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Collinear orbital antiferromagnetic order and magnetoelectricity in quasi-two-dimensional
itinerant-electron paramagnets, ferromagnets, and antiferromagnets
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We develop a comprehensive quantitative theory for magnetoelectricity in magnetically ordered quasi-two-
dimensional (quasi-2D) systems whereby in thermal equilibrium an electric field can induce a magnetization
and a magnetic field can induce an electric polarization. This effect requires that both space-inversion and
time-reversal symmetry are broken. Antiferromagnetic order plays a central role in this theory. We define a
Néel operator τ such that a nonzero expectation value 〈τ〉 signals collinear antiferromagnetic order in the same
way a magnetization signals ferromagnetic order. While a magnetization is even under space inversion and odd
under time reversal, the operator τ describes a toroidal moment that is odd both under space inversion and under
time reversal. Thus the magnetization and the toroidal moment 〈τ〉 quantify complementary aspects of collinear
magnetic order in solids. Focusing on quasi-2D systems, itinerant-electron ferromagnetic order can be attributed
to dipolar equilibrium currents that give rise to a magnetization. In the same way, antiferromagnetic order arises
from quadrupolar equilibrium currents that generate the toroidal moment 〈τ〉. In the magnetoelectric effect,
the electric-field-induced magnetization can then be attributed to the electric manipulation of the quadrupolar
equilibrium currents. We develop a k · p envelope-function theory for the antiferromagnetic diamond structure
that allows us to derive explicit expressions for the Néel operator τ. Considering ferromagnetic zincblende
structures and antiferromagnetic diamond structures, we derive quantitative expressions for the magnetoelectric
responses due to electric and magnetic fields that reveal explicitly the inherent duality of these responses required
by thermodynamics. Magnetoelectricity is found to be small in realistic calculations for quasi-2D electron
systems. The magnetoelectric response of quasi-2D hole systems turns out to be sizable, however, with moderate
electric fields being able to induce a magnetic moment of one Bohr magneton per charge carrier. Our theory
provides a broad framework for the manipulation of magnetic order by means of external fields.

DOI: 10.1103/PhysRevResearch.2.043060

I. INTRODUCTION

The technological viability of alternative spin-based elec-
tronics prototypes [1–3] hinges on the ability to efficiently
manipulate magnetizations using electric currents or volt-
ages. Various basic device architectures are currently being
explored that could offer the crucially needed electric
magnetization control. One promising approach utilizes
antiferromagnetic materials [4,5], while another employs
current-induced spin torques [6–9]. A third interesting avenue
has been opened by harnessing the magnetoelectric effect
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[10–15] in multiferroic materials [16–20] for switching the
magnetization of an adjacent ferromagnetic contact [21,22].
Results obtained in our work point to an appealing alternative
possibility, whereby intrinsic magnetoelectric couplings in
ferromagnetic and antiferromagnetic quasi-two-dimensional
(quasi-2D) itinerant-electron systems provide a nondissipative
mechanism for electric control of magnetizations. We present
a comprehensive theoretical study of magnetoelectricity in
these paradigmatic nanoelectronic structures that have the
potential to become blueprints for future spintronic devices.

Ordinarily, when matter is exposed to an electric field 𝓔,
the field generates a polarization 𝓟, while a magnetic field
𝓑 generates a magnetization 𝓜. Counter to this familiar
behavior, magnetoelectric media also develop an equilibrium
magnetic response 𝓜 to an electric stimulus 𝓔, and an
electric response 𝓟 to a magnetic stimulus 𝓑 [10–15]. A
systematic understanding of magnetoelectricity can be based
on an expansion of the free-energy density F as a function of
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the externally applied electric field 𝓔 and magnetic field 𝓑
[11,15],

F (𝓔,𝓑) = F (0, 0) − Ps
i Ei − M s

i Bi

− 1
2 χE

i j EiE j − 1
2 χB

i j BiB j

−αi j Ei B j − 1
2βi jk EiB jBk − 1

2γi jk BiE jEk

− . . . . (1)

The first two lines in Eq. (1) pertain to ordinary electromag-
netic phenomena [23], whereas terms in the third line are
associated with magnetoelectricity. In particular, the magne-
toelectric tensor αi j characterizes the generation of an electric
polarization by a magnetic field and of a magnetization by an
electric field, as is clear from the explicit expressions for the
polarization 𝓟 = −∂F/∂𝓔,

Pi = Ps
i + χE

i j E j

+αi jB j + 1
2βi jk B jBk + γ jki B jEk + . . . , (2a)

and the magnetization 𝓜 = −∂F/∂𝓑,

Mi = M s
i + χB

i j B j

+α jiE j + β jki E jBk + 1
2γi jk E jEk + . . . . (2b)

Here and in the following, we have denoted by ∂/∂a the
gradient vector (∂ax , ∂ay , ∂az ) of derivatives with respect to
the Cartesian components of a vector a ≡ (ax, ay, az ). In both
Eqs. (2a) and (2b), the first line embodies conventional elec-
tromagnetism in the solid state [11], whereas terms in the
second line of these equations are ramifications of the mag-
netoelectric effect [11,12]. The appearance of the same set of
coefficients αi j , βi jk , and γi jk in these equations indicates a
deep connection between the microscopic mechanisms caus-
ing a magnetically induced polarization and the microscopic
mechanisms causing an electrically induced magnetization.
As shown in the present work, quasi-2D systems facilitate the
detailed discussion and thorough elucidation of the underlying
mechanisms for such dual magnetoelectric responses. They
also present a promising platform for exploiting magnetoelec-
tricity in device applications.

As the product of 𝓔 and 𝓑 is odd under space inversion
and time reversal, a nonzero tensor αi j is permitted only
for systems with space-inversion symmetry and time-reversal
symmetry both broken [11]. Terms proportional to the tensors
βi jk and γi jk embody higher-order magnetoelectric effects
[15,24,25]. Systems in which only space-inversion (time-
reversal) symmetry is broken can have nonzero tensors βi jk

(γi jk), while αi j = 0. As an example for the latter in the con-
text of the present work, we show that paramagnetic quantum
wells in zincblende-structure materials exhibit the higher-
order magnetoelectric effect associated with the tensor βi jk .

The magnetoelectric effect has been studied experimen-
tally for a range of materials including ferromagnetic,
antiferromagnetic, and multiferroic systems [12,15,16,26,27].
Existing theoretical studies of the magnetoelectric effect have
either focused on elucidating general properties of the tensors
αi j , βi jk , and γi jk based on symmetry [28–30] or devel-
oped first-principles methods for their numerical calculation
[31–36] and semiclassical approaches [37]. These works
considered insulators where magnetoelectric effects are well

FIG. 1. Variations of the diamond structure considered in this
work. (a) Inversion-symmetric diamond structure. (b) Zincblende
structure that breaks inversion symmetry. (c) Antiferromagnetic dia-
mond structure that breaks time-reversal symmetry � and inversion
symmetry I (though the joint operation �I remains a good symme-
try). Materials with structure (a) are not magnetoelectric. Those with
structure (b) become magnetoelectric when they are magnetized,
whereas materials with structure (c) are intrinsically magnetoelectric.

defined as a bulk property. Typically, these works have also
limited their scope to investigating only one of the two dual
magnetoelectric responses. As a result, the microscopic basis
for the intrinsic symmetry of electric and magnetic responses
has been rarely discussed [38]. In contrast, the conceptually
transparent and practically important quantum-well system
considered in the present work provides a versatile, unified
theoretical framework for describing magnetoelectricity in
paramagnets, ferromagnets, and antiferromagnets, covering
both the electrically induced magnetization and the mag-
netically induced polarization and demonstrating explicitly
how these two effects are intrinsically related. Furthermore,
the quasi-2D systems studied here are unusual examples of
metals exhibiting magnetoelectricity in equilibrium, i.e., in
the absence of transport currents. Specifically, the in-plane
magnetic field generates an electric polarization perpen-
dicular to the 2D plane and a perpendicular electric field
induces an in-plane magnetization [39]. The reduced di-
mensionality of the quantum-well systems guarantees that
these manifestations of magnetoelectricity are well defined
and also accessible experimentally. The magnetoelectric cou-
pling per volume is proportional to the width w of the
quasi-2D system, and in antiferromagnetic and halfmetallic-
ferromagnetic quasi-2D systems, it is also proportional to
the sheet density Ns. Thus, unlike magnetoelectricity in bulk
materials, it is easily tunable in quasi-2D systems. While
the magnitude of magnetoelectric-tensor components are sim-
ilar to the moderate values in the classic magnetoelectric
Cr2O3, the electric-field-induced magnetization per particle
is comparable to the values found in current record-breaking
multiferroics. See the comparison of relevant magnitudes pro-
vided in Table I. The unusual situation where an electric field
can generate a large magnetization per particle in a system
with small magnitude of magnetoelectric-tensor components
arises because the magnetoelectric response in our metallic
quasi-2D systems is associated with the itinerant charge carri-
ers whose density per unit cell is small.

Our realistic theoretical study focuses on the techno-
logically important class of materials realizing variants of
the diamond structure; see Fig. 1. As discussed earlier,
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TABLE I. Magnitude of the magnetoelectric effect in the quasi-2D electron and hole systems considered in this work compared with the
values that have been demonstrated or that can be reasonably expected in selected known magnetoelectric materials. Among bulk materials, we
consider the paradigmatic Cr2O3 [40,41] as well as TbPO4 that has the largest value of the magnetoelectric-tensor components |αi j | recorded
for a single-phase material [42]. Also, we include heterostructures made of GaMnAs [43] and FeRh/BTO [44]. The latter has the current
record value for |αi j |. We list values for components |αi j |, as well as estimates for the achievable magnetic moment M per charge carrier (in the
quasi-2D electron and hole systems) or per magnetic atom in the unit cell (for heterostructures and bulk magnetoelectrics). ε0 and μ0 denote
the electric permittivity and magnetic permeability of vacuum, respectively.

Material 2D electrons (FM InSb) 2D holes (FM InSb) GaMnAs FeRh/BTO Cr2O3 TbPO4

|αi j | (
√

ε0/μ0 ) 1.9×10−6a 1.3×10−4b 4.0×10−3c 4.8×103d 3.1×10−4e 9.0×10−2f

M (μB ) 2×10−2a 0.6 b 2 g 2 h 1×10−3i 2 j

aThis work [Fig. 3(a)].
bThis work [Fig. 7(a)].
cDerived from data given in Fig. 2 of Ref. [43].
dDerived from measured value of μ0 αi j [44].
eReference [40].
fDerived from measured value of μ0 αi j [42], using SI-unit value quoted in Ref. [44].
gValue per Mn acceptor atom derived from data given in Fig. 2 of Ref. [43].
hValue per Fe atom estimated from 	M ∼ 550 emu/cm3 [44].
iValue per Cr atom estimated for E ∼ 10 MV/cm in Ref. [41].
jValue per Tb atom estimated for E ∼ 10 MV/cm.

magnetoelectricity only occurs in situations where both space-
inversion and time-reversal symmetry are broken. Hence,
the magnetoelectric effect is absent in paramagnetic mate-
rials having the inversion-symmetric [45] diamond structure
[Fig. 1(a)]. In contrast, the zincblende structure [Fig. 1(b)]
breaks inversion symmetry. In addition, time-reversal sym-
metry is broken in magnetized samples with ordered spin
magnetic moments or with an orbital magnetization due to
dissipationless equilibrium currents. Such a magnetization
can be caused by a Zeeman coupling of the charge carriers
to an applied magnetic field or by a ferromagnetic exchange
field [46,47] that is present in the material itself or induced by
proximity to a ferromagnet. The origin of the magnetization
is largely irrelevant for the microscopic mechanism of mag-
netoelectricity so that we denote all these scenarios jointly as
ferromagnetically ordered. We demonstrate in this work the
emergence of finite magnetoelectric couplings in ferromag-
netically ordered quantum wells made from materials having
a zincblende structure. We find that already in the absence
of external fields, the interplay of broken space-inversion and
time-reversal symmetry generates a collinear orbital antifer-
romagnetic order of the charge carriers that renders these
systems to be actually ferrimagnetic. The magnetoelectric ef-
fect can then be viewed as arising from the manipulation of the
equilibrium current distributions underlying the orbital anti-
ferromagnetic order. Specifically, an electric field affects these
currents in a way reminiscent of the Lorentz force such that
the modified currents give rise to a magnetization component
in addition to and oriented at an angle to the ferromagnetic
order in the system. In contrast, an external magnetic field 𝓑
applied perpendicularly to the ferromagnetic order can induce
an electric dipole moment via a mechanism resembling the
Coulomb force, where the scalar potential is replaced by the
vector potential for 𝓑. This mechanism for magnetoelectric-
ity in quantum wells made from ferromagnetic zincblende
semiconductors differs fundamentally from the electric-field
control of the spontaneous magnetization 𝓜s in these sys-
tems [48,49].

Magnetoelectricity occurs most prominently in antiferro-
magnetically ordered materials, where an electrically induced
magnetization is not masked by an intrinsic magnetization
in the system. Similarly to ferromagnetic order, antiferro-
magnetic order can have a spin component and an orbital
component, and we can have spontaneous antiferromagnetic
order due to a staggered exchange field in the material, but
the order can also be induced in both paramagnets and fer-
romagnets. Here we consider the antiferromagnetic diamond
structure shown in Fig. 1(c). To study the magnetoelectricity
exhibited in quantum wells made from such a material, we
develop a k · p envelope-function theory for itinerant-electron
diamond antiferromagnets, which is in itself an important
result presented in this work. On the basis of this theory, we
are able to define an operator τ in terms of itinerant-electron
degrees of freedom such that a nonzero expectation value 〈τ〉
signals collinear antiferromagnetic order in the same way that
a nonzero expectation value 〈σ〉 of the charge carriers’ spin
operator σ signals ferromagnetic order of spins. Applying our
theoretical framework to antiferromagnetically ordered quan-
tum wells placed into external magnetic and electric fields,
we reveal them to exhibit magnetoelectric couplings remark-
ably similar to those found for the ferromagnetically ordered
zincblende quantum wells described above. The magnetoelec-
tric response of the antiferromagnetic system can be related to
the modification of the quadrupolar equilibrium-current dis-
tribution associated with antiferromagnetic order by external
electric and magnetic fields. This is in line with the fact that
the magnetoelectric tensor αi j behaves under symmetry trans-
formations like a magnetic quadrupole moment [50], i.e., both
of these second-rank material tensors require broken space-
inversion symmetry and broken time-reversal symmetry and
these tensors share the same pattern of nonzero components,
though microscopically they are generally not simply related
to each other.

Analytical results obtained from effective two-band models
of confined charge carriers elucidate the basic physical phe-
nomena associated with magnetoelectricity in para-, ferro-,
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and antiferromagnetic quantum wells. Accurate numeri-
cal calculations utilizing realistic 8 × 8 and 14 × 14 k · p
Hamiltonians establish a typically large, practically relevant
magnitude of the electric-field-induced magnetization in hole-
doped quantum wells made from zincblende ferromagnets or
diamond-structure antiferromagnets. The ability to illustrate
the full complementarity of magnetoelectric responses within
the same microscopic theory distinguishes our approach from
most previous ones [14]. We show that our explicit results for
the magnetic responses provide an important benchmark for
general theories of magnetoelectricity [50–52]. Our findings
provide a platform for further systematic studies aimed at
manipulating charges, currents, and magnetic order in solids.

The remainder of this article is organized as follows. In
Sec. II, we define the relevant quantities of interest for our
study, establishing the relation between the thermodynamic
definitions of polarization (2a) and magnetization (2b) and
the electromagnetic definitions of these quantities. We then
proceed, in Sec. III, to calculate magnetoelectric responses of
quasi-2D electron and hole systems realized in zincblende het-
erostructures having a Zeeman spin splitting due to an external
magnetic field or due to the coupling to ferromagnetic ex-
change fields. In Sec. IV, we develop a general framework for
the k · p envelope-function description of antiferromagnetic
order. We use this framework to perform a comprehensive
analysis of magnetoelectric phenomena in quantum wells
made from diamond-structure antiferromagnets. Section V
is devoted to deriving an upper bound on the magnitude of
magnetoelectric-tensor components in quasi-2D systems [53].
We summarize our conclusions and provide a brief outlook in
Sec. VI. Appendix A reviews current-induced magnetization,
a phenomenon that shares some apparent similarities with
the magnetoelectric effect. Ancillary results are presented in
Appendices B and C.

II. ELECTRIC AND MAGNETIC RESPONSES
IN QUASI-2D SYSTEMS

We consider a quasi-2D system in the (x, y) plane with
open boundary conditions in the z direction in the presence
of a perpendicular electric field Ez and an in-plane magnetic
field 𝓑‖ = (Bx,By) [39]. Throughout this work, vectors like
𝓑‖ that have only in-plane components will be indicated
by a subscript “‖”, and their vanishing z component will be
suppressed. Very generally, the polarization and magnetiza-
tion can be obtained from the free-energy density F via the
relations [11]

Pz = − ∂F

∂Ez
, (3a)

𝓜‖ = − ∂F

∂𝓑‖
. (3b)

More accurately, the polarization and magnetization only de-
pend on the change of the free energy δF ≡ F (Ez,𝓑‖) −
F (0, 0) due to the fields Ez and 𝓑‖.

