
PHYSICAL REVIEW RESEARCH 2, 043058 (2020)

Generalized theory of pseudomodes for exact descriptions of non-Markovian quantum processes
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We develop an exact framework for describing the non-Markovian dynamics of an open quantum system
interacting with an environment modeled by a generalized spectral density function. The approach relies on
mapping the initial system onto an auxiliary configuration, comprising the original open system coupled to a
small number of discrete modes, which in turn are each coupled to an independent Markovian reservoir. Based
on the connection between the discrete modes and the poles of the spectral density function, we show how
expanding the system using the discrete modes allows for the full inclusion non-Markovian effects within an
enlarged open system whose dynamics is governed by an exact Lindblad master equation. Initially we apply this
result to obtain a generalization of the pseudomode method [B. M. Garraway, Phys. Rev. A. 55, 2290 (1997)]
in cases where the spectral density function has a Lorentzian structure. For many other types of spectral density
function, we extend our proof to show that an open system dynamics may be modeled physically using discrete
modes which admit a non-Hermitian coupling to the system and for such cases determine the equivalent master
equation to no longer be of Lindblad form. For applications involving two discrete modes, we demonstrate how to
convert between pathological and Lindblad forms of the master equation using the techniques of the pseudomode
method.
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I. INTRODUCTION

The theory of open quantum systems, which concerns the
interaction between a quantum system of interest and a large
macroscopic reservoir or heat bath [1,2], plays a fundamental
role in several applications of quantum physics, ranging from
quantum information [3], quantum technologies, and decoher-
ence [4,5], through to quantum optics [6], condensed matter
[7], and quantum thermodynamics [8]. In many applications a
standard approach is to model the effect of the environment in
terms of a Markovian master equation, whose general validity
requires the environmental noise (as measured through the
reservoir correlation function) to be correlated over a much
shorter time interval than the characteristic decay time of the
open system. This condition is known to be well satisfied
in quantum optical and mesoscopic systems [9] where the
reservoir coupling constants vary slowly with frequency, and
the coupling to the system of interest is typically weak.

For many other situations, however, especially those in-
volving environments that are structured—i.e., with long cor-
relation times and frequency-dependent coupling constants—
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the assumption of a large separation of timescales between the
system and environment no longer applies, and for these cases
the resulting dynamics is non-Markovian [10–12]. In recent
years there has been renewed attention paid to non-Markovian
open quantum systems, not only out of fundamental interest
but also due to the growing number of practical applications.
From one perspective, a wide variety of experimental plat-
forms, including atom-cavity and trapped-ion systems [13],
solid-state devices [14], and photonic band-gap materials [15],
have been shown to feature regimes where non-Markovian
and strong-coupling effects play an significant role in the
description of the dynamics. At the same time, the increasing
ability to coherently control the non-Markovian dynamics of
quantum systems through, e.g., the use of reservoir engineer-
ing techniques [16–21], has provided new avenues to explore
how certain types of environmental noise might be useful
for the implementation of quantum technologies; notably,
quantum information processing and quantum metrology have
been recognized to possibly benefit from non-Markovian
noise sources [22–25].

Within the validity of the Markov and weak-coupling
(Born) approximations, it is well known that the quan-
tum master equation describing the reduced dynamics can
be generally expressed in Lindblad (Gorini-Kossakowski-
Sudarshan-Lindblad, GKSL) form [26]. Master equations of
this type have long been the focus of both theoretical and
experimental research, not only because of their ability to
describe essential features of dissipation and decoherence,
but also due to the existence of efficient numerical methods
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FIG. 1. Schematic diagram showing the two considered models
of the system-reservoir interaction. (a) An OQS S interacting with a
bosonic environment E . (b) The same system S interacting with an
auxiliary environment E ′, consisting of a finite number of discrete
modes M coupled to local Markovian reservoirs R.

for their solution [27,28]. By contrast, while it is possible
to derive a generalized form of master equation without the
use of such approximations [29], the resulting non-Markovian
equations of motion are often far too demanding to solve for
an exact description to be feasible. For this reason a certain
class of methods for treating complex open system problems
have relied on the alternative idea of mapping the initial
system onto a simpler, auxiliary configuration, consisting of
the original open system coupled to a small number of aux-
iliary bosonic (fermionic) modes, which in turn are coupled
to an external Markovian reservoir [30–41] (see Fig. 1). In
particular, the pseudomode method has effectively utilized
such a mapping to describe the non-Markovian dynamics of
a two-level system interacting with a bosonic environment
[38,39]. In this approach the environment is replaced by a set
of auxiliary discrete modes—the pseudomodes—which are
identified through evaluating the poles of the spectral density
function (i.e., the Fourier transform of the reservoir correla-
tion function) when analytically continued to the lower-half
complex frequency plane. By expanding the system over the
pseudomodes, one can then derive a Lindblad master equa-
tion describing the dynamics induced by the non-Markovian
interaction between the pseudomodes and two-level system,
in addition to the coupling of the pseudomodes to an external
Markovian environment. Importantly, while this method is
exact, its application is currently restricted to regimes where
only one excitation is initially present in the system, as well as
to interactions valid within the rotating wave approximation.

Beyond this approach, we note in Ref. [40] that a simi-
lar type of mapping has been employed in conjunction with
the Fano diagonalization technique to extend the treatment
of the pseudomode method to multiple excitation regimes.
The method is distinct from Ref. [39] in that it instead re-
lies on “undressing” the environment into a set of auxiliary
quasimodes, whose parameters—including the couplings to
the system and overall configuration (i.e., site energies and
intermode couplings)—are chosen so as to recover the spectral
density function of the original environment. However, owing
to the general difficulty of determining these parameters ex-
actly, applications of the mapping so far have only focused on
specific models where the system of interest is either coupled

to a high-Q cavity or photonic band-gap reservoir [41]. It is
also worth noting that a number of related mappings have been
put forward in the literature [32–34]. The approaches outlined
in Refs. [30,31,37], for example, rely on replacing the phys-
ical environment by an ad hoc collection of discrete modes
whose parameters are fitted as those which most accurately
represent the spectral density of the original model. Although
these mappings can be applied quite generally, unlike [39,40],
they have the disadvantage of not always being grounded in
exact relations between the physical and auxiliary environ-
ments, requiring their accuracy to often be validated against
exact numerical techniques.

