
PHYSICAL REVIEW RESEARCH 2, 043065 (2020)

Acoustic analog of Hawking radiation in quantized circular superflows of Bose-Einstein condensates
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We propose emulation of Hawking radiation (HR) by means of acoustic excitations propagating on top of
persistent current in an atomic Bose-Einstein condensate (BEC) loaded in an annular confining potential. The
setting is initially created as a spatially uniform one, and then switches into a nonuniform configuration, while
maintaining uniform BEC density. The eventual setting admits the realization of sonic black and white event
horizons with different slopes of the local sound speed. A smooth slope near the white-hole horizon suppresses
instabilities in the supersonic region. It is found that tongue-shaped patterns of the density-density correlation
function, which represent the acoustic analog of HR, are strongly affected by the radius of the ring-shaped
configuration and number of discrete acoustic modes admitted by it. There is a minimum radius that enables the
emulation of HR. We also briefly discuss a possible similarity of properties of the matter-wave sonic black holes
to the known puzzle of the stability of Planck-scale primordial black holes in quantum gravity.
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I. INTRODUCTION

Black holes (BHs) are among the most fascinating objects
in the Universe, the study of which may help us to illumi-
nate an intimate relation between gravity and the quantum
theory. Pioneering works [1–4] of Bekenstein and Hawking
had allowed elucidating the remarkable quantum properties
of BHs. It was discovered that a BH is not a stationary ever-
lasting object, as it emits black-body radiation. The effective
temperature of the Hawking radiation (HR) is extremely low
for known astrophysical BHs, which makes it practically im-
possible to observe the emission effect, therefore attention has
turned to settings that admit emulation of this phenomenology
in other physical settings.

Acoustic BHs were first introduced by Unruh [5,6], who
had demonstrated precise formal equivalence between the
behavior of sound waves in fluid flow and that of a scalar
field in curved space-time. Thus, it is possible to create an
analog BH in superfluids where the transition from subsonic to
supersonic flow plays the role of the event horizon. Following
that work, many experimental realizations were proposed for
demonstrating acoustic horizons. Behaviors similar to the ana-
log HR have been experimentally and theoretically explored
in trapped ions [7], optical fibers [8–11], electromagnetic
waveguides [12], water tanks [13,14], ultracold fermions [15],
exciton-polariton condensates [16], and superfluid 3He [17].
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Tremendous progress in physics of ultracold atomic gases
[18] makes atomic Bose-Einstein condensates (BECs) very
suitable testbeds for sonic BHs [19,20]. In these connections,
recent experimental realization [21–24] of analogs of the HR
in atomic BEC is an important milestone in the emulation of
quantum properties of BHs.

Most previous works addressing sonic BHs in BECs
were focused on cigar-shaped quasi-one-dimensional (1D)
condensates [22], or ones subject to specific absorbing bound-
ary conditions used for suppression of spurious instabilities
[19,20], which gives rise to a single BH horizon. On the other
hand, toroidal BECs were used to emulate quantum features of
HR, as the angular momentum is quantized in the ring-shaped
BEC due to periodic boundary conditions. In this work we
address quasi-1D atomic BEC confined in a toroidal trap.
This setting, which is available in experiments [25–29], was
used for studies of diverse matter-wave patterns maintained by
circular flows, i.e., effects induced by the angular momentum
[30–44].

Previous investigations [45,46] of the event horizon in BEC
with toroidal geometry relied upon the use of the supersonic
flow driven by a variable-density distribution in the conden-
sate. A spectrum of the eigenstates on top of the nonuniform
background was found in Ref. [46], demonstrating parametric
amplification (i.e., dynamical instabilities) at certain frequen-
cies, and it was compared to the two-mode approximation
[45,46]. Significant theoretical progress in studies of acoustic
analogs of HR was achieved with the help of the correlation-
function method, which was extensively used in the context of
elongated 1D condensates [19,20,22,23]. However, not much
attention was paid to the white-hole (WH) horizon, and the
role of the spatial slope of the nonuniform local parameters of
the condensates near this point, on the stability of the system.
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FIG. 1. A schematic of the ring-shaped Bose-Einstein conden-
sate with asymmetric acoustic event horizons. Shown are the blue
isosurface of the azimuthally uniform condensate density n, and the
constant superflow velocity v (the dark blue line). The azimuthally
modulated interaction strength g(x, t ) is responsible for the variation
of the local sound speed c(x) (the black line), which identifies the
subsonic (1: v < c) and supersonic (2: v > c) regions. The arrow
shows the direction of the persistent current. Acoustic black-hole and
white-hole horizons (BHH and WHH, respectively) are located at
points with c(x) = v.