To simplify the analysis, we assume that only the itiner-
ant charge carriers in the quasi-2D system contribute to the
electric and magnetic response. We assume that the confining

potential V (z) of the quasi-2D system includes the electro-
static potential due to compensating charges and external
gates that ensure overall charge neutrality and that are as-
sumed to be fixed in space. Also, we assume that the potential
V (z) defining a quantum well for the quasi-2D system is
symmetric, i.e., V (−z) = V (z). We denote the Hamiltonian
for the charge carriers by H . The electric field Ez enters H via
the additional potential eEzz, where e ≡ |e| is the elementary
charge. Because of the smallness of χE

zz for charge carriers
in quantum wells (see, e.g., Ref. [54] and Table III in Sec. V
below), we can equate both internal and applied perpendicular
electric fields with Ez. The magnetic field 𝓑‖ enters H via
the vector potential 𝓐 that is related to the magnetic field via
𝓑‖ = ∇ × 𝓐, with ∇ denoting the gradient with respect to
the position vector r ≡ (x, y, z). In addition, 𝓑‖ may enter
H via a Zeeman term (g/2) μB σ · 𝓑‖, where g denotes the g
factor, μB ≡ eh̄/(2m0) is the Bohr magneton, with m0 being
the mass of free electrons, and σ is a dimensionless spin op-
erator [55]. The eigenstates of H associated with eigenvalues
Enk‖ have the general form

�nk‖ (r) = eik‖·r

2π

nk‖ (z). (4)

Here n labels the quasi-2D subbands, and k‖ ≡ (kx, ky) is the
in-plane wave vector. The free-energy density can then be
written in the form

F = 1

w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ ) Enk‖ , (5)

where w is the width of the quantum well, and f (E ) denotes
the Fermi distribution function. We will later assume zero
temperature so that f (E ) becomes a step function f (E ) =
�(EF − E ), with the Fermi energy EF .

Using the expression (5) for the free-energy density, the
polarization becomes

Pz = Pe
z + Pq

z , (6)

with

Pe
z = − 1

w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ )
∂Enk‖

∂Ez
, (7a)

Pq
z = − 1

w

∑
n

∫
d2k‖
(2π )2

Enk‖
∂ f (Enk‖ )

∂Ez
. (7b)

The first term Pe
z arises from the Ez dependence of the ener-

gies Enk‖ of occupied states. The second term Pq
z represents

a quantum-kinetic [56] contribution to Pz that accounts for
changes in the equilibrium occupation-number distribution
arising from a change of Ez. Hence, in the low-temperature
limit, Pq

z reflects Ez-induced changes in the shape or topology
of the Fermi surface.

Using the Hellmann-Feynman theorem and assuming the
only explicit Ez dependence in the Hamiltonian H to be the
potential eEzz [57], we find

Pe
z = − e

w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ ) 〈z〉nk‖ , (8)
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where

〈z〉nk‖ =
∫

dz |
nk‖ (z)|2 z (9)

denotes the displacement of an electron in the state 
nk‖ (z).
Thus the term Pe

z coincides with the electrostatic definition
of polarization as the volume average of microscopic electric
dipole moments [58,59]. In a quasi-2D system with open
boundary conditions in the z direction (and overall charge
neutrality as assumed above), the electrostatic polarization
Pe

z is unambiguously defined independently of the origin
of the coordinate system. It avoids the technical problems
inherent in studies of the bulk (3D) polarization [59]. The
average displacement of the occupied states is

〈z〉 = 1

Ns

∑
n

∫
d2k‖
(2π )2

f (Enk‖ ) 〈z〉nk‖ , (10a)

= 1

Ns

∫
dz ρ(z) z, (10b)

where

ρ(z) =
∑

n

∫
d2k‖
(2π )2

f (Enk‖ ) |
nk‖ (z)|2 (11)

is the 3D number density and Ns = ∫
dz ρ(z) is the 2D (sheet)

density of charge carriers in the quantum well. Thus we can
rewrite the polarization (8) as

Pe
z = P0 P ≡ P0

〈z〉
w

, (12)

where P0 ≡ −eNs, and the dimensionless number P =
〈z〉 /w describes the average polarization per particle.

Similarly to the polarization Pz, the magnetization 𝓜‖ is
also the sum of two contributions,

𝓜‖ = 𝓜e
‖ + 𝓜q

‖, (13)

with

𝓜e
‖ = − 1

w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ )
∂Enk‖

∂𝓑‖
, (14a)

𝓜q
‖ = − 1

w

∑
n

∫
d2k‖
(2π )2

Enk‖
∂ f (Enk‖ )

∂𝓑‖
, (14b)

which again represent the electromagnetic and the quantum-
kinetic effects of 𝓑‖, respectively. Given that 𝓑‖ generally
enters the Hamiltonian H via both the vector potential 𝓐 and
also via the Zeeman term, the contribution 𝓜e

‖ can be split
further into orbital and spin contributions,

𝓜e
‖ = 𝓜o

‖ + 𝓢‖, (15)

where

𝓜o
‖ = − 1

w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ )

〈∑
j=x,y

∂H

∂A j

∂A j

∂𝓑‖

〉
nk‖

,

= − e

w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ ) ẑ × 〈{z , v‖}〉nk‖ , (16a)

𝓢‖ = − 1

w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ )

〈
∂H

∂𝓑‖

〉
nk‖

,

= −gμB

2w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ ) 〈σ〉nk‖ . (16b)

To obtain Eqs. (16a) and (16b), we used once again the
Hellmann-Feynman theorem. The first term 𝓜o

‖ represents
the in-plane orbital magnetization [58,59]. In Eq. (16a), the
symbol v‖ ≡ ∂H/(∂ h̄k‖) denotes the in-plane component of
the velocity operator, and

〈{z , v‖}〉nk‖ =
∫

dz 

†
nk‖ (z) {z , v‖} 
nk‖ (z), (17)

with {A, B} ≡ 1
2 (AB + BA). The expression (16a) is associ-

ated with the vector potential 𝓐 = z 𝓑‖ × ẑ that is adopted
throughout our work as the appropriate gauge for quasi-2D
systems. This is the reason why Eq. (16a) differs from the
conventional formula for the orbital magnetization [59] that
is obtained for the symmetric gauge [60] 𝓐sym ≡ 1

2 𝓑 × r,
see Appendix B. Similarly to Pe

z , the magnetization 𝓜o
‖

of a quasi-2D system avoids the technical problems inherent
in studies of the bulk (3D) orbital magnetization [59]; it is
unambiguously defined independently of the origin of the
coordinate system.

An orbital magnetization 𝓜o
‖ is generally accompanied by

a nonvanishing in-plane current distribution

𝓳‖(z) = −e
∑

n

∫
d2k‖
(2π )2

f (Enk‖ ) j‖(z, nk‖), (18a)

with

j‖(z, nk‖) = Re[
†
nk‖ (z) v‖ 
nk‖ (z)], (18b)

though in thermal equilibrium, the total current 𝓙‖ =∫
dz 𝓳‖(z) is always zero. These currents 𝓳‖(z) are nondis-

sipative because they are not driven by an electric field.
(Throughout this work, we assume 𝓔‖ = 0 for the in-plane
electric field.) Direct experimental observation of the currents
𝓳‖(z) seems impossible, as their nature appears to preclude
any ability to make contact to them. However, their ramifica-
tion in terms of the magnetization 𝓜o

‖ is detectable.
The second term 𝓢‖ in Eq. (15) represents the spin magne-

tization, given in Eq. (16b) in terms of the dimensionless spin
polarization 〈σ〉nk‖ of individual states. We rewrite this as

𝓢‖ = −gμBNs

2w
S‖, (19)

where S‖ is the dimensionless average spin polarization of
the entire system. Similarly, it is convenient to define 𝓜o

‖ =
M0 Mo

‖ with M0 ≡ −μBNs/w and dimensionless Mo
‖ so that

we get

𝓜e
‖ = M0

(
Mo

‖ + g

2
S‖
)
, (20a)

= M0

Ns

∫
d2k‖
(2π )2

f (Enk‖ )

×
[

2m0

h̄
ẑ × 〈{z , v‖}〉nk‖ + g

2
〈σ〉nk‖

]
. (20b)
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A polarization Pe
z represents the dipole term (l = 1) in

a multipole expansion of a charge distribution ρ(z) [58].
Similarly, an orbital magnetization 𝓜o

‖ represents the dipole
term (l = 1) in a multipole expansion of a current distribution
𝓳‖(z). Charge neutrality of a localized charge distribution
ρ(z) generally requires a vanishing monopole (l = 0) for
the multipole expansion of ρ(z). Similarly, a localized cur-
rent distribution 𝓳‖(z) requires a vanishing monopole for the
multipole expansion of 𝓳‖(z). An equilibrium current distri-
bution 𝓳‖(z) that breaks time-reversal symmetry is permitted
in ferromagnets and in antiferromagnets [61]. The finite
magnetization in ferromagnets implies that the equilibrium
current distribution 𝓳‖(z) includes a dipolar component (l =
1), whereas the vanishing magnetization in antiferromagnets
requires equilibrium currents to be (at least) of quadrupolar
type (l = 2).

For finite systems, the lowest nonvanishing multipole in a
multipole expansion is generally independent of the origin of
the coordinate system and in that sense well defined, whereas
higher multipoles depend on the choice for the origin [58]. We
therefore limit our discussion below to the lowest nonvanish-
ing multipole. As mentioned, in infinite periodic crystals, even
the lowest nonvanishing multipole moment requires a more
careful treatment [59].

As integrals can be more easily and more reliably
calculated numerically than derivatives [62], it is more
straightforward to evaluate numerically the integrals defining
the electromagnetic parts Pe

z , 𝓜o
‖, and 𝓢‖ of the response

functions. On the other hand, it is more difficult to evaluate
accurately the full response functions Pz and 𝓜‖ that require
a numerical differentiation of the free energy F as a function
of the applied external fields [63,64]. A detailed account of
these technical issues is beyond the scope of the present work.
In the following, we thus focus on Pe

z , 𝓜o
‖, and 𝓢‖ alone.

This is adequate for scenarios where the quantum-kinetic parts
Pq

z and 𝓜q
‖ of the response functions are less important,

which we have found to be generally the case for a strong
confinement V (z). Within the framework of the analytical per-
turbative calculations of the magnetoelectric effect discussed
below, the external fields Ez and 𝓑‖ do not change the occu-
pation of individual states. Quantum-kinetic contributions Pq

z

and 𝓜q
‖ thus do not arise in the analytical calculations.

III. MAGNETOELECTRICITY IN ZINCBLENDE
PARAMAGNETS AND FERROMAGNETS

A. The model

The diamond crystal structure is shown in Fig. 1(a). Space
inversion is a good symmetry in diamond so that electronic
states are at least twofold degenerate throughout the Brillouin
zone [45]. The diamond structure is realized in group-IV
semiconductors including C, Si, and Ge. In a zincblende struc-
ture, the atomic sites in a diamond structure are alternatingly
occupied by two different atoms such as Ga and As or In and
Sb [Fig. 1(b)]. Thus spin degeneracy of the electronic states is
lifted in paramagnetic zincblende structures except for k = 0.

Spontaneous ferromagnetic order is realized in semicon-
ductors with zincblende structure such as GaMnAs [65] and
InMnSb [66], where the ferromagnetic coupling between local

Mn moments is mediated by itinerant holes [46,47]. In ferro-
magnetic GaMnAs, the magnetization resides mostly in the
Mn-impurity spins (with magnetic moment 5 μB) [46,47]. We
want to focus here on ferromagnetic InSb, where the effective
spin magnetic moment of holes ∼2κμB (with Luttinger pa-
rameter κ = 15.6) is more than an order of magnitude larger
than in GaAs (κ = 1.2), so that the magnetization density
residing in spin-polarized itinerant InSb holes can easily ex-
ceed the magnetization density due to Mn spins (assuming
hole densities comparable to the densities of Mn acceptors,
although the hole densities can also be controlled indepen-
dently by means of external gates). In the present work, we
thus focus on the itinerant carriers, assuming for conceptual
clarity that the spontaneous magnetization 𝓜s is fixed [49].
The more complicated band structure of holes can only be
satisfactorily approached in less-transparent numerical calcu-
lations. Therefore, we complement the calculations for holes
with more transparent calculations for electron systems.

For common semiconductors with a zincblende structure,
such as GaAs, InAs, and InSb, the electronic states in a quan-
tum well can be described by a multiband Hamiltonian [67],

H = Hk + V (z) + HD + HZ + eEzz. (21)

Here Hk is the inversion-symmetric part of H , and HD

subsumes Dresselhaus terms due to bulk inversion asymmetry
(BIA). V (z) is the quantum-well confinement, so that the
wave vector k‖ = (kx, ky) is a good quantum number, whereas
kz becomes the operator −i∂z. An external electric field Ez

can be included in H by adding the potential eEzz. Simi-
larly, an external in-plane magnetic field 𝓑‖ can be included
in H via the vector potential 𝓐 = z𝓑‖ × ẑ. In Hk + HD

we then replace k by the kinetic wave vector 𝓴 = k + e
h̄𝓐.

The Zeeman term HZ includes contributions from both the
external field 𝓑‖ and possibly a ferromagnetic exchange in-
teraction represented by an internal exchange field 𝓧‖ that is
likewise assumed to be in-plane. A finite exchange field 𝓧‖
corresponds to a finite spontaneous magnetization 𝓜s in the
expansion (1). For X = 0, the system is a paramagnet, where
the lowest-order term in the expansion (1) that depends only
on 𝓑 is − 1

2 χB
i j BiB j , signifying the fact that the system’s

magnetization scales with the applied field 𝓑 until the system
is fully spin-polarized. For the magnetoelectric effect studied
here, a finite Zeeman term HZ indicates, first, a breaking of
time-reversal symmetry so that the origin of HZ is largely
irrelevant for the microscopic mechanism yielding the mag-
netoelectric response. Nonetheless, as to be expected, we will
see below that only for X �= 0 or a fully spin-polarized para-
magnet, the final result for the lowest-order magnetoelectric
contribution to the free energy (1) can be expressed via a
tensor αi j , whereas in partially spin-polarized paramagnets the
linear dependence of HZ on 𝓑‖ is the reason why in lowest
order we get terms in Eq. (1) that are weighted by a third-rank
tensor βi jk .

The diagonalization of the Hamiltonian (21) yields the
eigenenergies Enk‖ with associated bound states 
nk‖ (z) ≡
〈z|nk‖〉, where n is the subband index. In the numerical calcu-
lations presented below, we use for H the 8 × 8 Kane model
and the 14 × 14 extended Kane model as defined in Table C.5
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of Ref. [67]. Confinement in the quasi-2D system is due to a fi-
nite potential well V (z) = V0 �(|z| − w/2) with barrier height
V0. The numerical solution of H is based on a quadrature
method [68]. We evaluate k-space integrals such as Eq. (8) by
means of analytic quadratic Brillouin-zone integration [69].

Before presenting numerical results for multiband models,
we illustrate the physical origin and ramifications of mag-
netoelectricity in zincblende-semiconductor quantum wells
by analytical calculations. Specifically, we consider a 2 × 2
model for the �6 conduction band

H = Hk + V (z) + HD + HZ + eEzz, (22a)

with

Hk = h̄2𝓀2

2m
, (22b)

HD = d
({
𝓀x,𝓀

2
y − 𝓀2

z

}
σx + cp

)
, (22c)

HZ = 𝓩 · σ, (22d)

where m denotes the effective mass, HD is the Dresselhaus
term with prefactor d , cp denotes cyclic permutation of the
preceding term, σ ≡ (σx, σy, σz ) is the vector of Pauli matri-
ces, and HZ is the Zeeman term that depends on the total
field 𝓩 ≡ (g/2) μB 𝓑‖ + 𝓧‖. Considering the transparent
2 × 2 model H turns out to be useful because it captures the
important physical trends, even though it does not include
certain details [such as nonparabolicity and corrections to the
Dresselhaus spin splitting (22c)] that are included in H and
that would be required for a quantitatively reliable account
of specific experiments. The relation between the simplified
Hamiltonian H and the more complete Hamiltonian H is
discussed in more detail, e.g., in Ref. [67].