Recently, a proof of an exact mapping of a non-Markovian
open system onto a Markovian one for a system interacting
with a Gaussian (bosonic) environment was given in [42]
(cf. also Refs. [43,44]). There it was shown that the reduced
dynamics of a non-Markovian system can be equivalently
described in terms of an exact Lindblad-type master equation
for a enlarged Markovian open system (system plus discrete
modes), which in the context of the pseudomode mapping
was used to generalize Ref. [39] beyond single-excitation
regimes for cases where the reservoir spectral density is
Lorentzian. In this paper we extend this treatment to in-
stances where the exact dynamics of the enlarged system is
described by a non-Lindblad form of master equation with a
non-Hermitian interaction Hamiltonian, as well as to physical
environments modeled by a generalized spectral density func-
tion. To achieve this we explicitly generalize the proof given in
Ref. [42] to account for an auxiliary environment which may
admit a non-Hermitian coupling to the system. In particular,
our approach relies on the connection between the poles of
the spectral density function in the lower-half complex plane,
and the properties of the discrete modes used represent the
memory part of the environment. For certain spectral density
functions we further show how the master equation may be
brought into an appropriate Lindblad form by applying an
effective change of basis to the discrete modes.

This paper is organized as follows. After outlining the
physical model in Sec. II, we proceed Sec. III to introduce
a mapping of the initial problem onto an auxiliary model
and subsequently prove the reduced system dynamics to be
indistinguishable between the two. In Sec. IV we then derive
an exact form of master equation for the enlarged system
and present an initial application of this result. In Sec. V we
address for certain cases how to convert between pathological
(non-Lindblad) and Lindblad forms of the derived master
equation. Finally, a summary and outlook is presented in
Sec. VI.

II. PHYSICAL MODEL

We start by considering a generic microscopic model of
an open quantum system (OQS) S interacting with a bosonic
environment E , as depicted in Fig. 1(a). The total Hamiltonian
of the model is written as

H = HS + HE + HI , (1)

where HS and HE are the Hamiltonians of the system and
environment acting on the respective (Hilbert) subspaces HS

and HE , with HI an interaction term describing the effects of
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the system-environment coupling on HS ⊗ HE . The Hamilto-
nians HE and HI are given by (h̄ = 1)

HE =
∑

λ

ωλa†
λaλ, (2)

HI =
∑

j,λ

(g jλc†
j aλ + H.c.). (3)

Here aλ (a†
λ) is the bosonic annihilation (creation) operator for

an excitation of frequency ωλ satisfying the usual commuta-
tion relation [aλ, a†

λ′ ] = δλλ′ , c j (c†
j ) is a generic OQS operator

associated to the j transition of S involved in the coupling, and
g jλ denotes the coupling strength between the ωλ mode of the
field and the j transition of the OQS.

In what follows the system Hamiltonian HS is to be left
unspecified and may in general have an explicit time de-
pendence. On the other hand, the free evolution of the OQS
(i.e., the evolution occurring in the absence of any driving or
coupling between internal degrees of freedom) is described by
the Hamiltonian

HS,0 =
dS∑

n=1

εn |en〉 〈en| , (4)

with the set of discrete energy levels (eigenenergies) of the
system denoted by {|en〉}S (εn) and dS = dimHS . The transi-
tion (jump) operators c j , c†

j appearing in Eq. (3) are formally
defined as [1]

c j =
∑

εm−εn=ω j

�(εn)Oj�(εm), (5)

where Oj is a system observable and �(εn) = |en〉 〈en|. Based
on this definition, we have that the OQS transition oper-
ators satisfy the eigenoperator relations [HS,0, c j] = −ω jc j

([HS,0, c†
j ] = ω jc

†
j ). Hence c j (c†

j ) lowers (raises) the internal
energy of the OQS by an amount ω j . Moving to an interaction
picture generated by the unitary transformation

U0(t ) = exp[−i(HS,0 + HE )t], (6)

the interaction Hamiltonian HI becomes

HI (t ) =
∑

j,λ

(g jλc†
j aλe−i(ωλ−ω j )t + H.c.)

≡
∑

j

[c†
j (t ) ⊗ Bj (t ) + c j (t ) ⊗ B†

j (t )], (7)

with

Bj (t ) =
∑

λ

g jλaλe−iωλt (8)

defining the environmental noise operators. Notice in par-
ticular that the absence of terms oscillating at frequencies
±i(ωλ + ω j ) in Eq. (7) implies the use of the rotating wave
approximation (RWA).

Following Ref. [42], we are interested in examining the
time-dependent behavior of the OQS in cases involving ini-
tially factorizing conditions ρSE (0) = ρS (0) ⊗ ρE (0), where
for simplicity the environment is taken at t = 0 to be in the
vacuum state:

ρE (0) = |0〉 〈0|E . (9)

Because ρE (0) is then Gaussian and satisfies
TrE [Bj (t )ρE (0)] = 0, the OQS dynamics described by
the reduced density operator

ρS (t ) = TrE [ρSE (t )] (10)

will only depend on the second-order moments of the noise
operators Bj (t ), B†

j (t ). For this model, these are explic-
itly written in terms of the two-time correlation functions
(t � s � 0)

〈B†
j (t )Bk (s)〉E = 0,

〈Bj (t )Bk (s)〉E = 0 = 〈B†
j (t )B†

k (s)〉E , ∀ j, k, (11)

with 〈·〉E ≡ TrE [ · ρE (0)], and

f jk (t − s) ≡ 〈Bj (t )B†
k (s)〉E

=
∑

λ

g jλg∗
kλe−iωλ(t−s). (12)

The continuum limit of Eq. (12) can now be taken by replac-
ing the sum over the coupling constants g jλ with an integral
weighted by the density of states ρλ of the reservoir modes.
Since the only quantities entering into the physical descrip-
tion are ρλ and |g jλ|2, we may combine their joint frequency
dependence into a single spectral density function D(ωλ),

ρλ|g jλ|2 = �2
j

2π
D(ωλ), (13)

with D(ω) normalized to∫ ∞

−∞
dωD(ω) = 2π, (14)

so that in turn, the quantities � j act to measure the coupling
strength of the j transition of the OQS to the full set of
environment modes via the expression

�2
j =

∫
dωλ ρλ|g jλ|2. (15)