Here we consider the setting with a uniform condensate
density, while the event horizon is created by spatiotemporal
modulation of the coupling constant, which is responsible
for interatomic interactions in the mean-field approximation
[18,19]. The coexistence of BH and WH event horizons in the
toroidal geometry gives rise to amplified HR and formation of
background ripples [47–51]. Extensive investigation of related
instabilities by dint of the correlation-function method has
been carried out in the 1D system with absorbing boundary
conditions [52]. Here we focus on the HR per se, rather than
the amplification effect induced by the instability. As is known
[6,23,53], the analog Hawking temperature for the effectively
1D flow is

TH = h̄

2πkB

(∂v

∂x
− ∂c

∂x

)∣∣∣
x=xh

, (1)

where v(x) is the local velocity of the condensate, c(x) is the
local speed of sound, and the derivatives are evaluated at the
position of the horizon, x = xh. To minimize the impact of
the WH horizon, we introduce a steep gradient of c(x) near
the BH horizon, and a smoothed gradient near the WH one, as
shown in Fig. 1. This setting makes it possible to conveniently
manipulate the slopes, ∂v/∂x and ∂c/∂x in Eq. (1), while
keeping parameters of the acoustic BH horizon and density
of the condensate unchanged.

The main objective of the present work is the impact of
the quantization of the superflow, imposed by the periodic
boundary conditions, on the analog HR in the toroidal BEC.
The analysis reveals the following noteworthy effects. (i) A
smooth WH horizon suppresses instabilities and makes the
supersonic flow robust. (ii) Density-density correlations, rep-
resenting the acoustic analog of HR, are strongly affected by
the size of the ring’s radius and the number of discrete acoustic
modes available in the annular geometry initially. (iii) HR
vanishes if the radius falls below a critical value.

The rest of the paper is organized as follows. The model
is introduced in Sec. II. In Sec. III we discuss initial fluctu-
ations and the corresponding dispersion relation. In Sec. IV
we present results for density-density correlations and the
acoustic analog of HR near the BH horizon. The paper is

concluded in Sec. V, where we also discuss possible simi-
larities of properties of the analog BHs to some fundamental
problems, such as stability of primordial quantum BHs on the
Planck’s scale.

II. THE MODEL

We address the acoustic analog of HR in the framework
of the 1D Gross-Pitaevskii equation (GPE), written in scaled
units,

i
∂ψ

∂t
=

[
−1

2

∂2

∂x2
+ V (x, t ) + g(x, t )|ψ |2

]
ψ, (2)

where ψ (x + L, t ) = ψ (x, t ) is the wave function of the ring-
shaped condensate of ring R and length L = 2πR, while
V (x, t ) and g(x, t ) are the effective potential and 1D cou-
pling constant, respectively. An efficient method for detecting
the analog HR is the analysis of density-density correlations
[54–56]. We here use mean-field simulations of the GPE,
together with a sampling of the quantum noise by means
of a procedure similar to the well-known truncated Wigner
approximation (TWA) [57–61]. In our analysis of the quan-
tum fluid dynamics, we consider the evolution of stochastic
trajectories satisfying the 1D GPE ( 2). Similar to the standard
TWA, we add extra noise to the initial wave function, thus
taking it as follows:

ψ (x, 0) = eik0x

[
√

n0 + 1√
L

∑
k �=0

(
βku0keikx + β∗

k w∗
0ke−ikx

)]
,

(3)

where k0 = Mv/h̄ is determined by the flow velocity v, βk, β
∗
k

are noise amplitudes taking random values, the summation is
performed over wave numbers k, n0 is the spatially uniform
density, and u0k,w0k are defined as

u0k,w0k = [
(Ek/εk )1/2 ± (Ek/εk )−1/2

]
/2, (4)

where Ek ≡ k2/2, εk ≡ √
Ek (Ek + 2gn).

It is relevant to briefly discuss the derivation of GPE (2)
and the meaning of its parameters, as well as the meaning
of the noise in Eq. (3). As said above, we consider the
system schematically shown in Fig. 1. The azimuthally mod-
ulated interaction strength g(x, t ) , where x = Rϕ and ϕ is
the azimuthal coordinate along the ring, is responsible for the
variation of the local sound speed c(x). The starting point of
the derivation is the 3D mean-field GPE in physical units:

ih̄
∂�̄

∂ t̄
=

[
− h̄2

2M
∇̄2 + V̄e(r̄, t̄ ) + γ (r̄, t̄ )|�̄|2

]
�̄, (5)

where M is the atomic mass, V̄e = V̄trap + V̄h is the exter-
nal potential that consists of two terms, viz., the transverse
confinement and the potential that creates the horizon, γ =
4π h̄2as/M is the coupling constant, and as is the s-wave
scattering length, which is supposed to be a function of the co-
ordinate and time. The 3D wave function �̄(r̄, t̄ ) determines
the number of atoms N by the normalization condition N =∫ |�̄|2d3r̄. We fix N = 105 of 87Rb atoms in our calculations.