From now on, the direction of 𝓩 is chosen as the spin-
quantization axis for convenience. We will be interested in
terms at most quadratic in 𝓴‖ and linear in B‖, where the
latter is justified for weak fields B‖, i.e., when the well width
w is smaller than the magnetic length

√
h̄/|eB‖|. Then the

Hamiltonian H becomes [70]

H = h̄2𝓀2

2m
+ V (z) + d k2

z [(𝓀x sin ϕZ + 𝓀y cos ϕZ )σx − (𝓀x cos ϕZ − 𝓀y sin ϕZ )σz] + Z σz + eEzz, (23a)

= h̄2𝓀2
z

2m
+ V (z) + h̄2

2m
(𝓴‖ − k0)2 − h̄2k2

0

2m
+ Z σz + eEzz, (23b)

with

k0 = m

h̄2 d k2
z

[(
cos ϕZ

− sin ϕZ

)
σz −

(
sin ϕZ

cos ϕZ

)
σx

]
, (24)

and ϕZ is the angle between the total Zeeman field 𝓩 and the crystallographic direction [100]. The usefulness of writing H as
in Eq. (23b) will become clear later.

For Ez = 0 and B‖ = 0, the Hamiltonian is

H = H(0) + H(0)
Z + H(1)

D , (25)

with

H(0) = h̄2k2
z

2m
+ V (z), (26a)

H(0)
Z = Z σz, (26b)

H(1)
D = h̄2

2m
(k‖ − k0)2 − h̄2k2

0

2m
. (26c)

The eigenstates of H(0) + H(0)
Z are |νσ (0)〉 ≡ |ν〉 ⊗ |σ 〉, with associated eigenvalues Eνσ,0 ≡ E (0)

ν + σ Z , where σ = ±1. Treat-
ing H(1)

D in first order, the subband dispersions are

Eνσ,k‖ = E (0)
ν + h̄2k2

‖
2m

+ σ

√
d
〈
k2

z

〉
k2
‖ + Z

[
Z − 2d

〈
k2

z

〉
(kx cos ϕZ − ky sin ϕZ )

]
, (27)

with 〈k2
z 〉 = 〈ν|k2

z |ν〉. For Z = 0, the spectrum Eνσ,k‖ satisfies
time-reversal symmetry, Eνσ,−k‖ = Eνσ,k‖ . For Z �= 0, the
relation Eνσ,−k‖ �= Eνσ,k‖ reflects broken time-reversal sym-
metry. The latter is a prerequisite for the magnetoelectric
effect, as discussed above.

Figures 2(a) and 2(c) illustrate the dispersion (27) for
a quasi-2D electron system in a ferromagnetic InSb quan-
tum well with Xx = 8 meV, width w = 150 Å, and with an
electron density Ns = 1.0 × 1011 cm−2. The numerical calcu-

lations in Fig. 2 are based on the more accurate multiband
Hamiltonian H introduced above. Band parameters for InSb
are taken from Ref. [67].

B. E -induced magnetization

In this section, we evaluate the equilibrium magnetization
induced by an electric field Ez using perturbation theory,
which is justified by the fact that the E -induced magnetization
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FIG. 2. Dispersion of the lowest electron subbands in a quan-
tum well with width w = 150 Å and barrier height V0 = 1.2 eV
for Ez = B‖ = 0. The red lines indicate the Fermi energy for an
electron density Ns = 1.0 × 1011 cm−2. Left column [(a) and (c)]:
Dispersion E0±,kx for ferromagnetic InSb with Xx = 8 meV and
BIA. Right column [(b) and (d)]: Dispersion E0kx for a diamond
antiferromagnet with InSb band-structure parameters (without BIA)
and 𝒴x = 50 meV. The upper panels (a) and (b) show a zoom-in of
the same dispersion as in panels (c) and (d) near kx = 0.

is commonly a small fraction of the spontaneous magneti-
zation M s

‖ in the system. (See Table III below for typical
numbers.) We start from the Hamiltonian (23). Specializing

to B‖ = 0 yields

H𝓜←𝓔 = H(0) + H(0)
Z + H(1)

D + H(1)
E , (28)

with H(0), H(0)
Z , and H(1)

D given by Eqs. (26a), (26b), and (26c),
respectively, and

H(1)
E = eEz z. (29)

Treating the electric field Ez in first-order perturbation theory,
the eigenstates become

|νσ (1)〉 =
⎛
⎝|ν〉 + eEz

∑
ν ′ �=ν

cν ′ν |ν ′〉
⎞
⎠⊗ |σ 〉, (30)

with expansion coefficients

cν ′ν = 〈ν ′|z|ν〉
E (0)

ν − E (0)
ν ′

. (31)

It will be seen below that, for the calculation of the electric-
field-induced magnetization, we can ignore the modification
of the states |νσ (1)〉 due to H(1)

D that yields an effect of higher
order in the Dresselhaus coefficient d . In the following, 〈. . .〉
denotes the average in the unperturbed state |ν〉, whereas
〈〈 . . . 〉〉 denotes the average in the perturbed state |νσ (1)〉 in
the presence of the external field inducing the magnetoelectric
response.

For the equilibrium magnetization (16a), we need to eval-
uate expectation values 〈〈 {z , v‖(k‖)} 〉〉 using the velocity
operator associated with the Hamiltonian (28),

v‖(k‖) = ∂H𝓜←𝓔

∂ h̄k‖
= h̄

m
(k‖ − k0). (32)

We get

〈〈 {z , v‖(k‖)} 〉〉 = 〈〈 z 〉〉〈〈 v‖(k‖) 〉〉 + (〈〈 {z, v‖(k‖)} 〉〉 − 〈〈 z 〉〉〈〈 v‖(k‖) 〉〉), (33a)

= 〈〈 z 〉〉〈〈 v‖(k‖) 〉〉 − h̄

m
(〈〈 {z, k0} 〉〉 − 〈〈 z 〉〉〈〈 k0 〉〉), (33b)

= 〈〈 z 〉〉〈〈 v‖(k‖) 〉〉 − d

h̄

[(
cos ϕZ

− sin ϕZ

)〈〈 {
z, k2

z − 〈〈
k2

z

〉〉}
σz
〉〉− (

sin ϕZ

cos ϕZ

)〈〈 {
z, k2

z − 〈〈
k2

z

〉〉}
σx
〉〉]

, (33c)

= 〈〈 z 〉〉〈〈 v‖(k‖) 〉〉 − σ
d

h̄

(
cos ϕZ

− sin ϕZ

)[〈{
z, k2

z − 〈
k2

z

〉 }〉+ 2eEz

∑
ν ′ �=ν

cν ′ν 〈ν|{z, k2
z − 〈

k2
z

〉} − 〈z〉 k2
z |ν ′〉

]
, (33d)

= 〈〈 z 〉〉〈〈 v‖(k‖) 〉〉 − σ
2d eEz

h̄

(
cos ϕZ

− sin ϕZ

)∑
ν ′ �=ν

cν ′ν 〈ν|{z, k2
z − 〈

k2
z

〉}|ν ′〉 . (33e)

The steps leading to Eq. (33c) are exact in the sense that
they do not assume a perturbative treatment of H𝓜←𝓔. To
obtain Eq. (33d), we exploited the fact that the eigenstates
|ν〉 of the unperturbed problem can be chosen such that all
matrix elements in Eq. (33) become real. For the last line of
Eq. (33), we assumed that the potential V (z) is symmetric. The
first term in Eq. (33e) yields a vanishing contribution when
summed over the equilibrium Fermi sea, as it is proportional
to the system’s total equilibrium current. Therefore, a nonzero

magnetization is due to the second term in Eq. (33e), which
yields a contribution independent of the wave vector k‖. Sum-
ming over the Fermi sea and assuming a small density Ns such
that only the lowest subband ν = 0 is occupied, we obtain for
the magnetization (16a) [70]

𝓜o
‖ = M0 eEzw λd ξ (Z )

(
sin ϕZ

cos ϕZ

)
, (34)
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with

λd ≡ ld
w

∑
ν ′ �=0

〈ν ′|z|0〉 〈0|{z, k2
z − 〈

k2
z

〉 }|ν ′〉
E (0)

0 − E (0)
ν ′

, (35)

where ld ≡ 2m0d/h̄2 is the length scale associated with Dres-
selhaus spin splitting [71], and

ξ (Z ) ≡
{ m

π h̄2
Z
Ns

, Z < E0
F

1, Z � E0
F

(36)

with E0
F = (π h̄2/m) Ns distinguishes between a partially and

a fully spin-polarized (half-metallic) system. For ϕZ = nπ/2
(n integer), the Ez-induced magnetization 𝓜o

‖ is oriented per-
pendicular to the field 𝓩. More generally, a clockwise rotation
of 𝓩 implies a counterclockwise rotation of 𝓜o

‖.
The value obtained for the sum in Eq. (35) depends on

particularities of the quantum-well confinement. Peculiarly,
the sum vanishes for a parabolic (i.e., harmonic-oscillator)
potential. In contrast, assuming an infinitely deep square well
of width w, we get

λd ≡ π2 − 6

6π2

mw ld
h̄2 . (37)

Figure 3(a) illustrates the Ez-induced orbital magnetic mo-
ment per particle for a ferromagnetic InSb quantum well
with width w = 150 Å and electron density Ns = 1.0 ×
1011 cm−2. Results in Fig. 3 are based on the more accurate
multiband Hamiltonian H .

The magnetization (34) complements the more trivial mag-
netization 𝓜tot

Z = 𝓢Z + 𝓜Z that we get already in the
absence of a field Ez, which is oriented (anti)parallel to 𝓩. The

FIG. 3. Ez-induced orbital magnetic moment per particle μB Mo
y

[(a) and (b)] and By-induced displacement 〈z〉 representing the elec-
trostatic polarization via Eq. (12) [(c) and (d)] in a quantum well
with width w = 150 Å, barrier height V0 = 1.2 eV, and electron den-
sity Ns = 1.0 × 1011 cm−2. Left column [(a) and (c)]: Ferromagnetic
InSb with Xx = 8 meV and BIA. Right column [(b) and (d)]: Dia-
mond antiferromagnet with InSb band-structure parameters (without
BIA) and 𝒴x = 50 meV.

spin magnetization 𝓢Z is due to an imbalance between spin
eigenstates induced by the Zeeman term (26b) [see Eq. (114)
below]. The orbital magnetization 𝓜Z is due to spin-orbit
coupling. Just like 𝓢Z , the orbital contribution is already
present in inversion-symmetric diamond structures, i.e., it is a
manifestation of spin-orbit coupling beyond the Dresselhaus
term (26c) and beyond the simple 2 × 2 model studied in this
section. Therefore, 𝓜Z is always present in the numerical
calculations based on H . An analytical model for 𝓜Z based
on H is discussed in Appendix C.

The numerical calculations presented in Fig. 3 also include
higher-order contributions to the Ez-induced magnetization
beyond the mechanism underlying the perturbative calcula-
tion yielding Eq. (34). Such contributions arise, e.g., from
the interplay of Rashba spin-orbit coupling with the in-plane
Zeeman field [72]. The pattern of the numerically calculated
Ez-induced magnetization including, e.g., the dependence on
the orientation of the Zeeman field 𝓩, is dictated by symmetry
so that the more complete numerical calculations are in line
with the qualitative predictions of the analytical calculations.

It is illuminating to relate the magnetization (34) to the
equilibrium current distribution (18). Using φν (z) ≡ 〈z|ν〉, the
perturbed wave functions read


νσ (z) ≡ 〈z|νσ (1)〉 =
⎡
⎣φν (z) + eEz

∑
ν ′ �=ν

cν ′ν φν ′ (z)

⎤
⎦|σ 〉.

(38)

In the following, we suppress the argument z of φν for the
sake of brevity. Using the velocity operator (32), we get in
first order of Ez and d

j‖(z, νσk‖) = 
∗
νσ (z) v‖(k‖) 
νσ (z), (39a)

= 〈νσ |v‖(k‖)|νσ 〉 |φν |2 + σ
∑
ν ′ �=ν

κν ′ν φ∗
νφν ′

+ eEzσ
∑
ν ′,ν ′′

[(cν ′′ν ′ κν ′ν + κν ′′ν ′cν ′ν )φ∗
νφν ′′

+ c∗
ν ′′νκν ′ν φ∗

ν ′′φν ′], (39b)

with matrix elements (spin σ = +)

κν ′ν ≡ h̄

m
〈ν ′+|k0|ν+〉 = d

h̄

(
cos ϕZ

− sin ϕZ

)
〈ν ′|k2

z |ν〉. (40)

In thermal equilibrium, the first term in Eq. (39b) averages to
zero in Eq. (18a). The remaining terms are independent of k‖
so that, for Z �= 0, they do not average to zero in Eq. (18a).

The matrix elements contributing to the second term in
Eq. (39b) are nonzero independently of an electric field Ez

(provided the product ν ′ν is also even). For ν ′ = 2, we get
equilibrium currents proportional to φ0(z)φ2(z) that give rise
to a magnetic quadrupole 𝓠 [Eq. (55) below]. The quadrupo-
lar currents are illustrated in numerical calculations for a
quantum well with finite barriers and using the more com-
plete multiband Hamiltonian H , see Figs. 4(a) and 4(c).
The quadrupolar currents and the magnetic quadrupole 𝓠 are
indicative of orbital antiferromagnetic order that is induced
parallel to the Zeeman field 𝓩 by the interplay of 𝓩, the
Dresselhaus term (26c), and confinement [the potential V (z)].
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FIG. 4. Equilibrium current distribution j‖(z) in a quantum well
with width w = 150 Å, barrier height V0 = 0.12 eV, and electron
density Ns = 1.0 × 1011 cm−2. Left column [(a) and (c)]: Ferro-
magnetic InSb with Xx = 8 meV and BIA. Right column [(b) and
(d)]: Diamond antiferromagnet with InSb band-structure parame-
ters (without BIA) and 𝒴x = 50 meV. Upper row [(a) and (b)]:
symmetric quantum well (Ez = 0). Lower row [(c) and (d)]: tilted
quantum well (Ez = 7 kV/cm). In each panel, the dotted line shows
for comparison the charge distribution ρ(z) (arbitrary units). In
both configurations (FM+BIA and AFM), the applied electric field
distorts the, at zero field purely quadrupolar, equilibrium-current-
density component jx , thus inducing a finite magnetization in y
direction [Figs. 3(a) and 3(b)].

The quadrupolar currents are odd both under spatial inversion
and time inversion, consistent with the general discussion
of antiferromagnetic order in Sec. IV B below. The orbital
antiferromagnetic order can be quantified using the Néel op-
erator τ defined below [Eq. (73)]. The Hamiltonian (28) (with
Ez = 0) yields a nonzero expectation value,

〈τ〉 = 2π qτ d Ns ξ (Z )

(
cos ϕZ

sin ϕZ

)∑
ν ′ �=0

|〈ν ′|k2
z |0〉|2

E (0)
0 − E (0)

ν ′
, (41)

where we assumed, as before, that only the lowest subband
ν = 0 is occupied. [Here qτ is a band-structure parame-
ter whose properties are discussed in greater detail below
Eq. (73).] As we have 〈τ〉 ‖ 𝓩 we can interpret such a sce-
nario as ferrimagnetic order. This classification proposed here
applies, in particular, to Mn-doped semiconductors such as
GaMnAs and InMnSb [73]. It is a peculiarity of an infinitely
deep square well that κν ′ν ∝ δν ′ν so that within this model
we do not obtain quadrupolar equilibrium currents and orbital
antiferromagnetic order.

The last term in Eq. (39b) (with ν ′′ = 1) describes Ez-
induced dipolar currents that contribute to the magnetization
[Fig. 4(c)]. For ϕZ = nπ/2 (n integer), the quadrupolar and
dipolar currents flow (anti)parallel to the field 𝓩, consistent
with Eq. (34). As to be expected, the total current 𝓙‖ =∫

dz 𝓳‖(z) always vanishes. The fact that the coupling of the
currents 𝓳‖(z) to a perpendicular electric field Ez is dissi-
pationless resembles the Lorentz force. However, it needs to
be emphasized that the equilibrium currents 𝓳‖(z) and their
manipulation via electric fields are pure quantum effects with
no classical analog.

The numerical calculations for a ferromagnetic quantum
well based on the multiband Hamiltonian H and presented
in Figs. 4(a) and 4(c) assume that the exchange field 𝓧‖
is oriented in the x direction. In this case, the equilibrium
currents 𝓳‖(z) represented by Eq. (39b) are oriented like-
wise in the x direction. These currents are complemented by
equilibrium currents 𝒿y representing the orbital magnetization
𝓜Z induced by the exchange field X‖ and discussed in more
detail in Appendix C.