For the remainder of this paper our focus will be on de-
scribing the non-Markovian dynamics of OQSs coupled to
various types of structured reservoir. Hence, for this purpose
we shall model the system-reservoir interaction (7) using a
generalized form of spectral density function which may vary
strongly over ω with respect to the frequency scales of the
OQS. In particular, it will only be assumed that D(ω) is
a meromorphic function when analytically continued to the
lower-half complex ω plane and that D(ω) tends to zero
at least as fast as ∼O(1/|ω|2) for |ω| → ∞. Under these
assumptions, and with all other nonanalytic features of the
spectral density function removed (e.g., branch cuts), the two-
time correlation function (12) may then be evaluated solely in
terms of the poles and residues of D(ω) via contour integration
methods. In this way we proceed to write Eq. (12) in terms of
the integral

f jk (t − s) = −� j�k

2π

∮
C

dωD(ω)e−iω(t−s), (16)

where C is a contour defined along the full real line and closed
by a semicircular arc in the lower-half complex plane. We
note that the construction of (16) relies on the use of the
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RWA, which in the limit ω j → ∞ (or, more loosely, for ω j �
� j, λl , |
 jl |) formally allows an extension of the environment
definition to include modes of negative frequency ω < 0. Fur-
thermore, the poles of D(ω) in the lower-half complex ω plane
are located at positions z1, z2, · · · zl , · · · with their correspond-
ing residues denoted by r1, r2, · · · rl , · · · , while each zl has
real and imaginary parts

zl = ξl − iλl . (17)

We can now apply the residue theorem to Eq. (16) to obtain
(τ ≡ t − s)

f jk (τ ) = −i� j�k

∑
l

rl e
−izl τ , τ � 0, (18)

where in the following it will also prove useful to define the
coupling constants

g′
jl ≡ � j

√−irl , (19)

which are in general complex quantities. For simplicity we
shall first restrict ourselves to real couplings g′

jl . Besides the
assumptions already made on the spectral density (13), this
imposes no extra limitations on the model given that f jk (0) =
−i� j�k

∑
l rl must always evaluate to the real quantity � j�k

[cf. Eqs. (12)–(15)], and hence (−irl ) has no net imaginary
part, i.e., ∑

l

(−irl ) = 1. (20)

The most general case involving complex couplings g′
jl will

be considered later on in Sec. V.

III. AUXILIARY MODEL

In this section we proceed to introduce the auxiliary model
that will allow us to represent the reduced evolution of
Eq. (10) within an enlarged open system whose dynamics
is Markovian. To this end, let us first consider a mapping
of Eqs. (2) and (3) in which the original Hamiltonian (1) is
replaced by

H = HS + HE + HI

→ H ′ = HS + HE ′ + H ′
I . (21)

The mapping modifies the environment E so that the open
system S is now coupled to a set of auxiliary discrete modes
M, which in turn are each coupled to an independent reser-
voir with vanishing correlation time [cf. Fig. 1(b)]. Thus the
Hamiltonian of the new environment configuration E ′ reads

HE ′ = HM + HR + HMR,

HR =
∑

l

∫ ∞

−∞
dω ωa†

Rl (ω)aRl (ω), (22)

HMR =
∑

l

√
λl

π

∫ ∞

−∞
dω(b†

l aRl (ω) + H.c.), (23)

where bl (b†
l ) is the annihilation (creation) operator for a

discrete bosonic mode Ml , aRl (ω) (a†
Rl (ω)) is the annihila-

tion (creation) operator for an excitation of frequency ω in
the reservoir Rl , and [bl , b†

l ′ ] = δll ′ , [aRl (ω), a†
Rl (ω

′)] = δ(ω −

ω′). The free Hamiltonian of the full set of discrete modes M
is written as

HM =
∑

l

ξl b
†
l bl , (24)

while their coupling to the system S is described by

H ′
I =

∑
j,l

g′
jl (c

†
j ⊗ bl + H.c.). (25)

Moreover, we stress that the parameters of the Hamiltonians
(23) and (24) have been chosen in such a way that the discrete
modes have the same one-to-one association with the poles of
D(ω) as the pseudomodes introduced in Ref. [39].

Our next step is to transform H ′
I to the same interaction

picture as Eq. (7) by means of the unitary operator

U ′
0(t ) = exp[−i(HS,0 + HE ′ )t], (26)

which following the technique of Eq. (21), has simply been
obtained by replacing the free Hamiltonian HE in Eq. (6) with
HE ′ . The interaction Hamiltonian in this frame of reference
reads

H ′
I (t ) =

∑
j,l

g′
jl (c

†
j ⊗ bl (t )ei
 jl t + c j ⊗ b†

l (t )e−i
 jl t )

≡
∑

j

[c†
j (t ) ⊗ B′

j (t ) + c j (t ) ⊗ B′†
j (t )], (27)

with detunings 
 jl = ω j − ξl from the OQS transition fre-
quency ω j , b j (t ) = U †

MR(t )b j (0)UMR(t ), and

UMR(t, 0) = T exp

[
−i

∫ t

0
ds HMR(s)

]
. (28)

Here UMR(t, 0) ≡ UMR(t ) is a unitary operator describing the
time evolution of the free environment oscillators (i.e., the
degrees of freedom of M + R with no coupling to the OQS),
T is the chronological time-ordering operator [1], and

HMR(t ) =
∑

l

√
λl

π

∫
dω(b†

l aRl (ω)e−i(ω−ξl )t + H.c.). (29)

Note that we have also defined the general form of noise
operator B′

j (t ), which in the auxiliary model is the counterpart
to that given in Eq. (8):

B′
j (t ) = � j

∑
l

√−irl bl (t )e−iξl t . (30)

Now, fixing the environment M + R to have the same initial
conditions as E above, namely, by choosing an initially fac-
torized state ρSMR(0) = ρS (0) ⊗ ρMR(0), and for ρMR(0) to be
given as

ρMR(0) = |0〉 〈0|M ⊗ |0〉 〈0|R , (31)

with |0〉M/R ≡ ⊗
l |0〉Ml /Rl

, the expectation values of the en-
vironmental noises satisfy TrMR[B′

j (t )ρMR(0)] = 0. This is
based on ρMR(0) being a stationary state of Eq. (28), i.e.,

[HMR(t ), ρMR(0)] = 0. (32)

Hence, in an analogous way to Eq. (10), the reduced dynamics
of

ρ ′
S (t ) = TrMR[ρSMR(t )] (33)
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will only depend on the second-order moments of the en-
vironmental noise operators B′

j (t ), B′†
j (t ). The only nonzero

contribution written in terms of these moments is (t � s)

〈B′
j (t )B′ †

k (s)〉E ′

= −i� j�k

∑
i,l

√
rirl e−i(ξl t−ξis)

× TrMR[U †
MR(t, s)blUMR(t, s)b†

i ρMR(0)]

≡ −i� j�k

∑
i,l

√
rirl e−i(ξl t−ξis)〈bl (t, s)b†

i (0)〉E ′ , (34)

since for our initial choice of state satisfying Eq. (32) and
bl |0〉M = 0 ∀l , all other correlation functions either quadratic
in bl and b†

l or proportional to 〈b†
l (t, s)bi(0)〉E ′ can be shown

to vanish in line Eq. (11).