Thus, we consider a thin ring of radius R̄ filled by di-
lute BEC, with the transverse degrees of freedom frozen by
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the tight confinement. Assuming the usual factorized ansatz
[30,62–64], we set

�̄(r̄, t̄ ) = ψ̄ (x̄, t̄ )φ̄(r̄⊥, t̄ ), (6)

where φ̄(r̄⊥) is the function of transverse coordinates (see,
e.g., [65]), and the 1D density is normalized to the total
number of atoms:∫

d2r̄⊥|φ̄|2 = 1, n̄ ≡ |ψ̄ |2 =
∫

d2r̄⊥|�̄|2. (7)

Then, averaging Eq. (5) in the transverse plane leads to the
effective 1D GPE (2) with the 1D coupling constant defined
as

ḡ = 4π h̄2as

M

∫
d2r̄⊥|φ̄|4. (8)

The state of the condensate in the ring with the uniform
density is provided by the plane-wave solution [19] of Eq. (2):

ψ̄ = √
n̄0ei(k̄0 x̄−ω̄0 t̄ ), h̄ω̄0 = (h̄k̄0)2

2M
+ V̄ (x̄, t̄ ) + ḡ(x̄, t̄ )n̄0.

(9)
Potential V̄ (x̄, t̄ ) and nonlinearity coefficient ḡ(x̄, t̄ ) must be
mutually matched so as to admit the existence of the state with
uniform density n̄0.

Since the wave function must be periodic, ψ̄ (x̄) = ψ̄ (x̄ +
L̄), possible values of k̄0 and k̄ in Eq. ( 3) are restricted by the
length of the ring: (k̄0, k̄) = 2π (m0, m)/L̄, with integers m0

and m determined by the obvious quantization of the velocity
circulation: ∮

v̄d l̄ = 2πmh̄/M, (10)

where m is the winding number, alias topological charge. If
we solve Eq. (2) on a grid of Np points with spacing h̄p,
then k̄0 = 2πm/(Nph̄p), where integer m coincides with the
winding number.

A desirable spatial distribution of the local sound speeds
in regions 1 and 2 in Fig. 1 can be produced by making
the coupling constant, ḡ in Eq. (5), spatially and temporally
inhomogeneous. This can be implemented by either tuning
the scattering length as by means of the Feshbach resonance
[18,19,66–68], or longitudinally varying the strength of the
transverse confinement [69]. The sound speed in regions 1
and 2 is c̄1,2 = √

μ̄1,2/M, where μ̄1,2 = ḡ1,2n̄ are the effective
local chemical potentials. For plane wave (9) with uniform
density n̄0 to be a solution at all values of time, we need to
adjust the axial potential and coupling constant in the two
regions as follows:

V̄1(x̄, t̄ ) + ḡ1(x̄, t̄ )n̄0 = V̄2(x̄, t̄ ) + ḡ2(x̄, t̄ )n̄0, (11)

where −L̄/2 < x̄ < L̄/2. Actually, a part of the definition of
the model is that the combination written in Eq. (11) remains
constant over the ring.

Finally, to cast the 1D GPE in the normalized form of
Eq. (2), we apply the following rescaling in both regions, and
use the notation without bars: t = t̄/τ̄1, ω = ω̄τ̄1, x = x̄/ξ̄1,
k = k̄ξ̄1, ψ =

√
ξ̄1ψ̄ , g1,2 = ḡ1,2/(ξ̄1μ̄1), where τ̄1 = h̄/μ̄1,

and ξ̄1 ≡
√

h̄2/(Mμ̄1) is the healing length in region 1.
The boundary conditions for Eq. (2) being periodic, we

used the split-step fast Fourier transform method [70] for

numerical simulations. The transition from g1,V1 to g2,V2 in
region σx is smooth, provided by the potential taken, locally,
as

V (x, t ) = V1 + �V (t ) f
( t − t0

σt

)
f
(x − xBHH

σx

)
, (12)

where −L/2 < x < 0, �V (t ) = (V2 − V1)θ (t − t0) [θ (t ) is
the step function, hence g and V = V1 are constant at t � 0],
σt is the time of the switch of V (x, t ) and g(x, t ) from initial
to final values, and the switching function is

f (x) = 1

2
[1 + tanh (x/2)]. (13)

Simultaneously with the variation of the potential, the nonlin-
earity coefficient was varied so as to keep V (x, t ) + g(x, t )n0

constant, see Eq. (11).
In our simulations we used xBHH = −50 and t0 = 5. We

have checked that the results do not change essentially if
potential (12) is used without the jump imposed by θ (t − t0),
provided that condition σt � t0 holds. The initial condition
taken as the uniform condensate with constant g and V = V1

makes it easier to add the long-wavelength noise to the entire
system or some part of it, if necessary.