C. B-induced electric polarization

To calculate the equilibrium electric polarization induced
by a magnetic field 𝓑‖, we start again from the Hamiltonian
(23). Specializing to Ez = 0 yields

H𝓟←𝓑 = H(0) + H(0)
Z + H(1)

D + H(1)
B , (42)

with H(0), H(0)
Z , and H(1)

D given by Eqs. (26a), (26b), and (26c),
respectively, and [ignoring terms O (B2

‖ )]

H(1)
B = eh̄

2m
[(k‖ − k0) · 𝓐 + 𝓐 · (k‖ − k0)], (43a)

= eh̄

2m
[2(k‖ − 〈〈 k0 〉〉) · 𝓐 − (k0 − 〈〈 k0 〉〉) · 𝓐 − 𝓐 · (k0 − 〈〈 k0 〉〉)], (43b)

= eh̄

m
(k‖ − 〈〈 k0 〉〉) · 𝓐 − e

h̄
d B‖[sin(ϕZ + ϕB) σz + cos(ϕZ + ϕB) σx]

{
z, k2

z − 〈
k2

z

〉 }
, (43c)

where ϕB is the angle between the direction of the applied
magnetic field 𝓑‖ and the [100] crystallographic direction.
The perturbation H(1)

B yields the perturbed states

|νσ (1)〉 = |νσ 〉 +
∑

σ ′,ν ′ �=ν

〈ν ′σ ′ | H(1)
B | νσ 〉

E (0)
ν − E (0)

ν ′
|ν ′σ ′〉. (44)

We get

〈〈 z 〉〉 = 〈z〉νσ + 2
∑
ν ′ �=ν

cν ′ν〈νσ | H(1)
B | ν ′σ 〉, (45a)

= 〈z〉νσ + 2
∑
ν ′ �=ν

cν ′ν

[
eh̄

m
(k‖ − 〈〈 k0 〉〉) · 〈ν|𝓐|ν ′〉

− σ sin(ϕZ + ϕB)
e

h̄
d B‖ 〈ν|{z, k2

z − 〈
k2

z

〉 }|ν ′〉
]
.

(45b)

Here the first term 〈z〉νσ vanishes for a symmetric potential
V (z). The first term in the square brackets describes a k‖-
dependent shift [74–77] that yields a vanishing contribution to
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Pe
z when summed over the equilibrium Fermi sea. Therefore,

a nonzero polarization is due to the second term in the square
brackets, which yields a contribution independent of the wave
vector k‖. Summing over the Fermi sea, we obtain [70]

Pe
z = P0 μBB‖ λd ξ (Z ) sin(ϕZ + ϕB), (46)

where λd is given by Eq. (35). We see that the induced magne-
toelectric effects are most pronounced when sin(ϕZ + ϕB) =
±1 ≡ ζ . This situation is realized in ferromagnetic systems
when 𝓧‖ ‖ x̂ ≡ [100] and 𝓑‖ ‖ ŷ ≡ [010]. Here the magne-
tization scales linearly with 𝓑‖ [for (g/2)μBB‖ � X‖]. In
paramagnetic systems with X = 0 and 𝓩 = (g/2)μB𝓑‖, we
have ζ = ±1 when 𝓑‖ ‖ [110]. In this case the polarization
Pe

z depends quadratically on 𝓑‖, consistent with Eq. (2).
Thus the system exhibits a higher-order magnetoelectric effect
[24,25] that is the nondissipative counterpart of the previ-
ously discussed magnetically induced electric polarization in
a multi-quantum-well system [78–80]. Figure 3(c) illustrates
the polarization (46) for a ferromagnetic InSb quantum well.

The mechanism for the 𝓑-induced polarization can be
understood as follows: the vector potential 𝓐 of a magnetic
field 𝓑‖ has previously been used as a tool to manipulate
the charge density ρ(z) in quasi-2D systems such as semi-
conductor quantum wells. Ordinarily, a field 𝓑‖ makes the

charge distribution ρ(z) bilayer-like by pushing ρ(z) toward
the barriers, but ρ(z) still preserves the mirror symmetry of
a symmetric quantum well [74–77]. This effect stems from
terms quadratic in 𝓐 that we have ignored in the above an-
alytical model. In a low-symmetry configuration [indicated
here by the presence of the Dresselhaus term HD given in
Eq. (22c)], odd powers of the vector potential 𝓐 can change
ρ(z) in a way that no longer preserves the mirror symmetry
of the confining potential V (z). This effect resembles the
Coulomb force, where the scalar potential is replaced by the
vector potential 𝓐. However, it needs to be emphasized that,
similarly to Landau diamagnetism, we have here a pure quan-
tum effect; it has no classical analog. This effect is orbital
in nature; it does not require a spin degree of freedom. For
example, it exists also in spinless 2D hole systems that have a
purely orbital Dresselhaus term.

D. Magnetoelectric contribution to the free energy

We evaluate the change δF in the free-energy density due
to the presence of both H(1)

E [Eq. (29)] and H(1)
B [Eq. (43c)] as

δF = 1

w

∑
ν,σ

∫
d2k‖
(2π )2

f (Eνσk‖ )
〈〈

H(1)
E + H(1)

B

〉〉
νσk‖

, (47)

using second-order perturbation theory,

〈〈 H(1)
E + H(1)

B 〉〉νσk‖ = 2Re
∑
ν ′ �=ν

〈ν|H(1)
E |ν ′〉 〈ν ′|H(1)

B |ν〉
E (0)

ν − E (0)
ν ′

, (48a)

= 2Re
∑
ν ′ �=ν

〈ν|eEz z|ν ′〉 〈ν ′ | eh̄
m

(
k‖ − 〈〈𝓴0 〉〉) · 𝓐 − e

h̄ σd B‖ sin(ϕZ + ϕB)
{
z, k2

z − 〈
k2

z

〉 } | ν〉
E (0)

ν − E (0)
ν ′

, (48b)

where we ignored terms O (E 2
z ) and O (B2

‖ ). When averag-
ing over all occupied states, the terms ∝ 𝓐 drop out. Using
Eq. (35), we get [70]

δF = Ns eEz μBB‖ λd ξ (Z ) sin(ϕZ + ϕB), (49)

consistent with Eqs. (34) and (46). Hence, within the present
model, we have Pz = Pe

z and 𝓜‖ = 𝓜e
‖.

The expression (49) can be written as a sum of terms of the
type appearing in the third line of the general expansion (1).
More specifically, we find

δF = −αzx EzBx − αzy EzBy − βzxy EzBxBy, (50a)

with

αz‖ ≡
(

αzx

αzy

)
= −eμB λd

⎧⎨
⎩

m
π h̄2 X

(sin ϕX

cos ϕX

)
, Z < E0

F

Ns
(sin ϕZ

cos ϕZ

)
, Z � E0

F

,

(50b)

βzxy =
{−eμ2

B λd
gm
π h̄2 , Z < E0

F

0 , Z � E0
F

. (50c)

Clearly, αi j �= 0 requires spontaneous ferromagnetic order
due to a finite exchange field X‖ or full spin polarization
(i.e., half-metallicity), and the particular form of the tensor

αi j with two nonzero entries αzx and αzy is consistent with
the magnetic point group symmetry 22′2′ of a ferromagnetic
symmetric quantum well on a zincblende (001) surface. A
tensor αi j �= 0 will generally also facilitate higher-order terms
of the type ∝ γi jk in Eq. (1). In contrast, βi jk �= 0 occurs
even in paramagnets, which is consistent with basic symmetry
considerations [24,25,28–30] as zincblende structures allow
for piezoelectricity.

The magnetoelectric contribution (49) to the free energy
can also be expressed as [81]

δF = −τ̃ · (Ezẑ × 𝓑‖) (51a)

in terms of a magnetoelectric vector

τ̃ = Ns eμB λd ξ (Z )

(
cos ϕZ

− sin ϕZ

)
. (51b)

The angular dependence of the magnetoelectric effect is gov-
erned by the orientation of the vector τ̃, which in turn is
determined by the orientation of the Zeeman field 𝓩. In
particular, there is a one-to-one correspondence between the
orientation of the vector 𝓩 in position space and the vector k0

in reciprocal space, specifically the part k(z)
0 of k0 proportional

to σz that turned out to be relevant for the magnetoelectric
effect in the above analysis. This vector k(z)

0 is collinear with
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FIG. 5. (a) Angular dependence of the orientation of the magne-
toelectric vector τ̃ [Eq. (51)] on the orientation of the Zeeman field 𝓩
in ferromagnets with BIA. (b) Angular dependence of the orientation
of the magnetoelectric vector τ̃ [Eq. (92)], which is parallel to the
vector −𝓴0 [Eq. (71)], on the orientation of the Néel vector 𝓝. The
orientation of τ̃ in (b) is antiparallel to the orientation of τ̃ in (a) [82].

the vector τ̃. Figure 5(a) shows the relation between the orien-
tation of 𝓩 and the orientation of τ̃. A similar pattern exists
for the current-induced spin magnetization (cf. Appendix A)
in systems with Dresselhaus spin-orbit coupling (22c) for the
orientation of the induced spin polarization as a function of
the orientation of an in-plane electric field [67].

The vector Ezẑ × 𝓑‖ in Eq. (51a) is a toroidal vector, i.e.,
it is odd under both space inversion and time reversal [83]. On
the other hand, Eq. (51b) shows that the vector τ̃ transforms
like a magnetic field, i.e., it is even under space inversion and
odd under time reversal. The different transformational prop-
erties of the vectors Ezẑ × 𝓑‖ and τ̃ in Eq. (51a) reflect the
broken space-inversion symmetry in a zincblende structure.

The term δF ∝ Ez B‖ in Eq. (49) is generally comple-
mented by a second magnetoelectric term ∝ Ez B‖. This is
because the Hamiltonian H also includes a term

Hℰℬ = b eEz μB(Bxσy + Byσx ), (52)

characterizing the bulk zincblende structure that underlies the
quasi-2D systems studied here. The prefactor b is given in
Eq. (7.5) of Ref. [67] in terms of momentum matrix ele-
ments and energy gaps appearing in the larger Hamiltonian
H , yielding b = −221 Å/eV for InSb and −1.36 Å/eV for
GaAs. The term (52) produces a second magnetoelectric term
in the free energy,

δFbulk = Ns eEz μBB‖
b

w
ξ (Z ) sin(ϕZ + ϕB), (53)

that complements δF in Eq. (49). Their ratio is given by∣∣∣∣δFbulk

δF

∣∣∣∣ ≡
∣∣∣∣ b

wλd

∣∣∣∣ = 6π2

π2 − 6

h̄2b

mw2ld
, (54)

where the expression on the far right-hand side of Eq. (54)
is obtained using Eq. (35) for a hard-wall confinement
V (z). This ratio evaluates to 9300/(w[Å])2 in InSb and
330/(w[Å])2 in GaAs, and it is consequently much smaller
than 1 for typical quantum-well widths w � 150 Å. Experi-
mental signatures of an Ez B‖-type magnetoelectric coupling
have recently been observed for charge carriers in deformed
donor bound states [84].

E. Magnetic quadrupole moment

The magnetoelectric tensor αi j behaves under symme-
try transformations like a magnetic quadrupole moment
[50], i.e., both of these second-rank material tensors require
broken space-inversion symmetry and broken time-reversal
symmetry and these tensors share the same pattern of
nonzero components. Similarly to the magnetization 𝓜 =
−∂F/∂𝓑, the components of the magnetic quadrupole mo-
ment can be obtained from the free energy density F via the
relations [85]

𝒬i j = −2
∂F

∂ (∇iB j )
, (55)

where ∇iB j denotes field gradients. [Note that, for the pur-
pose of discussing the magnetic quadrupole moment, 𝓑‖ ≡
𝓑‖(r) necessarily denotes an inhomogeneous magnetic field,
in contrast to the other parts of this article where 𝓑‖ is as-
sumed to be homogeneous.] For the quasi-2D systems studied
here, 𝒬i j is the sum of two contributions,

𝒬i j = 𝒬e
i j + 𝒬q

i j, (56)

with

𝒬e
i j = − 2

w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ )
∂Enk‖

∂ (∇iB j )
, (57a)

𝒬q
i j = − 2

w

∑
n

∫
d2k‖
(2π )2

Enk‖
∂ f (Enk‖ )

∂ (∇iB j )
, (57b)

that represent the electromagnetic and the quantum-kinetic
effects of the field gradients ∇iB j , respectively. Given
that 𝓑‖ generally enters the Hamiltonian H via both the
vector potential 𝓐 and also via the Zeeman term, the
contribution 𝒬e

i j can be split further into orbital and spin
contributions,

𝒬e
i j = 𝒬o

i j + 𝒬s
i j, (58)

where the spin quadrupole moment,

𝒬s
i j = − 2

w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ )

〈
∂H

∂ (∇iB j )

〉
nk‖

, (59)

vanishes for the Hamiltonian (22) studied here. For the orbital
part,

𝒬o
i j = − 2

w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ )

〈∑
l=x,y

∂H

∂Al

∂Al

∂ (∇iB j )

〉
nk‖

,

(60)

we consider the inhomogenous magnetic field to have the
particular form

𝓑‖(z) = 𝓑0
‖ + z𝓫‖ (61)

with constant vectors 𝓑0
‖ and 𝓫‖, so that ∇z𝓑‖ = 𝓫‖, and we

choose the vector potential

𝓐 = (
z𝓑0

‖ + 1
2 z2 𝓫‖

)× ẑ. (62)
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Similarly to the discussion in Appendix B, this gauge yields
for the components (𝒬o

zx,𝒬
o
zy) ≡ 𝓠o

z‖ of the orbital quadrupole
moment the result

𝓠o
z‖ = − e

w

∑
n

∫
d2k‖
(2π )2

f (Enk‖ ) ẑ × 〈{z2 , v‖(k‖)}〉nk‖ .

(63)

Similarly to the polarization Pz and magnetization 𝓜‖ dis-
cussed in Sec. II, the orbital quadrupole moment (63) avoids
the technical problems arising for these quantities in bulk (3D)
systems. The orbital quadrupole moment in 3D systems has
recently been discussed in Ref. [52].

We evaluate the matrix elements 〈{z2 , v‖(k‖)}〉 similarly to
Eq. (33). We get in first-order perturbation theory

〈{z2 , v‖(k‖)}〉 = 〈z2〉 〈v‖(k‖)〉 + (〈{z2, v‖(k‖)}〉 − 〈z2〉 〈v‖(k‖)〉), (64a)

= 〈z2〉 〈v‖(k‖)〉 − h̄

m
(〈{z2, k0}〉 − 〈z2〉 〈k0〉), (64b)

= 〈z2〉 〈v‖(k‖)〉 − d

h̄

[(
cos ϕZ

− sin ϕZ

) 〈{
z2, k2

z − 〈
k2

z

〉 }
σz
〉− (

sin ϕZ

cos ϕZ

) 〈{
z2, k2

z − 〈
k2

z

〉 }
σx
〉]

, (64c)

= 〈z2〉 〈v‖(k‖)〉 − σ
d

h̄

(
cos ϕZ

− sin ϕZ

) 〈{
z2, k2

z − 〈
k2

z

〉}〉
. (64d)

In the last step, we kept only terms linear in the Dresselhaus coefficient d . The first term in Eq. (64d) yields a vanishing
contribution when summed over the equilibrium Fermi sea, as it is proportional to the system’s total equilibrium current.
Therefore, a nonzero quadrupole moment is due to the second term in Eq. (64d), which yields a contribution independent of
the wave vector k‖. Consistent with the above discussion of equilibrium currents, we have 〈{z2, k2

z − 〈k2
z 〉}〉 = 0 for an infinitely

deep square well and 〈{z2, k2
z − 〈k2

z 〉}〉 = −ν − 1
2 for the νth subband in a harmonic-oscillator potential. Summing over the Fermi

sea and assuming a small density Ns such that only the lowest subband ν = 0 is occupied, we obtain

𝓠o
z‖ = 𝒬0

ld
w

〈{
z2, k2

z − 〈
k2

z

〉 }〉
ξ (Z )

(
sin ϕZ

cos ϕZ

)
, (65)

with 𝒬0 = −μBNs. The quadrupole moment 𝓠o
z‖ shows the same dependence on the orientation of the Zeeman field 𝓩 as the

magnetization 𝓜o
‖ [Eq. (34)], where 𝓩 may be due to an exchange field 𝓧‖ or due to an external field 𝓑‖. On the other hand,

the vector 𝓠o
z‖ shows a different dependence on the orientation of 𝓩 than is exhibited by the expectation value (41) of the Néel

operator τ. This is similar to how a spin magnetization 𝓢 and the spin polarization 〈σ〉 can show different dependencies on
the orientation of an external magnetic field 𝓑 when the Zeeman coupling in the field 𝓑 is characterized by a g tensor. See
Eq. (16b) and Ref. [86].