A. Comparison between the OQS dynamics of the physical and
auxiliary models

With the relevant details in place, we now look to prove
an equivalence between the OQS dynamics generated by the
two forms of interaction in Eqs. (3) and (25). Based on the
discussion so far, our proof exploits the fact that given the ini-
tial choice of vacuum states (9) and (31), the reduced system
dynamics of the two models will be identical as long as the
two-time correlation functions of the physical and auxiliary
environments share the same time dependence [31,42]. Thus,
using Eq. (34) as our starting point, it remains for us to then
solve the Heisenberg equations of motion for the operators
bl (t, s) and use this result to obtain a time-dependent expres-
sion for 〈bl (t, s)b†

i (0)〉E ′ .
In a Heisenberg picture generated via Eq. (28)—that

is, where bl (t, s) = U †
MR(t, s)blUMR(t, s)—we solve the cor-

responding operator equations of motion for bl (t, s) in
Appendix A to obtain

bl (t, s) = e−λl (t−s)bl (0) − i
√

2λl

∫ t

s
dt1e−λl (t−t1 )ain

Rl (t1).

(35)
Note that here we have introduced the noise operators

ain
Rl (t ) = 1√

2π

∫ ∞

−∞
dω aRl (ω)e−i(ω−ξl )t , (36)

which adopt the same definition as the so-called “input” fields
introduced in the Gardiner-Collet description of (Markovian)
quantum white noise [2,45]. Accordingly, since the reservoirs
Rl are each initially taken to be in the vacuum states ρRl (0) =
|0〉 〈0|Rl

, the expectation values of the noise operators satisfy
TrRl [a

in
Rl (t )ρRl (0)] = 0. This allows us to directly substitute

Eq. (35) into (34) to obtain

〈B′
j (t )B′ †

k (s)〉E ′ = −i� j�k

∑
l

rl e
−izl (t−s)

= f jk (τ ), ∀ j, k, τ � 0, (37)

which proves the full equivalency of the two-time correlation
functions of E and M + R, given that all other correlation
functions equally match due to having a trivial time depen-
dence. Because the environmental noise operators Bj (t ) and
B′

j (t ) have then been shown to be identical correlation-wise,

we may therefore conclude that the dynamics of the OQS are
indistinguishable between the two models. In other words, the
non-Markovian response of the system S is invariant under
replacing the physical environment E by a finite number of
discrete modes M coupled to independent Markovian reser-
voirs R; from Eqs. (10) and (33), it subsequently follows that

ρ ′
S (t ) = ρS (t ). (38)

Finally, we restate our main assumptions of D(ω) being a
meromorphic function in the lower-half complex ω plane and
of the coupling constants g′

jl being real.

IV. EXACT SOLUTION TO THE PROBLEM

Dealing with the auxiliary model in place of Eq. (1) now
enables us to reproduce the exact OQS dynamics without
making any form of approximation involving weak coupling
or separation of timescales between the system and environ-
ment. To show this explicitly, we will proceed to derive the
quantum Langevin equation for the enlarged open system
comprising the original system S and the discrete modes M.
For convenience, we choose to work in an interaction picture
with respect to the free Hamiltonian H0 = HS,0 + HM + HR.
In this frame of reference, the time evolution for an arbi-
trary operator A of the enlarged system is defined A(t ) =
U †(t )A(0)U (t ), where the unitary operator U (t ) satisfies the
Schrödinger equation d

dt U (t ) = −iH (t )U (t ), with

H (t ) = HS (t ) + HI (t ) + HMR(t ), (39)

and

HI (t ) =
∑

j,l

g′
jl (c

†
j ⊗ bl ei
 jl t + H.c.). (40)

Notice that since the two configurations of environment
E and M + R are interchangeable at the level of the
OQS, here we have dropped the dash label used to dis-
tinguish the interaction Hamiltonian H ′

I (t ) against that of
the physical model (7). Furthermore, the system Hamilto-
nian reads HS (t ) = exp(iH0t )(HS − HS,0)exp(−iH0t ), where
HMR(t ) again is given by Eq. (23).

The Heisenberg equation of motion for an arbitrary opera-
tor A(t ) is written as

d

dt
A(t ) = −i[A(t ), HS (t ) + HI (t )]

− i
∑

l

√
λl

π

∫
dω(a†

Rl (ω, t )ei(ω−ξl )t [A(t ), bl (t )]

+ [A(t ), b†
l (t )]aRl (ω, t )e−i(ω−ξl )t ), (41)

so that by formally eliminating the reservoir variables
aRl (ω, t ) = U †(t )aRl (ω)U (t ) from Eq. (41) one obtains the
quantum Langevin equation

d

dt
A(t ) = − i[A(t ), HS (t ) + HI (t )]

+
∑

l

λl{b†
l (t )[A(t ), bl (t )] − [A(t ), b†

l (t )]bl (t )}
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− i
∑

l

√
2λl{[A(t ), b†

l (t )]ain
Rl (t )

+ ain †
Rl (t )[A(t ), bl (t )]}. (42)

At this stage we may derive the master equation for the
reduced density matrix ρ(t ) ≡ TrR[ρSMR(t )] by taking the
expectation value of both sides of Eq. (42) with respect
to an initially factorized density matrix ρSMR(0) = ρ(0) ⊗
ρR(0) (ρR(0) = |0〉 〈0|R). Since the noise terms proportional
to ain

Rl (t ) and ain †
Rl (t ) do not contribute from

ain
Rl (t )ρR(0) = 0 = ρR(0)ain †

Rl (t ), (43)

the remaining commutators are easily expanded to obtain

d

dt
〈A(t )〉 = − i〈[A(t ), HS (t ) + HI (t )]〉SMR

+
∑

l

λl
〈
b†

l (t )[A(t ), bl (t )]

− [A(t ), b†
l (t )]bl (t )

〉
SMR. (44)

The resulting equation now is expressed solely in terms of
operators pertaining to the enlarged OQS S + M. Hence one
may use the cyclic trace property

〈A(t )〉 = TrSM[TrR[A(t )ρ(0) ⊗ |0〉 〈0|R]] = TrSM[Aρ(t )]
(45)

to move A to the leftmost side of each term, e.g.,
TrSM[Ablρ(t )b†

l ], thereby allowing us to read off each of the
terms in the master equation for ρ(t ). Through doing so, we
finally arrive at

d

dt
ρ(t ) = −i[HS (t ) + HI (t ), ρ(t )] + D[ρ(t )], (46)

where the superoperators

D[ρ] = 2
∑

l

λl

(
blρb†

l − 1

2
{b†

l bl , ρ}
)

(47)

describe the local dissipation of each discrete mode occurring
at rate λl .