Using this setting with variable of V (x, t ) and g(x, t ) de-
fined as per Eq. (12) and running hundreds of simulations, it
is straightforward to see that the initial noise added to the uni-
form condensate excites all possible long-wavelength modes
admitted by nonuniform g(x) and V (x). We have checked
that, for σt ∈ [0.1, 5] , variation of this parameter does not
change the dynamics qualitatively, therefore we here present
the results for σt = 0.5.

Handling the WHH, which always appears in the ring, is
more challenging, therefore we performed simulations for two
different switching functions, the first one was chosen for 0 <

x < L/2 as

V (x, t ) = V1 + �V (t ) f
( t − t0

σt

)
f
(xWHH − x

σWHH

)
(14)

that provides mirror symmetry for the global potential, under
conditions σWHH = σx and xWHH = −xBHH, cf., Eq. (12). One
can see that this type of the transition function cannot allow
an arbitrary value of the slope of c(x) at the WHH point, as it
requires an extremely large length of the ring for large σWHH

and small |∂c/∂x| ∼ (σWHH)−1. To deal with this case, we
used, instead of the switching scenario defined by Eq. (12), a
double-step one, designed as a set of two similar potentials,
see Figs. 3 and 4(b) below. These two functions gradually
carry over into each other, allowing one to manipulate a suffi-
ciently smooth slope near WHH.

Parameters of the horizon in the scaled units are similar
to those in the model used in Ref. [19] and close to the
experimental parameters of Ref. [22] for the speeds: c1 = 1
(1 mm/s), v = 0.74, c2 = 0.5, σx = 0.5, σt = 0.5, with the
corresponding dispersion relations for regions far from the
horizon shown in Fig. 2. Numerical values of g1,2 and V1,2

can be found from relation ḡ = Mc̄2/n̄ and V̄1 = 1.6μ̄1. The
initial ring has the length of L̄ = 233 μm with τ̄1 = 0.73 ms,
ξ̄1 = 0.73 μm, c̄1 = 1 mm/s, which is tantamount to L =
320, τ1 = 1, ξ1 = 1, μ1 = 1, and c1 = 1 in the scaled units.
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FIG. 2. The dispersion relation for regions far from the horizon. The dispersion curves (a) for c = c1 (before BHH) and (b) for c = c2

(behind BHH). (a) is relevant for the entire ring, until switching the horizon on at t = 5. The HR (Hawking-radiation) mode moves against
the flow. Positive- and negative-norm branches correspond to positive and negative signs of frequencies in the quiescent condensate. In the
condensate with the flow in the supersonic region, the negative-norm branch acquires positive values for some values of k, which results in
the emergence of the P (partner) mode. Modes P and “in” belong to different dispersion branches and move in the direction of the flow. They
represent, respectively, the partner component in the Hawking pair, and a mode which exists even in the absence of the event horizon and
moves towards the white-hole horizon. Constant ωmax defines the frequency limit for the analog HR, representing the maximum frequency on
the negative-norm branch in the supersonic region. Wave number kmin represents the restriction on the analog HR emission for modes with the
positive direction of motion.

III. QUANTUM FLUCTUATIONS AND THE DISPERSION
RELATION

In real BEC, the presence of quantum and thermal fluctua-
tions, which are not taken into account by GPE, is inevitable.
It is possible to include these effects by adding Gaussian noise
to the initial wave function, according to TWA. The evolution
of the fluctuations is governed by the Bogoliubov theory [18],
and the expectation values of symmetrically ordered observ-
ables can be obtained by taking the stochastic average over the
ensemble of evolved wave functions.

As said above, the initial state of the unperturbed system
is uniform, and the potential step is switched on at time t0 >

0, therefore in our simulations we used the stochastic initial
wave function (3), where the summation is performed up to
some maximum wave number k. In the following section we
discuss an appropriate choice of this limit value, and consider
its impact on the analog HR.

It is straightforward to derive the respective dispersion
relation for the acoustic waves, as small-amplitude collective
perturbations running on top of the uniform-density potential:

ω±(k) = vk ±
√

k2

2

(
k2

2
+ 2gn0

)
, (15)

where wave numbers k should satisfy the same quantization
condition as in wave function (9). To briefly explain the
derivation of Eq. (15), we consider the wave function in a
general form,

ψ (x, t ) = e−iω0t

[
√

n0eik0x + 1√
L

∑
k �=0

[
βkuk (x)e−iωkt

+β∗
k w∗

k (x)eiωkt
]] (16)

[cf., the initial condition given by Eq. (3)], where the pertur-
bations are assumed to be small in comparison to

√
n0, hence

this expression can be rewritten as ψ (x, t ) = e−iω0t [ψ0(x) +
ψ ′(x, t )], with |ψ0(x)| � |ψ ′(x, t )|. After inserting this ansatz
in GPE and linearizing with respect to ψ ′(x, t ), one derives a
system of the Bogoliubov–de Gennes equations:

ωkuk (x) = (Ĥ0 − ω0 + 2gn)uk (x) + g(ψ0)2wk (x),

ωkwk (x) = (Ĥ0 − ω0 + 2gn)wk (x) + g(ψ∗
0 )2uk (x), (17)

where Ĥ0 = −1/2∂2
xx + V̂ (x). Since uk (x) = u0kei(kx+k0x),

wk (x) = w0kei(kx−k0x), and ω0 = k2
0/2 + V + gn, we obtain

(ωk − k0k − k2/2 − gn)u0k − gn0w0k = 0,

gn0u0k + (ωk − k0k + k2/2 + gn)w0k = 0. (18)

It is easy to see that dispersion relation (15) follows from
the consistency condition of system (18), setting n = n0 in it.
Coefficients u0k,w0k (k �= 0) are solutions of Eq. (18) such
that the corresponding modes uk (x),wk (x) satisfy the nor-
malization condition

∫ L
0 (|uk (x)|2 − |wk (x)|2)dx = 1. Thus,

expressions for amplitudes of the Bogoliubov modes take the
form written in (4).

To keep the number of atoms constant, we adjusted density
n0 in each simulation. The expression that defines the number
of excited atoms in the uniform condensate was produced in
Ref. [59]. At zero temperature it can be written as

N ′
s =

∑
k �=0

(|u0k|2 + |w0k|2
)(

β∗
k βk − 1

2

)
+

∑
k �=0

|w0k|2.

Therefore, the number of atoms remaining in the ground states
is Nc = N − N ′

s , and n0 = (Nc + 1/2)/L. Such expressions
follow from the relation between the average over ensemble
and quantum average. According to Refs. [58,59], amplitudes
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FIG. 3. Snapshots of the correlation function nξ1[G(x1, x2) − 1]
for t = 90 and t = 150 for two different profiles of the local speed
of sound with three initial modes and the ring’s length L = 320. The
bottom row represents the distribution of the velocity (blue line) and
local speed of sound (black curve) along the ring. (a) Symmetric
BHH and WHH (black- and white-hole horizons) with sharp gra-
dients of the local speed of sound near both horizons. (b) Speed of
sound gradient is smoothed near the WHH. Note that the checker-
board pattern in the supersonic region, which is clearly seen in (a),
vanishes in (b), when the local speed of sound gradually increases
near the white horizon. Yellow, green, and red lines show expected
positions of P-in, HR-in, and HR-P correlation tongues.

βk, β
∗
k of the random perturbation are distributed as follows:

W (βk, β
∗
k ) = 1

2πσ 2
ε

exp

[
−|βk|2

2σ 2
ε

]
,

where σε = [4 tanh (εk/2kBT0)]−1/2, T0 being the temperature
of the condensate.

Clear evidence of the analog HR was obtained, both in
the zero-temperature limit and for T0 > 0, in Refs. [19,20].
Here we use the distribution for T0 = 0 and focus on this
fundamental case.

IV. ANALOG HR NEAR THE BHH

To identify the generation of HR from the acoustic
BH, we have implemented the correlation-function method
[19,22,23,47,54,71–73]. It was developed and used in
Refs. [19,54] for the 1D condensate with a continuous tran-
sition between two uniform regions. The simple interpretation
of this approach is that the HR and the corresponding part-
ner particles are correlated with each other, although being
located on opposite sides of the horizon.

FIG. 4. The same as in Fig. 3 (without the bottom panels) for
L = 320, but inputs taken with ten initial modes. Note that the
checkerboard pattern vanishes for the smoothed white horizon, as
in Fig. 3.

We used the normalized density-density correlation func-
tion in the form of

G(x1, x2) = 〈n(x1)n(x2)〉
〈n(x1)〉〈n(x2)〉 , (19)

where averaging is performed over an ensemble of 100 GPE
simulations. Further increase in the number of simulations
does not tangibly affect the results. All simulations started
with the input in the form of the uniform condensate with
quantum noise added to it, as per Eq. (3). An essential role
in the analysis is played by the number of modes which
are used in TWA. The number was chosen to satisfy natural
restrictions that allow one to observe signatures of the analog
HR. Namely, TWA was proven to be correct for dilute Bose
condensates if the number of modes obeys the constraint
N > Nmodes/2 [58]. To provide the presence of P modes and
thermality of the outgoing flux, frequencies should obey the
condition

ω < ωmax, (20)

see Fig. 2, as found in Ref. [74]. For a sufficiently low wave
number, the latter condition also implies that all modes satisfy
the linear dispersion relation, thus maintaining a clear analogy
with HR near a real BH.