Alternatively, we can obtain the result (65) by evaluating the free energy F in the presence of the vector potential 𝓐 for the
field gradient 𝓫‖. To first order in 𝓫‖ and the Dresselhaus coefficient d , we get an energy shift of the occupied states given by
the expectation value of

H (1)
𝒷 = eh̄

m
(k‖ − 〈k0〉) · 𝓐 − e

h̄
d
𝒷‖
2

[sin(ϕZ + ϕ𝒷) σz + cos(ϕZ + ϕ𝒷) σx]
{
z2, k2

z − 〈
k2

z

〉}
, (66)

where ϕ𝒷 is the angle between the direction of the field gra-
dient 𝓫‖ and the [100] crystallographic direction; compare
Eq. (43). When averaging over all occupied states, the first
term ∝ 𝓐 drops out. We get

δF = −𝒬0
𝒷‖
2

ld
w

〈{
z2, k2

z − 〈
k2

z

〉 }〉
ξ (Z ) sin(ϕZ + ϕ𝒷),

(67)

consistent with Eqs. (55) and (65).
The contribution (67) to the free energy can also be ex-

pressed as [81]

δF = −τ̄ · (∇z × 𝓑‖) (68a)

in terms of a vector

τ̄ = 𝒬0
ld

2w

〈{
z2, k2

z − 〈
k2

z

〉 }〉
ξ (Z )

(− cos ϕZ

sin ϕZ

)
(68b)

that characterizes the orientation of the magnetic quadrupole,
similarly to how the angular dependence of the magneto-
electric effect is governed by the orientation of the vector τ̃;
compare Eq. (51).

It has recently been suggested [51,52,87] that the compo-
nents 𝒬i j of the magnetic quadrupole moment are connected
with the components αi j of the magnetoelectric tensor via the
relation e ∂𝒬i j/∂μ = −αi j , where μ is the chemical potential.
For the metallic quasi-2D systems studied here, this relation
is fulfilled neither for an infinitely deep square well, where
𝒬i j = 0 but αi j �= 0, nor for a parabolic well, where 𝒬i j �= 0
but αi j = 0. The magnetic quadrupole moment is found to
arise solely from the energy change of the confined-charge-
carrier states due to the magnetic-field gradient 𝓫‖ obtained
by first-order perturbation theory [Eq. (67)]; it has none of
the additional contributions derived for bulk systems [87].
On the other hand, the magnetoelectric tensor αi j requires
second-order perturbation theory for two perturbations 𝓔 and
𝓑, see, e.g., Eq. (47) and Ref. [50]. These results suggest
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that 𝒬i j and αi j should generally be viewed as independent
coefficients in a Taylor expansion of the free energy F as a
function of the external fields 𝓔 and 𝓑.

F. Magnetoelectricity in ferromagnetic hole systems

The magnetoelectric response obtained in the realistic
calculations for electron systems in ferromagnetic InSb quan-
tum wells is small [Figs. 3(a) and 3(c)]. The response can
be greatly enhanced by a suitable engineering of the band
structure Enk‖ of the quasi-2D systems. Here quasi-2D hole
systems have long been known as a versatile playground for
band-structure engineering, where the dispersion of the first
heavy-hole (HH) subband is strongly affected by the coupling
to the first light-hole (LH) subband [67,88,89]. Figures 6(a)

FIG. 6. Subband dispersion (lower panels) of the HH subband
(black) and LH subband (gray) of a quantum well with barrier
height V0 = 0.12 eV and widths w = 150 Å [(a), (b), and (c)] and
w = 300 Å [(d), (e), and (f)] for Ez = B‖ = 0. The upper panels
show contour plots of the same dispersion with line increments of
0.1 meV. Red lines indicate the Fermi energy (lower panels) [Fermi
contour (upper panels)] for a hole density Ns = 1.0 × 1011 cm−2.
Left column [(a) and (d)]: Paramagnetic InSb ignoring BIA. Center
column [(b) and (e)]: Ferromagnetic InSb with Xx = 8 meV and
BIA. Right column [(c) and (f)]: Diamond antiferromagnet with InSb
band-structure parameters (without BIA) and 𝒴x = 50 meV.

FIG. 7. Ez-induced orbital magnetic moment per particle μBMo
y

in a quantum well with barrier height V0 = 0.12 eV and widths
w = 150 Å [(a) and (b)] and w = 300 Å [(c) and (d)] and hole den-
sity Ns = 1.0 × 1011 cm−2. Left column [(a) and (c)]: Ferromagnetic
InSb with Xx = 8 meV and BIA. Right column [(b) and (d)]: Dia-
mond antiferromagnet with InSb band-structure parameters (without
BIA) and 𝒴x = 50 meV.

and 6(d) illustrate this for quasi-2D hole systems in paramag-
netic InSb quantum wells with widths w = 150 Å [Fig. 6(a)]
and w = 300 Å [Fig. 6(d)], where HH-LH coupling results in
a highly nonparabolic dispersion E0k‖ of the doubly degener-
ate ground HH subband. Furthermore, the dispersion is also
highly anisotropic, which reflects the cubic symmetry of the
underlying crystal structure.

An important aspect for the magnetoelectric response is
the breaking of time-reversal symmetry so that En,−k‖ �= Enk‖ .
The interplay between a ferromagnetic exchange field 𝓧‖
and HH-LH coupling can result in a highly asymmetric band
structure of quasi-2D HH systems with multiple disconnected
parts of the Fermi surface, as illustrated in Figs. 6(b) and
6(e) for ferromagnetic InSb quantum wells [66]. Figures 7(a)
and 7(c) exemplify the Ez-induced orbital magnetic moment
per particle, which can rise as high as ∼1 μB for moderate
electric fields Ez. Figures 8(a), 8(c), 8(e), and 8(g) show the
equilibrium currents. Finally, Figs. 9(a) and 9(c) show the
𝓑‖-induced displacement 〈z〉 that represents the electrostatic
polarization via Eq. (12).

The large magnetoelectric response of quasi-2D hole sys-
tems can be ascribed to the strong asymmetry En,−k‖ �= Enk‖
of the band structure. With increasing fields, the disconnected
parts of the Fermi sea that are located away from k‖ = 0
get depopulated and eventually disappear. The field-induced
response drops again when finally only the central part of
the Fermi sea around k‖ = 0 accommodates all charge car-
riers. Thus, unlike the electron case discussed above, the hole
systems show a strongly nonlinear dependence of the magne-
toelectric response as a function of the applied fields.

IV. MAGNETOELECTRICITY IN DIAMOND
ANTIFERROMAGNETS

Space-inversion symmetry of a diamond structure is bro-
ken in the zincblende structure [Figs. 1(a) and 1(b)]. Opposite
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FIG. 8. Equilibrium current distribution j‖(z) in a quantum well
with barrier height V0 = 0.12 eV, widths w = 150 Å [(a), (b), (c),
and (d)] and w = 300 Å [(e), (f), (g), and (h)], and hole density Ns =
1.0 × 1011 cm−2. Left column [(a), (c), (e), and (g)]: Ferromagnetic
InSb with Xx = 8 meV and BIA. Right column [(b), (d), (f), and
(h)]: Diamond antiferromagnet with InSb band-structure parameters
(without BIA) and 𝒴x = 50 meV. [(a), (b), (e), and (f)] Symmetric
quantum well (Ez = 0). [(c), (d), (g), and (h)] Tilted quantum well
(Ez = 7 kV/cm). In each panel, the dotted line shows for comparison
the charge distribution ρ(z) (arbitrary units).

magnetic moments placed alternatingly on the atomic sites of
a diamond structure result in an antiferromagnetic structure
[Fig. 1(c)]. Both time reversal � and space inversion I are bro-
ken symmetries in such a diamond antiferromagnet. The joint
operation �I , however, remains a good symmetry so that, sim-
ilarly to paramagnetic diamond, a twofold spin degeneracy is
preserved throughout the Brillouin zone. Nonetheless, as these
symmetries are broken individually, invariants proportional to
the Néel vector 𝓝 appear in the Kane Hamiltonian that are
forbidden in paramagnetic systems because of time-reversal
symmetry. These invariants are derived in Sec. IV A.

The diamond structure is realized by the A atoms of in-
termetallic cubic (C-15) Laves phases AB2, and it has been
demonstrated that NpCo2 is an itinerant antiferromagnet,
where the magnetic moments on the Np atoms are ordered as
shown in Fig. 1(c) (magnetic space group I41

′/a′m′d) [90,91].
The diamond structure is also realized by the A atoms of

FIG. 9. By-induced displacement 〈z〉 representing the electro-
static polarization via Eq. (12) in a quantum well with barrier
height V0 = 0.12 eV, widths w = 150 Å [(a) and (b)] and w =
300 Å [(c) and (d)], and hole density Ns = 1.0 × 1011 cm−2. [(a) and
(c)]: Ferromagnetic InSb with Xx = 8 meV and BIA. Right column
[(b) and (d)]: Diamond antiferromagnet with InSb band-structure
parameters (without BIA) and 𝒴x = 50 meV.

spinels AB2X4. Frequently, spinels with magnetic A atoms
give rise to highly frustrated magnetic order [92]. Beyond
that, a recent study combining experiment and theory [93]
identified CoRh2O4 as a canonical diamond-structure antifer-
romagnet, where the magnetic moments on the Co atoms are
ordered as shown in Fig. 1(c).

A. The model

Our goal is to incorporate the effect of antiferromag-
netic order into the k · p envelope-function theory [67,94]
underlying multiband Hamiltonians as in Eq. (21). To this
end, we start from the well-known sp3 tight-binding model
for diamond and zincblende structures with spin-orbit cou-
pling included [95,96]. This model includes the s-bonding
valence band �v

6 , the p-bonding valence bands �v
8 and �v

7 ,
the s-antibonding conduction band �c

6, and the p-antibonding
conduction bands �c

8 and �c
7. Except for the low-lying valence

band �v
6 , these bands are also the basis states for the 14 × 14

extended Kane model [67,97].
We add a staggered exchange field 𝓨 on the two sublattices

of the diamond structure as depicted in Fig. 1(c). Using the
phase conventions for the basis functions of H that are de-
scribed in detail in Appendix C of Ref. [67], the field 𝓨 yields
terms in the off-diagonal blocks H8c 8v , H8c 7v , and H7c 7v

of H that are listed in Table II using the notation of Table
C.5 in Ref. [67]. The vector 𝓝 denotes the Néel unit vector
with components Ni = 𝒴i/𝒴. Within the 14 × 14 extended
Kane model, the off-diagonal invariants H 𝒴

8c 8v , H 𝒴
8c 7v , and

H 𝒴
7c 7v provide a complete account of the antiferromagnetic

order shown in Fig. 1(c).
The off-diagonal invariants H 𝒴

8c 8v , H 𝒴
8c 7v , and H 𝒴

7c 7v ap-
pear already for k = 0. In the diagonal blocks H6c 6c, H8v 8v ,
and H7v 7v , a Taylor expansion of the tight-binding Hamilto-
nian about k = 0 yields mixed terms proportional to powers
of components of 𝓨 and powers of components of k. The

043060-15



R. WINKLER AND U. ZÜLICKE PHYSICAL REVIEW RESEARCH 2, 043060 (2020)

TABLE II. Lowest-order invariants describing antiferromagnetic
order within the 14 × 14 extended Kane model. The notation follows
Table C.5 of Ref. [67], and Ni ≡ 𝒴i/𝒴 denotes the Cartesian com-
ponents of the unit vector parallel to the staggered exchange field 𝓨
on the sublattices of the diamond structure [see Fig. 1(c)].

H 𝒴
8c 8v = (2i/3)𝒴(NxJx + cp)

H 𝒴
8c 7v = −2i𝒴(NxUx + cp)

H 𝒴
7c 7v = (−i/3)𝒴(Nxσx + cp)

H 𝒴
6c 6c = 𝒹({𝓀x,𝓀

2
y − k2

z }Nx + cp)

H 𝒴
8v 8v = 𝒟1

88({𝓀x,𝓀
2
y − k2

z }Nx + cp)

+𝒟2
88[(Ny𝓀y − Nz𝓀z )J2

x + cp]

+𝒟3
88[(Nx𝓀y − Ny𝓀x ){Jx, Jy} + cp]

+𝒟4
88[(NyEz − NzEy ){Jx, J2

y − J2
z } + cp]

+𝒟5
88[(NyEz + NzEy )Jx + cp]

+𝒟6
88[(NyEz + NzEy )J3

x + cp]

+𝒟7
88(NxEx + cp)(JxJyJz + JzJyJx )

H 𝒴
7v 7v = 𝒟1

77({𝓀x,𝓀
2
y − k2

z }Nx + cp)

lowest-order invariants obtained in this way are also listed in
Table II. Alternatively, these terms can be derived by means of
quasidegenerate perturbation theory [67] applied to H with
H 𝒴

8c 8v , H 𝒴
8c 7v , and H 𝒴

7c 7v included. The latter approach yields
explicit, albeit lengthy, expressions for the prefactors 𝒹 and
𝒟i

j j as a function of 𝒴= |𝓨| that are omitted here. As to
be expected for antiferromagnetic diamond, the 𝓨-dependent
invariants in Table II break time-reversal symmetry, but they
do not lift the spin degeneracy. Using quasidegenerate pertur-
bation theory, we also obtain several invariants in the valence
band block H 𝒴

8v 8v that are proportional to both 𝓨 and an
external electric field 𝓔. These invariants are listed in Table II
as well. They describe a spin splitting proportional to the field
𝓔 (but independent of the wave vector k) that is induced by
the antiferromagnetic exchange coupling. All invariants listed
in Table II can also be derived by means of the theory of
invariants [94] using the fact that the staggered exchange field
𝓨 is a polar vector that is odd under time reversal.

According to Table II, in lowest order the �6 conduction
band in a diamond antiferromagnet is described by the Hamil-
tonian

H = Hk + V (z) + HN + eEzz, (69a)

with Hk given in Eq. (22b), and

HN = 𝒹
({
𝓀x,𝓀

2
y − k2

z

}
Nx + cp

)
, (69b)

where 𝒹 is a prefactor proportional to 𝒴. Formally, HN has
the same structure as the Dresselhaus term (22c), with the spin
operators σi replaced by the numbers Ni and d replaced by 𝒹.
Therefore, the following study of magnetoelectric coupling in
antiferromagnetic diamond proceeds in remarkable analogy
to the study of magnetoelectric coupling in a paramagnetic
or ferromagnetic zincblende structure presented in Sec. III
[82]. As HN and, in fact, the entire Hamiltonian (69a) do not
depend on the charge carriers’ spin, the latter will be a silent
degree of freedom in the following considerations.

For the analytical model studied below, it is easy to see that
a purely in-plane Néel unit vector 𝓝 yields the largest mag-
netoelectric coupling. Assuming therefore that 𝓝 is oriented
in-plane, the full Hamiltonian becomes [including terms up to
second order in 𝓴‖, compare Eq. (23)]

H = h̄2𝓀2

2m
+ V (z) − 𝒹 k2

z (𝓀x cos ϕN − 𝓀y sin ϕN ) + eEzz,

(70a)

= h̄2k2
z

2m
+ V (z) + h̄2

2m
(𝓴‖ − 𝓴0)2 − h̄2𝓀2

0

2m
+ eEzz. (70b)

Here ϕN denotes the angle that 𝓝 makes with the x axis, and
we introduced the operator

𝓴0 = m

h̄2 𝒹k2
z

(
cos ϕN

− sin ϕN

)
. (71)

For Ez = B‖ = 0 and treating HN in first order, the subband
dispersions become

Eνσ,k‖ ≡ Eνk‖ = Eν + h̄2

2m

[(
k‖ − 〈𝓴0〉ν

)2 − 〈𝓴0〉2
ν

]
, (72)

which are spin-degenerate parabolae that are shifted in the
(kx, ky) plane by 〈𝓴0〉ν . The shift 〈𝓴0〉ν is a fingerprint for
the broken time-reversal symmetry in the antiferromagnet.

Figures 2(b) and 2(d) illustrate the lowest-subband dis-
persion E0k‖ for a quasi-2D electron system in an antiferro-
magnetic InSb quantum well with 𝒴x = 50 meV, width w =
150 Å, and electron density Ns = 1.0 × 1011 cm−2. The nu-
merical calculations are based on the 14 × 14 extended Kane
model including the terms H 𝒴

8c 8v , H 𝒴
8c 7v , and H 𝒴

7c 7v from
Table II. One can approximate these results with the smaller
Hamiltonian (70) using 𝒹 ≈ 80 eVÅ3. In the Hamiltonian for
the extended Kane model, we preclude the Dresselhaus terms
HD due to BIA by setting to zero the band parameters P′ and
Ck defined in Table C.5 of Ref. [67].

B. The Néel operator

We now digress to discuss a few general properties of the
model for antiferromagnetic order proposed here. It is well
known that the Zeeman term (22d) with an exchange field
𝓧 provides a simple mean-field model for itinerant-electron
ferromagnetism. Similarly, HN is a phenomenological model
for collinear (two-sublattice) itinerant-electron antiferromag-
netism.