Equation (46) establishes one of the main results of this
paper. The master equation is of a standard Lindblad form
[26] and represents the general evolution of a reduced system
density matrix ρS (t ) = TrM[ρ(t )] as the projection of a larger
quantum Markov process, where all memory effects contained
in the non-Markovian dynamics are incorporated into the cou-
pling between the OQS and discrete modes. Importantly, this
general property of Eq. (46) also allows an unravelling of the
master equation into Markovian pure state trajectories such
that a numerically efficient simulation to the problem may be
readily obtained using the quantum jump (Monte Carlo wave
function) method [27] or other related approaches [28]. In
this respect our result may be considered as a non-Markovian
generalization of quantum jump method. In fact, a number of
recent studies have shown similar extensions of this approach
to be possible by considering the evolution a non-Markovian
OQS embedded within a larger Markov process [46].

A. Application of the result

For the sake of concreteness let us briefly examine an ap-
plication of our result. As a convenient example we consider
a two-level system (TLS) S with excited (ground) state |e〉
(|g〉) interacting with a bosonic environment E at zero tem-
perature. Within the RWA, the interaction Hamiltonian reads
HI (t ) = σ+B(t ) + σ−B†(t ), where σ+ = σ

†
− = |e〉 〈g| denotes

the Pauli matrices such that σ+ |g〉 is an eigenstate of the free
Hamiltonian HS,0 = ω0σ+σ− with eigenvalue ω0. The only
nonzero correlation function of the environment is taken to
be of the form of Eq. (18),

f (τ ) = TrE [B(τ )B†(0)ρE (0)]

= −i�2
0

N∑
l=1

rle
−izl τ , τ � 0, (48)

which as before is associated to real coupling constants g′
l =

�0
√−irl .
To now find the exact master equation generated from the

TLS–discrete-mode interaction, we can apply Eqs. (40) and
(46) to get (
l = ω0 − ξl )

d

dt
ρ(t ) = −i[HS (t ), ρ(t )]

− i
N∑

l=1

g′
l [e

i
l tσ+bl + e−i
l t b†
l σ−, ρ(t )] + D[ρ(t )]. (49)

The result agrees with that recently obtained by Tamascelli
et al. in Ref. [42] within the RWA. Moreover, when the total
system contains at most a single excitation, i.e., HS (t ) = 0, the
above reduces to the same form of master equation derived
via the pseudomode method [39], where for this case each
discrete mode adopts the role of a pseudomode. Therefore,
not only have we recovered the result of Ref. [39] within the
restrictions outlined above, but we have also generalized it via
Eq. (46) to a much greater variety of open system models,
including those applying to the description of multiple excita-
tion dynamics.

To further illustrate the connection of our approach with
the pseudomode theory, we note that one may obtain the
equivalent spectral density to Eq. (18) by inverting the general
expression for the correlation function in Eq. (16). Since D(ω)
is by definition a real function, f jk (τ ) must be Hermitian in
time,

f jk (τ ) = f ∗
jk (−τ ), τ � 0, (50)

and so

D(ω) = 2
N∑

l=1

Re[rl ](ω − ξl ) + λl Im[rl ]

(ω − ξl )2 + λ2
l

. (51)

In the case of real couplings g′
jl , i.e., Re[rl ] = 0 and Im[rl ] >

0, the spectral density function is found to reduce to a linear
combination of Lorentzians, where each of the poles in the
lower-half complex plane of D(ω) is connected to one of
the N discrete modes in the auxiliary model. Based on this
association, we then find the discrete modes to be connected
to precisely the same feature of the spectral density as the
pseudomodes. On the other hand, it is also worth pointing
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out that the current restriction to real couplings g′
jl limits

the range of applicability of our theory to spectral density
functions which can solely be written as a sum of positively
weighted Lorentzians. This is illustrated by the fact that in the
case of complex g′

jl , the form of spectral density obtained by
inverting Eq. (16) changes D(ω) from a sum of Lorentzians
with positive weights to a more general form of function
which is possibly either (i) non-Lorentzian or (ii) Lorentzian
but with negative weights Im[rl ] < 0, see (51). Thus, if we
are extend our generalization of the pseudomode method even
further, it is clear we must look beyond the assumption of real
couplings g′

jl .

V. NON-HERMITIAN INTERACTION HAMILTONIAN

Remarkably, as is shown in Appendix B, the considered
proof does not actually rely on the assumption of g′

jl being
real—rather, the only conditions necessary to guarantee the
equivalence of ρS (t ) and ρ ′

S (t ) is for the correlation functions
of the physical and auxiliary environments to satisfy Eq. (37).
Therefore with the identity (38) still valid, one may proceed
to write Eq. (19) in terms of its real and imaginary parts,

g′
jl ≡ g′(r)

jl + ig′(i)
jl , (52)

so that the interaction Hamiltonian will comprise both a Her-
mitian and anti-Hermitian part:

HI (t ) = H (r)
I (t ) + H (i)

I (t ). (53)

By now following the steps in the previous section we may
again derive the master equation for the enlarged system.
However, due to non-Hermitian nature of HI (t ), we find
the resulting master equation to no longer be of Lindblad
form and in turn for the evolution of ρ(t ) to in general be
nonpositive. Interestingly, we are then for this case able to
generate a pathological form of master equation that, while
still capable of describing the correct OQS behavior, lacks a
suitable physical interpretation for the dynamics of the en-
larged system S + M. In particular, this may present issues
for solving Eq. (46) using quantum jump methods, given that
the unravelling of ρ(t ) into quantum trajectories from the
current form of master equation would admit the possibility of
jumps occurring between states of the discrete-mode system
with probabilities exceeding unity, among other unphysical
defects. Below we shall focus on how the master equation
may be brought into Lindblad form by applying a suitable
transformation to the discrete modes.