Note that inequality (20) is written for the inhomogeneous
setting in which the density is uniform, while V and g are not
constant and both horizons are present. In this work we do
not explicitly consider the eigenstate problem on top of the
inhomogeneous background, but rather use eigenstates pro-
duced by the system of the Bogoliubov–de Gennes equations
for the uniform condensates to generate initial random per-
turbations, as the initial background is uniform, see Eq. (12).
By running multiple simulations of the ensuing evolution of
the condensate for different realizations of the initial random
perturbations, in the framework of the full GPE, we intend
to produce all essential modes that can be excited after the
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switch to the inhomogeneous system at t = t0. Accordingly,
condition (20) was applied to the initial modes as an esti-
mate for initial frequencies, which we expect to account for a
qualitative change in the behavior of the correlation function.
Therefore, below we refer to ω of the uniform setting and the
respective dispersion relations displayed in Fig. 2.

The initial noise in Eq. (3) involves summation over neg-
ative and positive wave numbers k, but, in our investigation,
only positive ones are relevant, as they correspond to modes
moving towards BHH. Actually, including modes with the
negative direction of motion did not produce any conspicuous
change in the numerically computed correlations, therefore in
what follows below the initial conditions include only lower
positive-k modes.

First, we address the symmetric potential with initial pa-
rameters given above (L = 320, xBHH = −50, xWHH = 50,
σx = σWHH = 0.5). Accordingly, in condition ω < ωmax we
set ωmax ≈ 0.1. In this case, the system admits three modes
with the initial frequency below ωmax. The obtained results for
the correlation function are displayed in Fig. 3. Colored lines
in the figure correspond to the expected correlations between
different particle pairs belonging to the dispersion relation
in Fig. 2. The slope of the colored segment relative to the x
axis is determined by expressions for the sound speed of the
Bogoliubov excitations:

tan(θy) = v − c2

v + c2
, tan(θg) = v − c1

v + c2
, tan(θr ) = v − c1

v − c2
,

where θy, θg, and θr refer to the yellow, green, and red lines,
respectively, in Fig. 3. The length of each segment represents
the expected length of the correlation tongues at the corre-
sponding times, where “tongues” designate the line-shaped
correlation regions that have one end located near BHH and
the other end growing in time in a certain direction. It is
seen that, in spite of the quantization of k, all the correla-
tion tongues are visible for both potentials and they agree
well with the predictions based on the dispersion relations.
In Fig. 3 it is seen that the correlation pattern alters at later
times [in Fig. 3(a) at t � 150] because a checkerboard pat-
tern appears as a result of the existence of a cavity between
the horizons [20,47]. To resolve this problem, we decreased
the value of |∂c/∂x| ∼ (σWHH)−1, which is responsible for the
mixing of modes at the horizon. Applying the double-step
potential, we could make |∂c/∂x| small enough, and thus
avoid the destructive impact of such effects, by reducing the
checkerboard correlations to just two crosses created by the
scattering on each step. While we observe the correlations in
both patterns for the current value of the ring’s radius, the use
of such decaying |∂c/∂x| is necessary for smaller radii that are
considered below.

The next step is to apply the initial noise, which contains
modes that are located at ω > ωmax, in terms of the disper-
sion relation. The corresponding correlations, produced by ten
lowest modes, are shown in Fig. 4. As above, we see the same
correlations for steep and smoothed slopes at WHH, with a
qualitative difference in the checkerboard correlation patterns.
Moreover, only HR-in correlation tongues (i.e., ones between
excitation modes of the HR and in types) are present, and there
is no evidence of P-in or HR-P tongues. We also note that
obtained correlation tongues are expanding a bit faster than

FIG. 5. Correlation function nξ1[G(x1, x2) − 1] for steep (a) and
smoothed (b) slopes for 23 initial modes and L = 2560. The bottom
row shows velocity (blue line) and local speed of sound (black line)
profiles near WHH. The spatial scale in the (x1, x2) plane is the same
as in Fig. 3.

expected, which may be a consequence of being beyond the
linear-dispersion regime.

We have performed similar simulations for the eight times
enlarged region and distance between the horizons (L = 2560
or ≈1.87 mm, in physical units), keeping the same parameters
of both horizons as above. The larger area makes it possible to
admits more initial modes that lie below ωmax. We have thus
performed the simulations for 23 lowest modes belonging to
the linear-dispersion regime. In Fig. 5 one can see the entire
range of the expected correlations, and the expected positions
of the tongues very well coinciding with the highlighted lines
in the correlation pattern. These correlations feature relatively
high intensity, which is about 4 × 10−4 for the HR-P tongues.
This value is still �10 times smaller than that reported in
Ref. [19], which is explained by our choice of the diluteness
parameter, ξ1n = 1/g1 = 312.5 � 1, that defines the intensity
of the correlation signal. No drastic difference is seen between
the correlations near BHH for both potential slopes at WHH.
This fact is explained by a finite speed of excitations and
relatively large distance between the two horizons.