The operator conjugate to the ferromagnetic exchange
field 𝓧 is the (dimensionless) spin-polarization operator σ =
∂H/∂𝓧. In the mean-field theory underlying the present
work, a nonzero expectation value 〈σ〉 indicates ferromag-
netic order of spins. Similarly, the operator conjugate to the
staggered exchange field 𝓨 is the (again dimensionless) Néel
operator for the staggered magnetization,

τ = ∂H
∂𝓨

= 𝒹
𝒴

k2
z

(
kx

−ky

)
= qτ k2

z

(
kx

−ky

)
, (73)

where the prefactor qτ ≡ 𝒹/𝒴 depends on the momentum
matrix elements and energy gaps characterizing the Hamil-
tonian H , but it is independent of the exchange field 𝒴.
A nonzero expectation value 〈τ〉 indicates collinear orbital
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(itinerant-electron) antiferromagnetic order. Like the stag-
gered exchange field 𝓨, the Néel operator τ is a polar vector
that is odd under time reversal. Thus 〈τ〉 �= 0 represents a
(polar) toroidal moment [50,83,98]. On the other hand, 𝓧
and 〈σ〉 are axial vectors that are odd under time reversal.
In that sense, 〈σ〉 and 〈τ〉 quantify complementary aspects of
itinerant-electron collinear magnetic order in solids [61].

In systems with spin-orbit coupling such as the ones
studied here, the spin magnetization 〈𝓢〉 associated with
the expectation value 〈σ〉 is augmented by an orbital-
magnetization contribution, yielding the total magnetization
𝓜. A magnetization 𝓜 arises due to the presence of an
exchange field 𝓧 or an external magnetic field 𝓑, but it
may also arise due to, e.g., an electric field 𝓔 (the magneto-
electric effect studied here) or a strain field (piezomagnetism
[11,99,100]). Similarly, a nonzero expectation value 〈τ〉 can
be due to a staggered exchange field 𝓨. But it may also arise
due to, e.g., the interplay of an exchange field 𝓧, spin-orbit
coupling, and confinement [Eq. (41)].

C. E -induced magnetization

To calculate the equilibrium magnetization, we start from
the Hamiltonian (70). Treating the electric field Ez in first-
order perturbation theory, the eigenstates become

|ν (1)〉 = |ν〉 + eEz

∑
ν ′ �=ν

cν ′ν |ν ′〉; (74)

compare Eq. (30). For the equilibrium magnetization (16a),
we need to evaluate expectation values 〈〈 {z , v‖(k‖)} 〉〉 using
the velocity operator associated with the Hamiltonian (70)
(𝓑‖ = 0),

v‖(k‖) = h̄

m
(k‖ − 𝓴0). (75)

We get

〈〈 {z , v‖(k‖)} 〉〉 = 〈〈 z 〉〉〈〈 v‖(k‖) 〉〉 + (〈〈 {z, v‖(k‖)} 〉〉 − 〈〈 z 〉〉〈〈 v‖ 〉〉), (76a)

= 〈〈 z 〉〉〈〈 v‖(k‖) 〉〉 − h̄

m

(〈〈 {z,𝓴0} 〉〉 − 〈〈 z 〉〉〈〈𝓴0 〉〉), (76b)

= 〈〈 z 〉〉〈〈 v‖(k‖) 〉〉 − 𝒹
h̄

(
cos ϕN

− sin ϕN

)〈〈 {
z, k2

z − 〈〈
k2

z

〉〉} 〉〉
, (76c)

= 〈〈 z 〉〉〈〈 v‖(k‖) 〉〉 − 𝒹
h̄

(
cos ϕN

− sin ϕN

)[〈{
z, k2

z − 〈
k2

z

〉 }〉+ 2eEz

∑
ν ′ �=ν

cν ′ν 〈ν|{z, k2
z − 〈

k2
z

〉 }− 〈z〉 k2
z |ν ′〉

]
, (76d)

= 〈〈 z 〉〉〈〈 v‖(k‖) 〉〉 − 2𝒹 eEz

h̄

(
cos ϕN

− sin ϕN

)∑
ν ′ �=ν

cν ′ν 〈ν|{z, k2
z − 〈

k2
z

〉 }|ν ′〉 ; (76e)

compare Eq. (33). Again, we ignored any k‖ or 𝓴0 depen-
dence of the perturbed states |ν (1)〉, which is a higher-order
effect. The first term in Eq. (76e) yields a vanishing con-
tribution when summed over the equilibrium Fermi sea, as
it is proportional to the system’s total equilibrium current.
Therefore, a nonzero magnetization is due to the second term
in Eq. (76e), which is independent of the wave vector k‖. We
can obtain Eq. (76e) from Eq. (33e) by replacing ϕZ with
ϕN and putting σ = 1 for all states. The latter implies that
the effect described by Eq. (76e) is maximized compared with
Eq. (33e) because both spin orientations in the antiferromag-
net contribute constructively.

Summing over the Fermi sea, we obtain for the magnetiza-
tion (16a)

𝓜o
‖ = −M0 eEzw λ𝒹

(
sin ϕN

cos ϕN

)
, (77)

with

λ𝒹 ≡ l𝒹
w

∑
ν ′ �=0

〈ν ′|z|0〉 〈0|{z, k2
z − 〈

k2
z

〉 }|ν ′〉
E (0)

0 − E (0)
ν ′

(78)

and l𝒹 ≡ 2m0𝒹/h̄2, in complete analogy with Eqs. (34)
and (35) [82]. For ϕN = nπ/2 (n integer) the induced
magnetization is oriented perpendicular to the Néel vector

𝓝. More generally, a clockwise rotation of 𝓝 implies a
counterclockwise rotation of 𝓜o

‖. Figure 3(b) illustrates the
Ez-induced magnetization for an antiferromagnetic InSb quan-
tum well with width w = 150 Å and electron density Ns =
1.0 × 1011 cm−2.

Again, it is illuminating to compare Eq. (77) with the
equilibrium current distribution (18). Using φν (z) ≡ 〈z|ν〉, the
perturbed wave functions read


ν (z) ≡ 〈z|ν (1)〉 = φν (z) + eEz

∑
ν ′ �=ν

cν ′ν φν ′ (z). (79)

Using the velocity operator (75), we get in first order of Ez

and 𝒹

j‖(z, νk‖) = 
∗
ν (z) v‖(k‖) 
ν (z), (80a)

= 〈v‖(k‖)〉 |φν |2 +
∑
ν ′ �=ν

κν ′ν φ∗
νφν ′

+ eEz

∑
ν ′,ν ′′ �=ν

[(cν ′′ν ′ κν ′ν + κν ′′ν ′cν ′ν )φ∗
νφν ′′

+ c∗
ν ′′νκν ′ν φ∗

ν ′′φν ′], (80b)

where the matrix elements κν ′ν are given by Eq. (40) with ϕZ

replaced by ϕN . Equation (80b) is obtained from Eq. (39b)
by putting σ = +1 so that the interpretation of Eq. (80b)
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proceeds similarly. In thermal equilibrium, the first term
in Eq. (80b) averages to zero in Eq. (18a). The remaining
terms are independent of k‖ so that they do not average
to zero in Eq. (18a). The second term (ν ′ = 2) describes a
quadrupolar equilibrium current proportional to φ0(z)φ2(z)
independent of the electric field Ez. Such quadrupolar orbital
currents are a generic feature of antiferromagnets; they are the
counterpart of dipolar orbital currents representing the orbital
magnetization in ferromagnets (see Appendix C) [101].
Similarly to Eq. (41), the orbital antiferromagnetic order can
be quantified using the Néel operator τ. The Hamiltonian (70)
(with Ez = 0) yields

〈τ〉 = −2π qτ 𝒹Ns

(
cos ϕN

sin ϕN

)∑
ν ′ �=0

| 〈ν ′|k2
z |0〉 |2

E (0)
0 − E (0)

ν ′
. (81)

As to be expected, we have 〈τ〉 ‖ 𝓝.
The last term in Eq. (80b) (ν ′′ = 1) describes Ez-induced

dipolar currents, i.e., a magnetization. In a quantum well of
width w, the equilibrium currents j‖(z, νk‖) occur on a length
scale of order w, which is typically much larger than the lattice
constant of the underlying crystal structure. The magnetic
multipoles associated with the current distribution may thus
be accessible experimentally. They may even open up new
avenues to manipulate the magnetic order in antiferromagnets.
Figures 4(b) and 4(d) illustrate the equilibrium currents for
antiferromagnetic InSb quantum wells.

It is illuminating to study a second mechanism for an
E -induced magnetization based on the antiferromagnetic ex-
change term (69b) that manifests itself as a spin magnetization
(16b). Generally, an electric field Ez applied to a quantum well
gives rise to a Rashba term [67,102],

HR = aR Ez(kyσx − kxσy), (82)

with Rashba coefficient aR Ez, resulting in spin-split eigen-
states

|νk‖±〉 = |ν〉 ⊗ 1√
2

∣∣∣∣ 1
∓ieiϕk‖

〉
, (83)

where ϕk‖ is the angle between k‖ and the x axis, and we
assumed as before that the orbital part |ν〉 of the eigenstates
is independent of k‖. Thus we have

〈σ〉νk‖± = ±
(

cos(ϕk‖ − π/2)
sin(ϕk‖ − π/2)

)
. (84)

Also, Rashba spin-orbit coupling gives rise to an imbalance
between the two spin subbands ±, which can be characterized
by Fermi wave vectors kF± ≈ √

2πNs ∓ aREzm/h̄2. Perform-
ing the average (16b) over all occupied states in these spin
subbands [assuming a dispersion (72) with small 〈𝓴0〉 �= 0
and slightly different Fermi wave vectors kF±], we obtain a
nonzero equilibrium spin polarization,

S‖ = m

h̄2

aREz

πNs
〈𝓴0〉 × ẑ, (85a)

= −
( m

h̄2

)2 aREz 𝒹
〈
k2

z

〉
ν

πNs

(
sin ϕN

cos ϕN

)
. (85b)

Inserting this result into (20) yields a spin magnetization that
complements the orbital magnetization (77). As to be ex-
pected, both terms have the same dependence on the direction
of the vector 𝓝. The mechanism described by Eq. (85) con-
tributes to the numerically calculated magnetization presented
in Fig. 3(b) [72].

We can interpret the spin polarization (85) as follows. The
Rashba term (82) yields a spin orientation (84) of individ-
ual states |νk‖±〉. Nonetheless, for nonmagnetic systems in
thermal equilibrium, the net spin polarization is zero because
time-reversal symmetry implies that we have equal probabil-
ities for the occupation of time-reversed states |νk‖±〉 and
|ν,−k‖±〉 with opposite spin orientations. This argument for
nonmagnetic systems is closely related to the fact that ther-
mal equilibrium in a time-reversal-symmetric system requires
that the Fermi sea is centered symmetrically about k̄ = 0. A
nonzero shift k̄ of the Fermi sea, and thus a nonzero average
spin polarization, are permitted in nonmagnetic systems as
a quasistationary nonequilibrium configuration in the pres-
ence of a driving electric field 𝓔‖, which is an important
mechanism for the current-induced magnetization reviewed in
Appendix A. The spin polarization (85), on the other hand,
is entirely an equilibrium effect. It can occur in antiferro-
magnetic systems, where time-reversal symmetry is already
broken in thermal equilibrium as expressed by the shift k̄ =
〈𝓴0〉.

It follows from Table II that we generally get a spin split-
ting proportional to Ez even at k‖ = 0, which yields a third,
Zeeman-like contribution to the total magnetization (20). For
quasi-2D hole systems, this effect can be substantial. For
quasi-2D electron systems, this effect is of second order in
the staggered exchange field 𝓨.

D. B-induced electric polarization

Our goal is to evaluate the polarization (8) in the presence of an in-plane magnetic field 𝓑‖. The starting point is again the
Hamiltonian (70). An in-plane magnetic field 𝓑‖ represented via the vector potential 𝓐 gives rise to the perturbation [ignoring
terms O (B2

‖ )]

H(1)
B = eh̄

2m
[(k‖ − 𝓴0) · 𝓐 + 𝓐 · (k‖ − 𝓴0)], (86a)

= eh̄

2m
[2(k‖ − 〈〈𝓴0 〉〉) · 𝓐 − (𝓴0 − 〈〈𝓴0 〉〉) · 𝓐 − 𝓐 · (𝓴0 − 〈〈𝓴0 〉〉)], (86b)

= eh̄

m
(k‖ − 〈〈𝓴0 〉〉) · 𝓐 − e

h̄
𝒹B‖ sin(ϕN + ϕB)

{
z, k2

z − 〈
k2

z

〉 }
. (86c)
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The perturbation H(1)
B yields perturbed states |ν (1)〉. We get

〈〈 z 〉〉 = 〈z〉ν + 2
∑
ν ′ �=ν

cν ′ν〈ν | H(1)
B | ν ′〉, (87a)

= 〈z〉ν + 2
∑
ν ′ �=ν

cν ′ν

[
eh̄

m
(k‖ − 〈𝓴0〉) · 〈ν|𝓐|ν ′〉 − e

h̄
𝒹B‖ sin(ϕN + ϕB) 〈ν|{z, k2

z − 〈
k2

z

〉 }|ν ′〉
]
. (87b)

As before [Eq. (45)], the first term 〈z〉ν vanishes for a symmetric potential V (z). The first term in the square brackets describes a
k‖-dependent shift [74–77] that yields a vanishing contribution to Pe

z when summed over the equilibrium Fermi sea. Therefore,
a nonzero polarization is due to the second term in the square brackets, which is independent of the wave vector k‖. Summing
over the Fermi sea, we obtain

Pe
z = −P0 μBB‖ λ𝒹 sin(ϕN + ϕB); (88)

compare Eq. (46) [82]. Figure 3(d) illustrates the 𝓑‖-induced polarization for an antiferromagnetic InSb quantum well.

E. Magnetoelectric contribution to the free energy

As before, we evaluate the change δF in the free-energy density in the presence of both H(1)
E [Eq. (29)] and H(1)

B [Eq. (86c)]
using Eq. (47) and second-order perturbation theory;

〈〈
H(1)

E + H(1)
B

〉〉
νσk‖

= 2Re
∑
ν ′ �=ν

〈ν|H(1)
E |ν ′〉 〈ν ′|H(1)

B |ν〉
E (0)

ν − E (0)
ν ′

, (89a)

= 2Re
∑
ν ′ �=ν

〈ν|eEz z|ν ′〉 〈ν ′ | eh̄
m

(
k‖ − 〈〈𝓴0 〉〉) · 𝓐 − e

h̄𝒹B‖ sin(ϕN + ϕB)
{
z, k2

z − 〈
k2

z

〉 } | ν〉
E (0)

ν − E (0)
ν ′

, (89b)

where we ignored terms O (E 2
z ) and O (B2

‖ ). When averag-
ing over all occupied states, the terms ∝ 𝓐 drop out. Using
Eq. (78), we get

δF = −Ns eEz μBB‖ λ𝒹 sin(ϕN + ϕB), (90)

consistent with Eqs. (77) and (88). Decomposing δF into
terms present in the third line of Eq. (1) yields

δF = −αzx EzBx − αzy EzBy, (91a)

with

αz‖ ≡
(

αzx

αzy

)
= Ns eμB λ𝒹

(
sin ϕN

cos ϕN

)
. (91b)

Thus similarly to the ferromagnetic case [Eqs. (50)], antiferro-
magnetic order gives rise to αi j �= 0, and two nonzero entries
αzx and αzy are consistent with the magnetic point group
m′mm of an antiferromagnetic symmetric quantum well on
a diamond (001) surface. The antiferromagnetic order could
also generate higher-order magnetoelectric contributions of
the type ∝ βi jk and ∝ γi jk in Eq. (1). However, unlike the
paramagnetic zincblende structure where βi jk �= 0, the high
symmetry of a paramagnetic diamond structure precludes the
existence of any magnetoelectric effects.

Equation (91a) can also be expressed as δF = −τ̃ · (Ezẑ ×
𝓑‖) in terms of the magnetoelectric vector

τ̃ = Ns eμB λ𝒹

(− cos ϕN

sin ϕN

)
, (92)

which is analogous to the magnetoelectric vector (51b) found
for the ferromagnetic case [81]. We have τ̃ ‖ −𝓴0, and, like
𝓝, the vector τ̃ is a toroidal vector. Figure 5(b) shows the

angular dependence of the orientation of the vector τ̃ on the
orientation of the vector 𝓝.