A. Lindblad construction of the master equation

The same issues connected with replacing an environment
by a discrete set of bosonic modes which have complex
coupling constants to the OQS have also previously been en-
countered with the pseudomode method [39]. In that context,
i.e., with a RWA form of interaction and single excitations,
a procedure was established to convert between pathological
and Lindblad forms of the master equation by applying an
effective change of basis to the pseudo (discrete) mode opera-
tors bl (b†

l ). Hence, in the spirit of Ref. [39], we enact a similar

procedure below by first rewriting Eq. (44) in the Schrödinger
picture:

ρ̇(t ) = −i[Heff, ρ(t )] + 2
∑

l

λl blρ(t )b†
l , (54)

Heff = HS +
∑

l

zlb
†
l bl +

∑
j,l

g′
jl (c

†
j ⊗ bl + H.c.). (55)

Next we introduce a new set of discrete-mode operators b̃m

(b̃†
m) via

bl =
∑

m

Uml b̃m, (56)

with Uml an orthogonal (complex) matrix and [b̃m, b̃†
m′ ] =

δmm′ . Inserting the above decomposition into the interaction
term of Eq. (55) now leads to

∑
j,l

g′
jl (c

†
j ⊗ bl + H.c.) =

∑
j,m

g̃′
jm(c†

j ⊗ b̃m + H.c.), (57)

so that from g̃′
jm = ∑

l Uml g′
jl , we can in principle fix the

elements Uml of an otherwise arbitrary matrix by requiring
the new couplings g̃′

jm to be real. We also note with this
definition that the couplings are constrained to satisfy the
same normalization as Eq. (20), i.e.,

∑
m(g̃′

jm)2 = �2
j . For the

remaining terms, the effect of Eq. (56) will follow that of a
similarity transformation applied to the diagonal matrices zl

and λl , where∑
l

zlb
†
l bl =

∑
l

∑
m,m′

(
Uml zlU

T
lm′

)
b̃†

mb̃m′

=
∑
m,m′

z̃mm′ b̃†
mb̃m′ , (58)

and ∑
l

λl blρ(t )b†
l =

∑
m,m′

(
UmlλlU

T
lm′

)
b̃m′ρ(t )b̃†

m

=
∑
m,m′

�mm′ b̃m′ρ(t )b̃†
m. (59)

The non-Hermitian Hamiltonian Heff can subsequently be
written in the form

Heff = HSM − i
∑
m,m′

�mm′ b̃†
mb̃m′ (60)

with �mm′ = −Im[z̃mm′ ], and

HSM = HS +
∑
m,m′

Re[z̃mm′ ]b†
mbm′ +

∑
j,m

g̃′
jm(c†

j b̃m + H.c.).

(61)
Now, since Re[z̃mm′ ] is symmetric by definition, the master
equation resulting from Eqs. (58) and (59) will only be in
Lindblad form if we impose the additional constraint that
the matrix �mm′ is positive semidefinite [26]. Under this re-
striction one can then obtain the following (Lindblad) master
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equation:

d

dt
ρ(t ) = − i[HSM, ρ(t )]

+ 2
∑
m,m′

�mm′
(

b̃m′ρ(t )b̃†
m − 1

2
{b̃†

mb̃m′ , ρ(t )}
)
.

(62)

Thus, while the OQS dynamics remains unaffected by the
transformation, we find that the removal of pathological terms
from Eq. (46) generally introduces a nonzero coupling be-
tween the discrete modes.

Starting from Eq. (54), the task of converting between
a non-Lindblad master equation and a Lindblad one now
amounts to finding a transformation matrix Uml with the
simultaneous requirements for g̃′

jm to be real and for the
dissipation (Kossakowski) matrix �mm′ to be positive semidef-
inite. Unfortunately, for the general case involving N discrete
modes, this constitutes a highly nontrivial problem that has
no guarantee of a unique solution. However, for the cases in
which the OQS couples to only two discrete modes (N = 2),
it is in fact possible to obtain analytical expressions for z̃mm′

and g̃′
jm following directly the techniques of the pseudomode

method [39]. Indeed, as determined from Sec. V B of that
paper, one may here parametrize the matrix z̃mm′ as (m, m′ =
1, 2)

z̃mm′ = (ξ̃m − i�m)δmm′ + V12(δmm′−1 + δmm′+1), (63)

where the analytical expressions for the new discrete-mode
decay rates �m, coupling constants V12 = V ∗

12, and transition
frequencies ξ̃m are given in Appendix C.

B. Further application of the result

To provide an application of the theory outlined above, let
us finally return to the OQS model introduced in Sec. IV A—
namely, of a TLS S interacting with a zero-temperature
bosonic field E—to consider the case in which the spectral
density is instead given by the difference of two Lorentzian
functions:

D(ω) = 2

[
W1

λ1

(ω − ξ )2 + λ2
1

− W2
λ2

(ω − ξ )2 + λ2
2

]
. (64)

This form of spectral density has previously been used to
model an environment exhibiting a photonic band gap, where
the localized gap in the density of states occurs for λ2W1 =
λ1W2 [39]. For the analysis below, we also note that the condi-
tions W1λ1 > W2λ2 (λ1 > λ2) and λ2W1 � λ1W2 are required
since D(ω) is defined always to be positive, while W1,2 must
be normalized to W1 − W2 = 1 [cf. Eq. (14)].