The results obtained for the initial noise containing modes
with ω < ωmax in a large ring (L = 2560) share main prop-
erties with the previous simulations: there is no difference
between correlation patterns near BHH for two different
slopes at WHH (at least in the course of the simulation time),
and the correlation pattern, as one may expect, features solely
HR-in correlation tongues. The same happens with modes that
have energy above ωmax.
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The inference is that the possibility to observe the analog
HR correlations (for fixed parameters of the flow and horizon)
depends on the number of modes that have their frequencies
below and above ωmax, as predicted by dispersion relation (15)
for the uniform density. Furthermore, the effect is strongly
affected by the size of the ring. The former aspect reflects
the fact that, to produce the HR effect, one needs to have
particles belonging to the frequency from the negative-norm
branch of the dispersion relation in the laboratory reference
frame. This criterion was also discovered analytically for the
elongated 1D condensate with the single horizon [74], and
it is true for our system as well, even if we apply it to the
initial noise. The latter aspect implies that, by enlarging the
length of the ring, one increases the number of allowed modes,
which, in the limit of the ring with an infinite radius leads to
the continuous frequency spectrum and an infinite number of
modes at ω < ωmax past t = t0. On the other hand, when the
length of the ring decreases, the discreteness of the system’s
spectrum makes a great difference in the predicted obser-
vations: while some modes stay within the linear-dispersion
region in a large-radius torus, the same set of the modes can
partially or even completely exceed the frequency limit for a
small ring. This change is accompanied by the transition from
three pairs of the correlation tongues to the single surviving
one, between the HR and “in” modes, or even the absence
of any correlations, if a sufficiently large number of modes
are located at ω > ωmax. Lastly, it is expected that, in an
elliptically deformed torus, the dependence of the HR effect
on L remains the same, in the first approximation.

Another important issue concerning our system with two
horizons is its stability, which is sensitive to boundary condi-
tions and the presence of the different horizons [75]. For the
initial noise that does not strongly violate the frequency condi-
tion, we have found the steep horizon to be subject to eventual
instability, with the respective lifetime tdecay � 600 (≈0.438 s,
in physical units) for L = 320. At larger times, simulations
demonstrate that the development of the instability near WHH
produces dark-soliton-like structures, and, finally, it leads to
decay of both horizons. While similar behavior was reported
in Ref. [45], in the present system instabilities grow near
WHH, rather than BHH. On the other hand, the system with a
smoothed horizon shows no instability (at least, in the course
of long-time simulations for t � 1 s). The configurations in
larger rings, with a bigger distance between the horizons, tend
to be more stable than in smaller ones.

Due to the above-mentioned fact that the presence of the
HR-P correlations tongue is determined by the number of
initial modes below and above the critical value of ωmax, the
value of the lowest wave number is restricted by the length of
the ring. Therefore, there exists a critical size making it impos-
sible to observe the HR correlations, as no Bogoliubov mode
may satisfy the constraint (roughly speaking, this conclusion
resembles the known property of the modulational instability,
which is suppressed by periodic boundary conditions if the
ring’s length falls below the respective critical value [76]).

It is worth noting that restrictions on the size of the
ring-shaped condensate have already been discussed in work
[45]. That constraint originates from the phononic regime for
the perturbations and sufficient conditions for the existence
of the sonic horizon, giving critical value R′

cr = √
2π/Ng

or R′
1cr (g1) = 0.14, R′

2cr (g2) = 0.28, which are significantly
smaller than the critical radii obtained above. Moreover, R′

cr
depends on the particle number, which was kept constant in
Ref. [45]. However, we change N proportionally to L in order
to keep n0 and c1,2 = √

g1,2n0 constant. Consequently, our
estimate for Rcr depends solely on parameters of the horizon,
v and c1,2. The restriction on the radius is determined by
the presence or absence of correlations as a signature of the
analog-HR effect. The critical size Rcr for our system can
be evaluated from the condition that the frequency, which
corresponds to the lowest wave number, pursuant to Eq. (15),
is equal to ωmax = max[ω−(k; g2)], see Fig. 2. The respective
relation, which determines the critical radius Rcr = 1/kcr,
becomes

ωmax = v

Rcr
+

√
1

2R2
cr

(
1

2R2
cr

+ 2g1n0

)
. (21)

For 1/Rcr � 1 it simplifies to

Rcr = v + c1

ωmax
= 2v(v + c1)

2k∗(v2 − c2
2 ) − k3∗

, (22)

where

k∗ ≡ c2

√√√√−
(

2 − v2

2c2
2

)
+ v

c2

√
2 + v2

4c2
2

.