F. Magnetic quadrupole moment

Similarly to Sec. III E, we can evaluate the magnetic
quadrupole moment in antiferromagnetic systems. We eval-
uate the matrix elements 〈{z2 , v‖(k‖)}〉 similarly to Eq. (64).
We get in first-order perturbation theory

〈{z2 , v‖(k‖)}〉 = 〈z2〉 〈v‖(k‖)〉

− 𝒹
h̄

(
cos ϕN

− sin ϕN

) 〈{
z2, k2

z − 〈
k2

z

〉 }〉
. (93)

Summing over the Fermi sea, we obtain

𝓠o
z‖ = −𝒬0

l𝒹
w

〈{
z2, k2

z − 〈
k2

z

〉 }〉 (sin ϕN

cos ϕN

)
. (94)

Alternatively, we can obtain the result (94) by evaluating
the free energy F in the presence of the vector potential 𝓐 for
the field gradient 𝓫‖. To first order in 𝓫‖ and the coefficient
𝒹, we get an energy shift of the occupied states given by the
expectation value of

H (1)
𝒷 = eh̄

m
(k‖ − 〈𝓴0〉) · 𝓐

− e

h̄
𝒹

𝒷‖
2

sin(ϕN + ϕ𝒷)
{
z2, k2

z − 〈
k2

z

〉 }
. (95)

When averaging over all occupied states, the first term ∝ 𝓐
drops out. We get

δF = 𝒬0
𝒷‖
2

l𝒹
w

〈{
z2, k2

z − 〈
k2

z

〉 }〉
sin(ϕN + ϕ𝒷), (96)

consistent with Eqs. (55) and (94).
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The contribution (96) to the free energy can also be ex-
pressed as [81]

δF = −τ̄ · (∇z × 𝓑‖) (97a)

in terms of the vector

τ̄ = 𝒬0
l𝒹
2w

〈{
z2, k2

z − 〈
k2

z

〉 }〉 ( cos ϕN

− sin ϕN

)
; (97b)

compare Eq. (68).

G. Magnetoelectricity in antiferromagnetic hole systems

As was the case in the ferromagnetic configuration, the
magnetoelectric response obtained in the realistic calculations
for electron systems in antiferromagnetic InSb quantum wells
is small [Figs. 3(b) and 3(d)]. However, as before, antifer-
romagnetic hole systems show much larger magnetoelectric
effects. The physical origin of this enhancement can again
be traced to the more pronounced asymmetry En,−k‖ �= Enk‖
and nonparabolicity of quasi-2D hole subbands. Figures 6(c)
and 6(f) show the energy dispersion and energy contours
for quasi-2D hole systems in antiferromagnetic InSb quan-
tum wells with width w = 150 Å [Fig. 6(c)] and w = 300 Å
[Fig. 6(f)]. The Ez-induced orbital magnetic moment per par-
ticle is plotted in Figs. 7(b) and 7(d). Figures 8(b), 8(d), 8(f),
and 8(h) show the equilibrium currents. Finally, Figs. 9(b) and

9(d) illustrate the 𝓑‖-induced polarization. Once again, the
nonlinear dependence of the magnetoelectric response on the
applied fields is due to the depopulation of the disconnected
parts of the Fermi sea that are located away from k‖ = 0.

V. UPPER BOUND ON MAGNETOELECTRIC COUPLINGS
IN QUASI-2D SYSTEMS

In this section, we derive an upper bound on the magnitude
of the magnetoelectric couplings in 2D quantum-well systems
based on the change δF in the free-energy density due to
the electric field Ez and the magnetic field 𝓑‖ [53]. This
will illustrate the versatility of the system studied here. In
generalization of Eq. (47) we consider

δF = 1

w

∑
ν,σ

∫
d2k‖
(2π )2

f (Eνσk‖ )
〈〈

H(1)
E + H(1)

B + H(2)
B

〉〉
νσk‖

,

(98)

where H(1)
E [Eq. (29)] and H(1)

B [Eq. (43)] represent the pertur-
bations linear in the fields Ez and 𝓑‖ and

H(2)
B = e2z2B2

‖
2m

= m2
0

m2
μ2

BB2
‖

2m

h̄2 z2 (99)

is the perturbation quadratic in 𝓑‖ appearing in the Hamilto-
nian (22). In generalization of Eq. (48), we obtain up to second
order in the fields Ez and 𝓑‖,

〈〈
H(1)

E + H(1)
B + H(2)

B

〉〉
νσk‖

=
∑
ν ′ �=ν

∣∣〈ν|H(1)
E + H(1)

B |ν ′〉∣∣2
E (0)

ν − E (0)
ν ′

+ 〈ν|H(2)
B |ν〉, (100a)

=
∑
ν ′ �=ν

∣∣〈ν|H(1)
E |ν ′〉∣∣2 + ∣∣〈ν|H(1)

B |ν ′〉∣∣2 + 2Re 〈ν|H(1)
E |ν ′〉 〈ν ′|H(1)

B |ν〉
E (0)

ν − E (0)
ν ′

+ 〈ν|H(2)
B |ν〉. (100b)

The second term in Eq. (100a) is always positive, i.e., it
describes a diamagnetic energy shift proportional to B2

‖ .
On the other hand, for the lowest subband ν = 0 the first
term in Eq. (100a) is always negative [53], i.e., it repre-
sents a negative definite quadratic form in the fields Ez

and 𝓑‖.
We evaluate the different terms in Eq. (100) assuming, as

before, that only the lowest subband ν = 0 is occupied. The
dielectric contribution to the free energy (98) is

δF (2)
E = 1

w

∑
σ

∫
d2k‖
(2π )2

f (E0σk‖ )
∑
ν ′ �=0

∣∣〈0|H(1)
E |ν ′〉∣∣2

E (0)
0 − E (0)

ν ′
,

(101a)

= Ns

w
e2E 2

z λz, (101b)

with

λz =
∑
ν ′ �=0

|〈0|z|ν ′〉|2
E (0)

0 − E (0)
ν ′

. (102)

The paramagnetic contribution is

δF (2,p)
B = 1

w

∑
σ

∫
d2k‖
(2π )2

f (E0σk‖ )
∑
ν ′ �=0

∣∣〈0|H(1)
B |ν ′〉∣∣2

E (0)
0 − E (0)

ν ′
,

(103a)

= 4μ2
B

w

m2
0

m2

∑
σ

∫
d2k‖
(2π )2

f (E0σk‖ )[𝓑‖ · (ẑ × k‖)]2λz,

(103b)

= N2
s

w

m2
0

m2
μ2

BB2
‖ 2πλz ×

{
1 + ξ (Z )2 FM

1 AFM
,

(103c)

where we ignored higher-order corrections due to the Dressel-
haus term (22c) (in ferromagnets) or the Néel term (69b) (in
antiferromagnets). The diamagnetic contribution is [103]

δF (2,d)
B = 1

w

∑
σ

∫
d2k‖
(2π )2

f (E0σk‖ ) 〈0|H(2)
B |0〉, (104a)

= Ns

w

m2
0

m2
μ2

B B2
‖

2m

h̄2 〈0|z2|0〉. (104b)
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The magnetoelectric contribution

δF (2)
E B = 2

w

∑
σ

∫
d2k‖
(2π )2

f (E0σk‖ )

× Re
∑
ν ′ �=0

〈0|H(1)
E |ν ′〉 〈ν ′|H(1)

B |0〉
E (0)

0 − E (0)
ν ′

(105)

was evaluated in Eqs. (48) (for ferromagnets) and (89) (for
antiferromagnets).

Explicit evaluation of relevant matrix elements for an in-
finitely deep square well and a parabolic (harmonic-oscillator)
potential yields [54]

λz = −mw4

h̄2

{ 15−π2

24π4 square

1/2 parabolic
, (106a)

〈0|z2|0〉 = w2

{
π2−6
12π2 square

1/2 parabolic
, (106b)

using the relation w = √
h̄/(mω) between well width w and

harmonic-oscillator frequency ω.
We write δF in Eq. (98) in the form of Eq. (1), restricting

ourselves to terms quadratic in Ez and 𝓑‖,

δF = − 1
2 χE

zz E 2
z − 1

2

(
χ

B,p
ii + χB,d

ii

)
B2

i

−αzx EzBx − αzy EzBy, (107)

where (i = x, y)

χE
zz = −∂2

(
δF (2)

E

)
∂E 2

z

, (108a)

χB,k
ii = −∂2

(
δF (2,k)

B

)
∂B2

i

, (108b)

αzi = −∂2
(
δF (2)

E B

)
∂Ez ∂Bi

. (108c)

We obtain the following explicit expressions for these suscep-
tibilities:

χE
zz = −Ns

w
e2 2λz, (109a)

χ
B,p
ii = −N2

s

w

m2
0

m2
μ2

B 4πλz

{
1 + ξ (Z )2 FM

1 AFM
, (109b)

χB,d
ii = −Ns

w

m2
0

m2
μ2

B

4m

h̄2 〈0|z2|0〉, (109c)

and αz‖ was given in Eq. (50b) [Eq. (91b)] for the ferromag-
netic (antiferromagnetic) case.

The first term in Eq. (100a) yields a contribution to the free
energy that can be written as

δF (2)
E + δF (2,p)

B + δF (2)
E B = − 1

2 𝓕
† · χ · 𝓕, (110)

where 𝓕† ≡ (Ez,Bx,By), and

χ =

⎛
⎜⎝

χE
zz αzx αzy

αzx χ
B,p
xx 0

αzy 0 χ
B,p
yy

⎞
⎟⎠ (111)

is a positive definite symmetric matrix. It follows from
Sylvester’s criterion for positive-definiteness of symmetric
matrices that we obtain upper bounds for the magnitude of
the components of the magnetoelectric tensor [53,104],

|αzi| �
√

χE
zz χ

B,p
ii . (112)

In bulk materials, the electric and paramagnetic susceptibili-
ties χE

i j and χ
B,p
i j represent generally fixed properties of the

underlying material, and Eq. (112) has previously been in-
voked in order to explain why frequently the magnetoelectric
coefficients αi j are small in magnitude [53]. It is a unique fea-
ture of the quasi-2D systems studied here that the properties
represented by the elements of the tensor χ can be engineered
[105,106]. This is illustrated by the pronounced dependence
of the coefficient λz on well width w found in Eq. (106a),
which is matched by Eq. (37) for the coefficient λd showing
that the magnetoelectric coefficients αzi likewise increase with
increasing width of the quantum well. (The tensor χ gives
the susceptibilities per volume.) Hence the magnetoelectric
response can be maximized in a superlattice consisting of
wide quantum wells. The susceptibilities χE

zz and χ
B,p
ii scale

also with the 2D density Ns in the quantum well that can
easily be tuned experimentally over a wide range via doping
and electric gates [106]. Again, this is matched by the density
dependence of αzi in the antiferromagnetic case [Eq. (91b)]
and in the half-metallic regime Z � E0

F of the ferromagnetic
case [Eq. (50b)]. Explicitly, we have [ignoring |ξ (Z )| � 1 in
Eq. (109b)] [107]

√
χE

zz χ
B,p
ii = N3/2

s

w
e μB

m0

m

√
8π |λz|. (113)

To illustrate the tunability of Eq. (112), we summarize in
Table III the parametric dependencies of the susceptibilities
on well width w and density Ns for a quasi-2D electron system
in ferromagnetic and antiferromagnetic quantum wells. Fur-
thermore, to estimate the relative importance of these terms,
Table III also gives numerical values of the susceptibilities
using the analytical results derived above and considering a
2D electron system in a 150-Å-wide square quantum well with
density Ns = 1.0 × 1011 cm−2.

For completeness, we remark that the free energy also
contains a term representing the spin magnetization (16b) due
to the Zeeman field 𝓩 = (g/2) μB 𝓑‖ + 𝓧‖,

δFZ = −Ns

w

g

2
μBB‖ ξ (Z ) = M0

g

2
B‖ ξ (Z ). (114)

This term includes a contribution quadratic in the external
field 𝓑‖ that corresponds to the paramagnetic Pauli spin
susceptibility,

χZ
ii = −∂2

(
δFZ

)
∂B2

i

= 1

w

(g

2
μB

)2 m

π h̄2 . (115)

Our discussion of AFM diamond in Sec. IV ignored the effect
of χZ

ii . In ferromagnets, the exchange field 𝓧‖ yields a con-
tribution to δFZ linear in the external field 𝓑‖ that represents
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TABLE III. Parametric dependencies of the electromagnetic susceptibilities on well width w and density Ns for a quasi-2D electron system
in ferromagnetic and antiferromagnetic quantum wells. In ferromagnetic systems, entries in the first row apply to a partially spin-polarized
system, whereas entries in the second row (if present) apply to a fully spin-polarized (half-metallic) system. All quantities are defined per
volume. To estimate the relative importance of these terms, the last row gives numerical values of the susceptibilities for a 2D electron
system in a 150-Å-wide square quantum well with density Ns = 1.0 × 1011 cm−2 and parameters m = 0.0139 m0, g = 51.5, d = 760 eVÅ3,
X‖ = 8 meV (for αFM

zi ), and 𝒹 = 80 eVÅ3 (for αAFM
zi ).

χE
zz χ

B,p
ii χB,d

ii

√
χE

zz χ
B,p
ii αFM

zi αAFM
zi χZ

ii M s
‖

∝ w3Ns ∝ w3N2
s ∝ wNs ∝ w3N3/2

s ∝ w ∝ wNs ∝ w−1 ∝ w−1

∝ wNs ∝ w−1Ns

4.9×10−2 ε0 7.2×10−8/μ0 −1.2×10−6/μ0 5.9×10−5
√

ε0/μ0 5.8×10−6
√

ε0/μ0 1.3×10−6
√

ε0/μ0 1.7×10−6/μ0 12 M0

the spontaneous magnetization

𝓜s
‖ = −M0

g

2
×
⎧⎨
⎩

m
π h̄2

𝓧‖
Ns

, X‖ < E0
F

𝓧̂‖, X‖ � E0
F

; (116)

compare Eq. (1).

VI. CONCLUSIONS AND OUTLOOK

We present a detailed theoretical study of how
magnetoelectricity arises in magnetically ordered quantum
wells with broken time-reversal symmetry and broken
space-inversion symmetry. Quasi-2D systems based on
zincblende ferromagnets [Fig. 1(b)] and diamond-structure
antiferromagnets [Fig. 1(c)] exhibit an analogous linear mag-
netoelectric response, i.e., an in-plane magnetization induced
by a perpendicular electric field [Eqs. (34) and (77)], as well as
a perpendicular electric polarization arising from an in-plane
magnetic field [Eqs. (46) and (88)]. In realistic calculations,
the magnitude of the magnetoelectric response is small in
quasi-2D electron system (Fig. 3), but it is sizable for quasi-
2D hole systems (Figs. 7 and 9). See Table I for a comparison
of benchmark values for our systems of interest with other
known magnetoelectric materials. While typical magnitudes
of the magnetoelectric-tensor components are comparable to
those of Cr2O3, the maximum electric-field-induced magnetic
moment per particle reaches the same large order of magni-
tude (∼1 μB) as demonstrated for the giant magnetoelectric
effect in FeRh/BTO. Our findings suggest that bandstructure
engineering and nanostructuring are fruitful avenues for gen-
erating and tailoring magnetoelectricity in a host of materials.

Our study yields a new unified picture of magnetic
order. Ferromagnetic order is characterized by a magnetic-
moment density 𝓜 (a magnetization). In itinerant-electron
systems, orbital ferromagnetic order is associated with dipolar
equilibrium currents. On the other hand, collinear orbital an-
tiferromagnetic order is characterized by a toroidal-moment
density 〈τ〉 for the Néel operator τ that is associated with
quadrupolar equilibrium currents. For the itinerant-electron
systems studied in the present work, the equilibrium current
distributions are slowly varying on the length scale of the
lattice constant (Figs. 4 and 8). The magnetization 𝓜 and
the toroidal-moment density 〈τ〉 quantify complementary as-
pects of itinerant-electron collinear magnetic order in solids.
Ferrimagnetic systems are characterized by both expectation

values 𝓜 and 〈τ〉 being finite simultaneously. Generally, the
manipulation of itinerant-electron ferromagnetic or antiferro-
magnetic order via external perturbations can be viewed as
manipulating the underlying equilibrium current distribution
(Figs. 4 and 8).

Ferromagnetic order 𝓜 arises due to the presence of an
exchange field or an external magnetic field, but it may also
arise due to, e.g., an electric field (the magnetoelectric effect
studied here) or a strain field (piezomagnetism [11,99,100]).
Similarly, antiferromagnetic order 〈τ〉 can be due to a stag-
gered exchange field. But it may also arise due to, e.g., the
interplay of ferromagnetic order, spin-orbit coupling, and con-
finement [Eq. (41)]. The explicit form of the Néel operator τ

and how it can be manipulated depends on the symmetry of
the system under investigation. In the present work, we used
the envelope-function theory to derive explicit expressions
for τ in antiferromagnetic diamond structures. The theory
for how 𝓜 and 〈τ〉 are induced by external perturbations
can be phrased very generally using the theory of material
tensors taking advantage of crystal symmetry [94,108–110].
In the magnetoelectric effect an I-odd �-even electric field
𝓔 induces an I-even �-odd magnetization 𝓜, which is per-
mitted in thermal equilibrium for magnetic media breaking
both space-inversion symmetry I and time-reversal symmetry
� (Appendix A). Similarly, an electric field 𝓔 can induce anti-
ferromagnetic order represented via the I-odd �-odd toroidal
moment 〈τ〉 if the medium breaks time-reversal symmetry �,
while the medium may preserve space-inversion symmetry I .
Such a nondissipative antiferromagnetoelectric effect 〈τi〉 =
ζi jE j is characterized via an I-even �-odd second-rank tensor
ζi j . The constraints due to crystal symmetry for a nonzero
tensor ζi j are fulfilled, e.g., by antiferromagnetic MnF2 (mag-
netic point group 4′/mm′m); this effect will be discussed in
more detail in a future publication. It expands recent efforts
geared toward an electric manipulation of antiferromagnetic
order [111–115].