Considering that Eq. (64) has poles located at positions
z1,2 = ξ − iλ1,2 in the lower-half complex ω plane, the two-
time correlation function (18) reads

f (τ ) = �2
0(W1e−iz1τ − W2e−iz2τ ), τ � 0, (65)

with the discrete-mode couplings to the TLS given by g′
1 =

�0
√

W1 and g′
2 = i�0

√
W2. Then, as g′

2 is clearly pure imagi-
nary, one can apply the relevant formulas from Appendix C to
obtain the new frequency parameters for the TLS and discrete

modes:

g̃′
1 = 0, g̃′

2 = �0,

ξ̃1 = ξ̃2 = ξ,

V12 = √
W1W2(λ1 − λ2). (66)

This implies the TLS to now physically couple to the second
auxiliary mode, which in turn interacts with the first mode. In
an interaction frame generated by H0 = HS,0 + ξ

∑
m b̃†

mb̃m,
the reduced Lindblad-type master equation for the enlarged
system can subsequently be obtained by inserting Eqs. (63)
and (66) into (62), where

d

dt
ρ(t ) = − i[HS (t ), ρ(t )]

− i�0[ei
tσ+b̃2 + e−i
t b̃†
2σ−, ρ(t )]

− iV12[b̃†
1b̃2 + b̃†

2b̃1, ρ(t )] + D[ρ(t )], (67)

and

D[ρ] = 2
2∑

m=1

�m

(
b̃mρb̃†

m − 1

2
{b̃†

mb̃m, ρ}
)
,

{
�1 = W1λ2 − W2λ1

�2 = W1λ1 − W2λ2.
(68)

As found previously with Eq. (49), this result generalizes the
equivalent pseudomode master equation derived in [39] to
now apply to a much greater variety of OQS models, including
those not limited to single-excitation regimes.

VI. SUMMARY AND OUTLOOK

In conclusion, we have derived a master equation that
provides a nonperturbative and non-Markovian description of
an OQS dynamics within the RWA. This has been achieved
by showing the reduced dynamics of an OQS to be indistin-
guishable under the effect of two different types of structured
environment—one comprising an infinite collection of har-
monic oscillators with a frequency-dependent coupling to the
system and an auxiliary one comprising a small number of
discrete modes which are each coupled to an independent
Markovian reservoir. The equivalence of these two models
has subsequently been exploited to construct a general Lind-
blad master equation. In this way, the reduced dynamics
of the original problem can be simulated efficiently within
the framework of quantum trajectories, providing the Hilbert
space dimension of the enlarged system is of a reasonable
size. In particular, our approach has shown a full extension
of the pseudomode theory to be possible to cases involving
multiple excitations, where the strength of the OQS–discrete-
mode coupling and the degree of separation of timescales
between the system and environment poses no restriction on
the validity of the result.

The procedure we have introduced to obtain the mas-
ter equation relies on the connection between the poles of
the spectral density contained in the complex ω plane, their
residues, and the properties of the discrete modes used to
represent the memory part of the environment. Specifically,
the decay rates and couplings of the discrete modes are
determined directly from the positions and residues of the
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poles of the spectral density function located in the lower-
half complex plane. When the residues of these poles are
evaluated to give complex coupling constants g′

jl , we have
shown that our approach can still be applied using a non-
Hermitian form of interaction Hamiltonian which reproduces
the exact physical dynamics of the original open system. The
master equation we obtain in this instance contains patho-
logical terms that in general violate the positivity of the
auxiliary system density matrix. For the two-discrete-mode
case, these issues have been rectified via a change of basis
of the discrete-mode terms to obtain a Lindblad-type master
equation.

Our approach is particularly useful for analyzing non-
Markovian effects in quantum optical systems where the
physical conditions underlying the RWA are well satisfied.
This includes experimental platforms relevant to cavity and
circuit QED, in which such effects may be introduced into the
dynamics by modifying the spectral density to be strongly fre-
quency dependent. Moreover, since no particular assumptions
are made on the open system itself, our results are also ap-
plicable to the study of many-body OQSs beyond Markovian
interaction regimes [14,47]. The main practical advantage of
our method in this context is that it allows for the reduced
system dynamics to be simulated via a Lindblad master equa-
tion, which can be computed efficiently even for systems of
relatively large size [48].

The current treatment has been outlined for an initially
empty reservoir, but a similar approach could be applied
to a thermal (bosonic) environment at nonzero temperature.
This would again involve evaluating the relevant two-time
correlation functions of the environment in terms of the
poles and residues of the spectral density D(ω) and utilizing
the same connection between these poles and the discrete
modes to perform the mapping. However, the mapping would
now have to account for the poles contributed through the
thermal part of the spectral density (depending on the Bose-
Einstein distribution), of which there are infinitely many. At
present the treatment is also limited to RWA-type interac-
tions, based on the fact that the method we have used to
evaluate the two-time correlation functions relies on the en-
vironment containing both positive- and negative-frequency
components (i.e., where the spectral density function has
support on the full real axis). Extending the pseudomode
method beyond the RWA may be possible by combining
our approach with the technique of Ref. [32], where it is
shown how to formally extend the environment definition to
the negative-frequency domain under a less restrictive set of
assumptions.

Finally, an open problem relating to construction of the
master equation is how to convert between the pathological
and Lindblad form for when the OQS couples to more than
two discrete modes with complex coefficients; as far as we
are aware, no generalized form of transformation matrix al-
lowing for the conversion has been determined beyond this
case (although see, perhaps, the related inversion problem
explored in Appendix B of Ref. [49]). Therefore future work
in this area could focus on developing a systematic approach
to regularizing the master equation for arbitrarily complicated
environmental structures, which in itself would likely rely on
a numerical implementation.
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APPENDIX A: DERIVATION OF THE DISCRETE-MODE
OPERATOR bl (t, s)

As in the main text, we start by considering the time
evolution of the Heisenberg picture operators bl (t, s) =
U †

MR(t, s)blUMR(t, s), whose corresponding equation of mo-
tion reads

d

dt
bl (t, s) = −i

√
λl

π

∫
dω aRl (ω, t, s)e−i(ω−ξl )t . (A1)

Simultaneously, the Heisenberg equation for the operators
aRl (ω, t, s) = U †

MR(t, s)aRl (ω)UMR(t, s) is given by

d

dt
aRl (ω, t, s) = −i

√
λl

π
ei(ω−ξl )t bl (t, s), (A2)

which may be formally integrated to give

aRl (ω, t, s) = aRl (ω) − i

√
λl

π

∫ t

s
dt1 ei(ω−ξl )t1 bl (t1, s). (A3)

Note that in this expression we have used the initial condition
aRl (ω, s, s) ≡ aRl (ω). Thus inserting Eq. (A3) into (A1) yields
the quantum Langevin equation

d

dt
bl (t, s) = −i

√
2λl a

in
Rl (t )

− λl

π

∫ t

s
dt1

∫
dω bl (t1, s)e−i(ω−ξl )(t−t1 ), (A4)

where

ain
Rl (t ) = 1√

2π

∫ ∞

−∞
dω aRl (ω)e−i(ω−ξl )t (A5)

defines the quantum noise operators of each of the reservoirs
Rl . By now using the standard definition of a Dirac δ function∫ ∞