It is relevant to compare the observed correlations for
different critical radii evaluated from Eq. (22). With our
initial parameters of BHH, which allowed the observation
of the HR-P correlations, the critical length of the ring is
Lcr ≈ 110, which corresponds to critical radius Rcr ≈ 17 (or
R̄cr ≈ 13 μm, in physical units). It is three times smaller than
the radius of the ring in the simulations, R ≈ 51. However,
it remains a challenging objective to produce evidence of the
disappearance of the HR-P correlations, as the noise with the
strength used in the above simulations suppresses all correla-
tions at R̄ � 13 μm. Therefore, we have changed parameters
of the horizon to v = 0.61 and Lcr = 355, so as to make the
critical size of the ring slightly larger than L = 320 (which is
good to observe correlations), and conducted the simulations
for a smoothed slope at WHH. In Fig. 6 we observe the
absence of HR-P correlations for the three lowest modes. On
the other hand, simulations produced visible P-in correlations
(and negligible HR-P ones) for the ten lowest modes. Thus,
we have performed numerical simulations of the nonuniform
(at t > t0) condensate and compared the results for the rings
with the radius taken above and below the critical value Rcr.

We stress that our consideration of the HR effect is based
mostly on the direct numerical analysis of the density-density
correlations. Surprisingly, predictions based on the oversim-
plified estimates of Rcr, obtained for a uniform condensate,
appears to be in good agreement with direct numerical simu-
lations.

V. CONCLUSIONS

We have investigated the possibility to generate acoustic
HR (Hawking radiation) in the superfluid ring-shaped BEC.
For this purpose we have introduced the double-step potential
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FIG. 6. Vanishing of HR-P correlations for the ring’s length L <

Lcr for a ring with v = 0.61 (m = 31) and values of |∂c/∂x| much
smaller near WHH, in comparison to BHH. Column (a) pertains to
the ring with three lowest modes and L = 320, where even the lowest
k mode exceeds the frequency limit, and (b) provides snapshots of
weak correlations for a larger ring (L = 2560) and ten lowest initial
modes. The scale of the correlations is the same in all snapshots.

that minimizes the emulated Hawking temperature near the
WHH (white-hole horizon), where instabilities may occur.
The desirable region with the supersonic flow and uniform
density distribution of the condensate may be designed using
the spatiotemporally modulated interaction constant, adjusted
to the selected potential. These features make the system con-
sidered here sufficiently stable and convenient for the analysis
of the acoustic analog of HR in the rings.

We have addressed basic properties of the analog HR in the
ring-shaped matter-wave configurations with different radii.
The HR is quantified by the location and shape of tongue-
shaped correlation patterns, which, in turn, are well predicted
by the dispersion relation for the quasiuniform condensate in
the limit of low wave numbers. To this end, small random per-
turbations are added to the uniform system, in the framework
of TWA (truncated Wigner approximation), and then multiple
simulations of the full GPE are run for different realizations
of the initial random perturbations, while the setting switches
from spatially uniform to the nonuniform one. The so pro-
duced results for the correlation patterns are stable against
variations of the spatiotemporal modulation of the potential
and coupling constant.

An important circumstance is that the patterns are sensitive
to the number of initial modes admitted by the ring, depend-
ing on its radius, below and above the frequency limit ωmax.
Varying these parameters, we have observed different tongue-
shaped correlation patterns: from three pairs of tongues to
a single one for a sufficiently large number of modes. The
discreteness of the frequency and momentum spectra in the
ring produces a dramatic effect on the properties of HR. Below
the critical radius of the ring, even the lowest mode has its fre-
quency above ωmax, so that HR-P correlations disappear. Thus,
no acoustic HR takes place in the ring-shaped superflows
with the radius falling below the critical value. Remarkably,
a rough estimate for the critical radii, given by Eq. (22),
which is obtained from the dispersion relation for the homo-
geneous condensate, agrees with results of direct numerical
simulations of the perturbed dynamics of the inhomogeneous
condensate.

It is relevant to compare the minimum radius of the ring,
necessary for the generation of HR, with the situation for
real (astrophysical) BHs (black holes). While they lose their
mass through HR extremely slowly, the Hawking temperature
dramatically increases for small BHs with mass M: TH =
h̄c3/(8πGkBM ) = 6.169 × 10−8(M�/M ) K. In this connec-
tion, it is relevant to mention that quantum effects are believed
to be crucially important for BHs with the Planck-scale mass
M ∼ mP = √

h̄c/G. A well-known puzzle in the quantum
theory of gravity is the final fate of such BHs. There are good
grounds to assume [77] that HR is suppressed for sufficiently
small BHs when their size rg = 2GM/c2 becomes comparable
to the Compton wavelength λC = h/(mPc), associated with
the BH of the Planck’s mass. On the other hand, we have
found that there is also a critical size of the system, related
to quantum effects in the toroidal geometry. The critical size
depends on the spatial structure of the superflow near the BH
horizon, which determines the strength of the analog “surface
gravity.” Certainly, the properties caused by the quantization,
i.e., the discreteness of the frequency and momentum spectra,
become essential when the size of the ring shrinks at a fixed
value of the slope of the speed of sound. When the system’s
radius falls below the critical value Rcr, the analog HR disap-
pears. Accordingly, in terms of real BHs, small nonradiating
primordial black holes, which are conjectured to be created
in great numbers in the early Universe, might survive and
become an ingredient of dark matter [78–81].
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