )) + A2
IIα2Z2 cos(ω0t + φ2(t ) + δ2)

+ C21
IE Z1(t − τ ) cos(ω0t − ω0τ + φ1(t − τ )),

g1
1(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) = σE1ξE1 (t ), g1

2(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) = σI1ξI1 (t ),

g2
1(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) = σE2ξE2 (t ), g2

2(Z1,2, φ1,2, ξE1,2 , ξI1,2 ) = σI2ξI2 (t ).

The envelope and phase dynamics described by Eqs. (C1) are hard to visualize and analyze. To simplify their dynamics, we
apply the stochastic averaging method (SAM). The SAM states that, under certain conditions (usually met for regular functions
like F i

1 , F i
2 and Gi

1, Gi
2, i = 1, 2), the above system of four stochastic differential equations can be approximated by the following

four-dimensional Markov process [27]:

dX (t ) = m(X )dt + h(X )dW (t ), (C2)

where X (t ) = [Z1(t ); φ1(t ); Z2(t ); φ2(t )]′, m is a 4 × 1 matrix, h is a 4 × 4 matrix, and W (t ) denotes a four-dimensional vector
of independent Wiener processes with unit variance. Also, m and h are respectively O(ε2) and O(ε) functions defined as

m = T av

(
E

{
F

} +
∫ 0

−∞
E

{(
∂G

∂X

)
t

(
G

)
t+z

}
dz

)
,

hh′ = T av

( ∫ ∞

−∞
E

{
(G)t (G

′)t+z
}
dz

)
,

043067-11



ARTHUR S. POWANWE AND ANDRÉ LONGTIN PHYSICAL REVIEW RESEARCH 2, 043067 (2020)

where ε is a small parameter which can be assumed propor-
tional to the real part of the most unstable eigenvalue. Here (′)

denotes transposition, and ( ∂G
∂X )t is a 4 × 4 Jacobian matrix.

Moreover, E denotes the expectation operator and T av is the
time-averaging operator defined by

T av
( ) = 1

T0

∫ t0+T 0

t0

( )
dt,

where T0 = 2π
ω0

is the period of an oscillation cycle. When
evaluating the expectations in the stochastic averages formula,
the elements of X are treated as constants. The result of these
calculations leads to the coupled envelope-phase dynamics in
Eqs. (5).

APPENDIX D: DIP STATISTIC AND
PHASE-LOCKING VALUE

The dip value is a measure of multimodality of a given
time series. It computes the maximum difference, over all
points of the time series, between the empirical distribution
and the unimodal distribution that minimizes that maximum
difference. The uniform distribution is chosen as the unimodal

distribution when performing the dip test for multimodality
[37]. The dip value approaches asymptotically zero for a uni-
modal distribution and a positive constant for a multimodal
distribution. We used a MATLAB version of the program al-
ready written by the authors [38] to produce Fig. 5(a). The
increase of the dip value as the delay increases is a signature
of the multimodality of the phase difference time series. In
our case, this multimodality is a bimodality corresponding to
the two symmetric out-of-phase states present. The dip test
therefore confirms the presence of OPL.

To measure the strength of phase synchronization between
the two networks, we also computed the phase-locking value
(PLV) [11,12] as the delay varies. The PLV is a quantity
to measure the strength of the phase synchronization and is
defined as

PLV = 1

n

∣∣∣∣
n∑

k=1

e− j�φk

∣∣∣∣, (D1)

where j = √−1, n is the total number of points, and �φk =
�φ(tk ) = φ1(tk ) − φ2(tk ). The PLV is computed in Fig. 5(b)
and captures well the transition between unimodal and bi-
modal behavior in the phase difference.

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization,
1st ed. (Cambridge University Press, Cambridge, U.K., 2001).

[2] J. A. Acebron, L. Bonilla, C. J. Perez Vicente, F. Ritort, and R.
Spigler, Rev. Mod. Phys. 77, 137 (2005).

[3] U. Thounaojam, J. Cui, S. Norman, R. Butera, and C. Canavier,
PLoS Comput. Biol. 10, e1003622 (2014).

[4] J. Hizanidis, A. Balanov, A. Amann, and E. Schöll, Int. J.
Bifurcation Chaos 16, 1701 (2006).

[5] P. C. Bressloff, Phys. Rev. E 82, 051903 (2010).
[6] A. J. McKane and T. J. Newman, Phys. Rev. Lett. 94, 218102

(2005).
[7] B. Sancristobal, B. Rebollo, P. Boada, M. V. Sanchez-Vives, and

J. Garcia-Ojalvo, Nat. Phys. 12, 881 (2016).
[8] A. Palmigiano, T. Geisel, F. Wolf, and D. Battaglia, Nat.

Neurosci. 20, 1014 (2017).
[9] B. Doiron, B. Lindner, A. Longtin, L. Maler, and J. Bastian,

Phys. Rev. Lett. 93, 048101 (2004).
[10] E. Ledoux and N. Brunel, Front. Comput. Neurosci. 5, 25

(2011).
[11] F. Varela, J.-P. Lachaux, E. Rodriguez, and J. Martinerie, Nat.