Beyond that, the theoretical formalism and fundamental
understanding of antiferromagnetic order presented in this
work can be applied to undertake more comprehensive studies
of itinerant-electron antiferromagnets. Reliable modeling of
antiferromagnetic-spintronics devices [4,5] requires the level
of detail and realism provided by our envelope-function the-
ory. Basic questions concerning magnetization dynamics in
metallic antiferromagnets that are attracting current interest
[116] can also be addressed.
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APPENDIX A: COMPARISON OF
MAGNETOELECTRICITY WITH CURRENT-

INDUCED MAGNETIZATION

It is the hallmark of the magnetoelectric effect that an
electric-field-induced magnetization and a magnetic-field-
induced polarization arise in thermal equilibrium and that
these responses are duals of each other in that they are char-
acterized by the same magnetoelectric tensor αi j , see Eqs. (1)
and (2) [11]. The central requirement for the occurrence of
magnetoelectricity is that space-inversion symmetry I and
time-reversal symmetry � are both broken; hence, magneto-
electricity is only possible in certain magnetic systems. More
precisely, using the theory of material tensors [94,108–110]
magnetoelectricity is permitted for those magnetic crystal
classes characterized by a magnetic point group 𝒢, where
the polar (I-odd), �-even vectors 𝓔 and 𝓟 and the axial
(I-even), �-odd vectors 𝓑 and 𝓜 transform according to
the same representation of 𝒢, i.e., αi j must be an axial, �-odd
second-rank tensor. For each of the 58 groups 𝒢permitting an
axial �-odd second-rank tensor [12], the patterns of nonzero
components αi j allowed by symmetry have been tabulated,
e.g., in Ref. [110].

An at first glance closely related effect is a magnetization
Mi induced by a spin-unpolarized electric-charge current 𝒥j ,
characterized by the relation [117–120]

Mi = ηi j 𝒥j, (A1)

where ηi j is a second-rank tensor. The current 𝓙 is a polar
vector, whereas the magnetization 𝓜 is an axial vector (and
both quantities are �-odd). Accordingly, a current-induced

magnetization (A1) is permitted for those nonmagnetic crys-
tal classes characterized by a nonmagnetic point group G,
where the polar vector 𝓙 and the axial vector 𝓜 transform
according to the same representation of G, i.e., ηi j must be
an axial (and �-even) second-rank tensor. The 18 groups
G that permit a nonzero axial tensor ηi j are known as gy-
rotropic point groups [121]. Current-induced magnetization
(A1) is forbidden for the nonmagnetic bulk zincblende struc-
ture [point group G = Td = 4̄3m, Fig. 1(b)], despite the fact
that inversion symmetry is broken in the zincblende structure
[122]. Current-induced magnetization in nonmagnetic media
has been reviewed, e.g., in Refs. [123–125]. In recent years,
this phenomenon has also been extended to magnetic media,
where it is known as spin-orbit torque [111,126,127].

The symmetry requirements permitting a current-induced
magnetization are fundamentally distinct from those permit-
ting magnetoelectricity. While magnetoelectricity is forbidden
for nonmagnetic media, current-induced magnetization is
already allowed in nonmagnetic media. Extending the dis-
cussion to magnetic media, magnetoelectricity is allowed,
e.g., for systems with the bulk antiferromagnetic diamond
structure [magnetic point group 𝒢= 4′/m′m′m, Fig. 1(c)]
[110]. At the same time, the axial �-even second-rank tensor
ηi j describing current-induced magnetization must vanish for
systems with 𝒢= 4′/m′m′m. Contrasting that, a ferromag-
netic bulk zincblende structure magnetized in the z direction
(point group 𝒢= 4̄m′2′) permits both magnetoelectricity and
current-induced magnetization.

If the current 𝒥j is induced by an external electric field Ek

via Ohm’s law 𝒥j = σ jkEk (in studies of current-induced mag-
netization, the conductivity tensor σ jk is often treated within
a simple Drude model [124,125]), then such a dissipative
current breaks time-reversal symmetry even in nonmagnetic
media, and we can rewrite Eq. (A1) as

Mi = ηi j σ jk Ek = η′
ik Ek, (A2)

with η′
ik ≡ ηi j σ jk; compare Eq. (2b). Accordingly, the

current-induced magnetization has sometimes been called
the kinetic magnetoelectric effect [120,128], although it is
clear from the above discussion that the physics expressed
by Eq. (A2) is fundamentally distinct from magnetoelectric-
ity. Even if current-induced magnetization can by itself be a
nondissipative process [113,129], Eq. (A2) is a nonequilib-
rium effect [30,128] that is always accompanied by transport
currents. On the other hand, the magnetoelectric effect con-
stitutes an equilibrium phenomenon, where the electric field
inducing the magnetization is not accompanied by any trans-
port currents. It is the equilibrium currents representing orbital
magnetic order that form a central aspect of our analysis of
magnetoelectricity. These equilibrium currents are not trans-
port currents. Current-induced magnetization possesses an
Onsager reciprocal that constitutes a mechanism for con-
verting a nonequilibrium magnetization into a charge current
[117,130]. However, in contrast to the magnetoelectric effect,
Eq. (A2) has no dual whereby a magnetic field 𝓑 could
induce a polarization 𝓟 in a nonmagnetic medium.
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APPENDIX B: GAUGE DEPENDENCE OF THE
MAGNETIC-MOMENT OPERATOR

FOR ITINERANT ELECTRONS

The magnetic-moment operator for a system with Hamil-
tonian H is generally defined as [60]

𝓶 = − ∂H

∂𝓑
. (B1)

In a single-particle picture for itinerant electrons with kinetic
momentum h̄𝓴 = h̄k + e𝓐, where 𝓐 is the vector potential
for the magnetic field 𝓑 = ∇ × 𝓐, we get

𝓂i = −
{

∂H

∂𝓀 j
,
∂𝓀 j

∂Bi

}
= −e

{
v j,

∂A j

∂Bi

}
, (B2)

where v = ∂H/(∂ h̄𝓴) = ∂H/(∂ h̄k) is the velocity operator
and we took the symmetrized product of noncommuting oper-
ators. Repeated indices are summed over. For the symmetric
gauge 𝓐sym = 1

2 𝓑 × r, we have

∂A sym
j

∂Bi
= −1

2
εi jk rk, (B3)

where εi jk denotes the totally antisymmetric tensor. Thus

𝓂sym
i = − e

2
εi jk {r j, vk}, (B4)

which is the conventional formula for the magnetization
[59,60] consistent with classical electromagnetism [58]. On
the other hand, we get for the asymmetric gauge 𝓐 = z𝓑‖ ×
ẑ employed in the present work

𝓶 = −e ẑ × {z, v‖}, (B5)

whose components differ by a factor of 2 from corresponding
terms with r j = z in Eq. (B4). Both expressions for 𝓶 are
consistent with [58]

𝓳 = −e v = −∇ × 𝓶. (B6)

Similarly to the definition (B1) of the magnetic-moment
operator, the operator of the electric dipole moment can be
defined as 𝓹 = −∂H/∂𝓔. The electric field 𝓔 can be intro-
duced into H via a scalar potential as in Eq. (29) or via a
time-dependent vector potential. Therefore, the explicit form
of the electric-dipole moment operator 𝓹 is also gauge depen-
dent.

APPENDIX C: ORBITAL MAGNETIZATION INDUCED
BY ZEEMAN COUPLING

Very generally, even in the absence of an electric field
Ez, the Zeeman term induces a spin magnetization 𝓢Z

(anti)parallel to the Zeeman field 𝓩 and proportional to the g
factor, see Eq. (16b). However, in a more complete multiband
description, the g factor for an explicit Zeeman term may
be greatly reduced or completely absent [131]. In such an
approach, we obtain instead an orbital magnetization 𝓜Z

due to equilibrium spin-polarized currents, for which spin-
orbit coupling plays an essential role. We demonstrate in the
following that the spin magnetization 𝓢Z in a single-band
model with g-factor g is equal to the orbital magnetization
𝓜Z in the corresponding multiband model. While we focus
for conceptual clarity on the simpler case of a magnetization
due to Zeeman coupling to a magnetic field, the arguments
apply also to a magnetization induced, e.g., by an electric field
in the magnetoelectric effect.

It is well known [132] that the multiband description of
Bloch electrons is analogous to a fully relativistic description
of electrons based on the Dirac equation. Accordingly, the
observable predictions of multiband theories embrace those of
single-band theories similarly to how the observable predic-
tions of fully relativistic theories based on the Dirac equation
embrace those of weakly relativistic theories based on the
Pauli equation. The Pauli equation includes a Zeeman term
with g-factor g that appears as a prefactor for the spin magne-
tization (16b). On the other hand, the Dirac equation does not
contain a Zeeman term; but the interaction of the electrons
with a magnetic field is entirely accounted for via the min-
imal coupling to the vector potential for the magnetic field
(i.e., we have g = 0 in the Dirac equation). Accordingly, 𝓢Z

must vanish in a fully relativistic theory; and the observable
magnetization is entirely orbital even for strongly localized
magnetic moments on the atoms that are commonly modeled
as spin magnetic moments. This is a direct consequence of the
Dirac theory.

Working in a multiband theory, we demonstrate the
equivalence of 𝓢Z and 𝓜Z for the 8 × 8 Kane model
[67,133,134], where the orbital magnetization 𝓜Z is due to
the off-diagonal coupling between the conduction and valence
bands linear in k. The physics that is essential for 𝓜Z is thus
contained in the simplified Kane Hamiltonian [67,131],

H̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ec + hc 0 − 1√
2
Pk+

√
2
3 Pkz

1√
6
Pk− 0 − 1√

3
Pkz − 1√

3
Pk−

0 Ec + hc 0 − 1√
6
Pk+

√
2
3 Pkz

1√
2
Pk− − 1√

3
Pk+ 1√

3
Pkz

− 1√
2
Pk− 0 Ev + hv 0 0 0 0 0√

2
3 Pkz − 1√

6
Pk− 0 Ev + hv 0 0 0 0

1√
6
Pk+

√
2
3 Pkz 0 0 Ev + hv 0 0 0

0 1√
2
Pk+ 0 0 0 Ev + hv 0 0

− 1√
3
Pkz − 1√

3
Pk− 0 0 0 0 Ev − 	0 + hv 0

− 1√
3
Pk+ 1√

3
Pkz 0 0 0 0 0 Ev − 	0 + hv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C1)
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Here Ec denotes the conduction band edge (�c
6), Ev ≡ Ec −

E0 is the valence band edge (�v
8 ) with fundamental gap

E0, 	0 is the spin-orbit gap between the topmost valence
band �v

8 and the spin split-off valence band �v
7 , and P de-

notes Kane’s momentum matrix element. The terms hc =
μck2

z + Vc(z) and hv = −μvk2
z − Vv (z) embody remote-band

contributions quadratic in kz with μc, μv > 0 and confining
potentials Vc(z),Vv (z) � 0.

While g = 0 for the Hamiltonian H̃ , a spin magnetization
𝓢Z is obtained when H̃ is projected on the �c

6 conduction
band, yielding a 2 × 2 Hamiltonian as in Eq. (22) including a
Zeeman term HZ with g-factor g. To express g in terms of
the parameters of H̃ , we decompose H̃ = H̃ (0) + H̃ (1),
where H̃ (0) contains the diagonal elements of H̃ , while
H̃ (1) contains the off-diagonal terms linear in k. The eigen-
states of H̃ (0) are bound states |β, νσ 〉 ≡ |β, ν〉 ⊗ |σ 〉 in the
conduction band �c

6 (β = c), in the light-hole valence band
�v

8 (β = l) and in the spin split-off valence band �v
7 (β = s)

with eigenenergies Eβ
νσ ≡ Eβ

ν + σZ . As before, we introduce
an in-plane magnetic field 𝓑‖ via the vector potential 𝓐 =
z 𝓑‖ × ẑ. Second-order quasidegenerate perturbation theory
for 𝓑‖ then yields Roth’s formula [67,135],

g

2
= 2i

3

2m0

h̄2 P2
∑
ν ′

[ 〈c, ν|z|l, ν ′〉 〈l, ν ′|kz|c, ν〉
Ec

ν − El
ν ′

− 〈c, ν|z|s, ν ′〉 〈s, ν ′|kz|c, ν〉
Ec

ν − Es
ν ′

]
. (C2)

This calculation is similar to how the g factor in the Zeeman
term of the Pauli equation is derived from the Dirac equation.
An imbalance between spin-up and spin-down states (due to
an exchange field 𝓧‖ or due to an external field 𝓑‖) thus
implies a spin magnetization (16b) proportional to g.

For comparison, we now evaluate the orbital magnetization
(16a) from H̃ without projecting on the subspace �c

6. In the
following discussion, 𝓩̃ stands for an exchange field 𝓧 or a
magnetic field 𝓑 that enters H̃ via the vector potential 𝓐.
Focusing on the states in the conduction band and treating
H̃ (1) in first-order perturbation theory, the perturbed eigen-
states read

|c, νσ (1)〉

= |c, νσ 〉 + P
∑
ν ′ �=ν

(√
2

3

〈l, ν ′|kz|c, ν〉
Ec

ν − El
ν ′

|l, ν ′σ 〉

− σ√
3

〈s, ν ′|kz|c, ν〉
Ec

ν − Es
ν ′

|s, ν ′σ 〉
)

, (C3)

where we neglected contributions linear in k‖ as these lead to
higher-order corrections in Eq. (C6) below. In the absence of a
field 𝓩̃, the eigenstates (C3) are twofold degenerate (σ = ±).
The states (C3) are also the appropriate unperturbed states for
first-order degenerate perturbation theory for a field 𝓩̃ ori-
ented in z direction. If instead we consider a field 𝓩̃ oriented

in-plane, then the appropriate unperturbed states become

|c, νσ, ϕZ
(1)〉

= 1√
2

[|c, ν+(1)〉 + σ exp(iϕZ ) |c, ν−(1)〉], (C4)

where ϕZ is defined, as before, as the angle between 𝓩̃ and
the crystallographic direction [100].

The velocity operator

ṽ‖ = ∂H̃

∂ h̄k‖
(C5)

is independent of k and independent of 𝓩̃. Using the states
(C4), the matrix elements (17) of the orbital magnetization
can be expressed in the form

2m0

h̄
ẑ × 〈{z , ṽ‖}〉νσ

= σ

(
cos ϕZ

sin ϕZ

)
g

2
(C6)

with g given in Eq. (C2). The matrix elements of the orbital
magnetization within the multiband Hamiltonian H̃ are thus
equal to the matrix elements of the spin magnetization in the
two-band Hamiltonian H. In lowest order of 𝓩̃, these Hamil-
tonians yield the same imbalance between the occupation
numbers for the respective spin states σ = ±. Thus it follows
from Eq. (20b) that, averaged over all occupied states, the
orbital magnetization within H̃ equals the spin magnetization
within H. In both approaches, the magnetization vanishes in
the limit 	0 → 0.

Again, it is illuminating to compare the orbital magneti-
zation 𝓜Z with the equilibrium current distribution (18).
Using φβ

ν (z) ≡ 〈z|β, ν〉 and 
c
νσ (z) ≡ 〈z|c, νσ (1)〉, we get

j‖(z, νσ ) = Re[
∗
νσ (z) ṽ‖ 
νσ (z)], (C7a)

= σ

(
cos(ϕZ − π/2)
sin(ϕZ − π/2)

)
2

3

P2

h̄

×
∑
ν ′

Re

[
φc∗

ν φl
ν ′

〈l, ν ′|kz|c, ν〉
Ec

ν − El
ν ′

− φc∗
ν φs

ν ′
〈s, ν ′|kz|c, ν〉

Ec
ν − Es

ν ′

]
, (C7b)

where we ignored the trivial k‖-dependent part. Note that for
a symmetric confinement V (z), the sum over ν ′ is restricted to
terms such that the product νν ′ is odd. For the lowest subband
ν = 0, the dominant term in the sum over ν ′ is ν ′ = 1. In
itinerant-electron ferromagnets with an intrinsic imbalance in
the occupation of states with opposite spins σ = ±, this term
describes a dipolar equilibrium current. In itinerant-electron
antiferromagnets, the quadrupolar currents in Eq. (80) (with
ν ′ = 2) are the counterpart of dipolar currents (C7) (with ν ′ =
1) in ferromagnets. These currents are illustrated in Fig. 4.
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