Rev. Neurosci. 2, 229 (2001).
[12] E. Lowet, M. J. Roberts, A. Peter, B. Gips, and P. De Weerd,

eLife 6, e26642 (2017).
[13] D. Battaglia, N. Brunel, and D. Hansel, Phys. Rev. Lett. 99,

238106 (2007).
[14] G. Dumont and B. Gutkin, PLoS Comput. Biol. 15, e1007019

(2019).
[15] D. Battaglia, A. Witt, F. Wolf, and T. Geisel, PLoS Comput.

Biol. 8, e1002438 (2012).
[16] C. Kirst, M. Timme, and D. Battaglia, Nat. Commun. 7, 11061

(2016).
[17] A. Witt, A. Palmigiano, A. Neef, A. El Hady, F. Wolf, and D.

Battaglia, Front. Neural Circ. 7, 49 (2013).
[18] D. Xing, Y. Shen, S. Burns, C.-I. Yeh, R. Shapley, and W. Li, J.

Neurosci. 32, 13873 (2012).

[19] A. S. Powanwe and A. Longtin, Sci. Rep. 9, 1 (2019).
[20] R. M. Hutchison, T. Womelsdorf, E. A. Allen, P. A. Bandettini,

V. D. Calhoun, M. Corbetta, S. Della Penna, J. H. Duyn, G. H.
Glover, J. Gonzalez-Castillo et al., Neuroimage 80, 360 (2013).

[21] R. M. Hutchison, T. Womelsdorf, J. S. Gati, S. Everling, and
R. S. Menon, Hum. Brain Mapp. 34, 2154 (2013).

[22] J. Gonzalez-Castillo and P. A. Bandettini, Neuroimage 180, 526
(2018).

[23] P. Fries, Trends Cognit. Sci. 9, 474 (2005).
[24] P. Fries, Neuron 88, 220 (2015).
[25] A. M. Bastos, J. Vezoli, and P. Fries, Curr. Opin. Neurobiol. 31,

173 (2015).
[26] E. Wallace, M. Benayoun, W. Van Drongelen, and J. D. Cowan,

PLoS One 6, e14804 (2011).
[27] J. Roberts and P. Spanos, Int. J. Non-Linear Mech. 21, 111

(1986).
[28] P. E. Greenwood, M. D. McDonnell, and L. M. Ward, J.

Coupled Syst. Multiscale Dyn. 4, 1 (2016).
[29] Y. Kyrychko, K. Blyuss, and E. Schöll, Philos. Trans. R. Soc. A

371, 20120466 (2013).
[30] A. Longtin, Phys. Rev. A 44, 4801 (1991).
[31] G. Dumont, G. Northoff, and A. Longtin, Phys. Rev. E 90,

012702 (2014).
[32] S. Keeley, A. A. Fenton, and J. Rinzel, J. Neurophysiol. 117,

950 (2017).
[33] N. G. Van Kampen, Stochastic Processes in Physics and Chem-

istry (Elsevier, Amsterdam, 1992), Vol. 1.
[34] T. Ohira and J. D. Cowan, in Mathematics of Neural Networks

(Springer, Berlin, 1997), pp. 290–294.
[35] P. C. Bressloff, SIAM J. Appl. Math. 70, 1488 (2010).
[36] M. Benayoun, J. D. Cowan, W. van Drongelen, and E. Wallace,

PLoS Comput. Biol. 6, e1000846 (2010).
[37] J. A. Hartigan and P. M. Hartigan, Ann. Stat. 13, 70 (1985).
[38] P. M. Hartigan, J. R. Stat. Soc. Ser. C (Appl. Stat.) 34, 320

(1985).

043067-12

https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1371/journal.pcbi.1003622
https://doi.org/10.1142/S0218127406015611
https://doi.org/10.1103/PhysRevE.82.051903
https://doi.org/10.1103/PhysRevLett.94.218102
https://doi.org/10.1038/nphys3739
https://doi.org/10.1038/nn.4569
https://doi.org/10.1103/PhysRevLett.93.048101
https://doi.org/10.3389/fncom.2011.00025
https://doi.org/10.1038/35067550
https://doi.org/10.7554/eLife.26642
https://doi.org/10.1103/PhysRevLett.99.238106
https://doi.org/10.1371/journal.pcbi.1007019
https://doi.org/10.1371/journal.pcbi.1002438
https://doi.org/10.1038/ncomms11061
https://doi.org/10.3389/fncir.2013.00049
https://doi.org/10.1523/JNEUROSCI.5644-11.2012
https://doi.org/10.1038/s41598-019-54444-z
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1002/hbm.22058
https://doi.org/10.1016/j.neuroimage.2017.08.006
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1016/j.conb.2014.11.001
https://doi.org/10.1371/journal.pone.0014804
https://doi.org/10.1016/0020-7462(86)90025-9
https://doi.org/10.1166/jcsmd.2016.1091
https://doi.org/10.1098/rsta.2012.0466
https://doi.org/10.1103/PhysRevA.44.4801
https://doi.org/10.1103/PhysRevE.90.012702
https://doi.org/10.1152/jn.00490.2016
https://doi.org/10.1137/090756971
https://doi.org/10.1371/journal.pcbi.1000846
https://doi.org/10.1214/aos/1176346577
https://doi.org/10.2307/2347485