−∞
dω e−iω(t−t1 ) = 2πδ(t − t1) (A6)

and the integral property

2λl

∫ t

s
dt1δ(t − t1)bl (t1, s) = λl bl (t, s), (A7)

the quantum Langevin equation (A4) can be expressed as

d

dt
bl (t, s) = −λl bl (t, s) − i

√
2λl a

in
Rl (t ). (A8)

Since this is nothing but an ordinary inhomogeneous differ-
ential equation for bl (t, s), its solution may be written in the
form (see, for example, the variation of parameters approach
in Ref. [50])

bl (t, s) = e−λl (t−s)bl (0) − i
√

2λl

∫ t

s
dt1e−λl (t−t1 )ain

Rl (t1),

(A9)
as given in Eq. (35) of the main text.
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APPENDIX B: EQUIVALENCE BETWEEN THE REDUCED
DENSITY OPERATORS ρS(t ) and ρ′

S(t )

Here we outline the proof showing that the reduced system
dynamics of ρS (t ) and ρ ′

S (t ) will be equivalent as long as the
two-time correlation functions (12) and (34) share the same
time dependence, even when the interaction Hamiltonian may
be non-Hermitian. To this end, let us first restate our main as-
sumptions of factorizing initial conditions ρSE (0) = ρS (0) ⊗
ρE (0) [ρSMR(0) = ρS (0) ⊗ ρMR(0)], where ρE (0) [ρMR(0)] is
restricted to the vacuum state (9) [31]. We may then proceed
by noting that a general solution to the reduced density op-
erator ρS (t ) [ρ ′

S (t )] can be written as an expansion over the
noise operators in Eqs. (7) and (27) [42,44]. Indeed, within
an interaction picture generated by the unitary transformation
(6), the evolution of the density operator ρSE (t ) is determined
by the von Neumann equation

d

dt
ρSE (t ) = −i[HS (t ) + HI (t ), ρSE (t )]

≡ L(t )ρSE (t ), (B1)

which can immediately be solved to obtain

ρSE (t ) = T exp

[∫ t

0
dsL(s)

]
ρSE (0). (B2)

If we now expand the Dyson series of Eq. (B2) and trace
out the environmental degrees of freedom to obtain ρS (t ) =
TrE [ρSE (t )], the reduced system density operator can be de-
rived in the form

ρS (t ) =
(
1 +

∞∑
n=1

∫ t

0
dt1 · · ·

∫ tn−1

0
dtn〈L(t1) · · ·L(tn)〉E

)
ρS (0)

≡ �(t, 0)ρS (0), (B3)

where 〈L(t1)L(t2) · · ·L(tn)〉E (t1 � t2 � · · · ) contains the nth
time-ordered moments of the environmental noise operators
Bj (t ), B†

j (t ) [and system coupling operators c j (t ), c†
j (t )], as

well as terms connected to the free system Hamiltonian HS (t ).
Similarly, for ρ ′

S (t ) we may also introduce the von Neumann
equation

d

dt
ρSMR(t ) = −i[HS (t ) + H ′

I (t ), ρSMR(t )]

≡ L′(t )ρSMR(t ) (B4)

and follow an analogous procedure to obtain

ρ ′
S (t ) =

(
1+

∞∑
n=1

∫ t

0
dt1 · · ·

∫ tn−1

0
dtn〈L′(t1) · · ·L′(tn)〉E ′

)
ρS (0)

≡ �′(t, 0)ρS (0). (B5)

Note that in cases when the Hamiltonian is non-Hermitian,
Eq. (B4) defines an S + E ′ evolution which has been modified
to be nonunitary, i.e., we are intentionally not taking the Her-
mitian conjugate of H ′

I (t ) when acting on the right of ρSMR(t )
[44]. The reason for this is to ensure the two expansions of
ρS (t ) and ρ ′

S (t ) share the same structure. As a result, it can be
observed in the general case that the dynamics of the reduced
density operators will be equivalent as long as first-, second-,

etc., order terms in the two expansions share an equal time
dependence.

Now, since the free system dynamics is unchanged between
environment configurations, as well as the coupling operators
c j (t ) (c†

j (t )), we see that the only differences between ρS (t )
and ρ ′

S (t ) will be contained in the nth-order moments of the
corresponding noise operators. However, taking into account
that the states ρE (0) and ρMR(0) are Gaussian, Wick’s theorem
implies the complete set of moments appearing in either ex-
pansion to factorize into first- and second-order moments, so
that from TrE [Bj (t )ρE (0)] = 0 = TrMR[B′

j (t )ρMR(0)], if we
also have

f jk (t − s) = 〈B′
j (t )B′ †

k (s)〉E ′ , ∀ j, k, t � s, (B6)

then the reduced expansions (B3) and (B5) will be indistin-
guishable in the sense that

�(t, 0) = �′(t, 0) ⇒ ρS (t ) = ρ ′
S (t ). (B7)

As a final remark, we note that the above proof implies the
Heisenberg equations of motion for operators defined in the
auxiliary model to adopt the same form as Eq. (B4) in cases
where H ′

I (t ) is non-Hermitian [cf. Eqs. (41)–(44)]. This leads
to a master equation which is equivalent to Eq. (46), but which
for complex OQS–discrete-mode couplings is of a pathologi-
cal (non-Lindblad) form.

APPENDIX C: ANALYTICAL EXPRESSIONS FOR z̃mm′ (ξ̃m,
�m, V12) and g̃′

jm

In this Appendix we derive exact analytical expressions
for the coefficients z̃mm′ and couplings parameter g̃′

jm in cases
involving two discrete modes. To do so we recall the treatment
of essentially the same problem considered by Garraway in
Sec. V B of [39], where in that work a procedure was imple-
mented to convert between pathological and Lindblad forms
of the master equation with equivalent coefficients to Eqs. (54)
and (62); here we then utilize this very same procedure to
obtain a more general result overall.

Considering first that the transformation matrix Uml for
m, l = 1, 2 can generally be written in the form of a complex
rotation about an angle θ0,

U (θ0) =
( cos θ0 sin θ0

− sin θ0 cos θ0

)
, (C1)

and the similarity transformation in Eq. (58) can be evaluated
explicitly to yield

z̃mm′ = 1

2
(z1 + z2 + (−1)m 
z cos 2θ0)δmm′

+ 
z sin 2θ0

2
(δmm′−1 + δmm′+1), m, m′ = 1, 2, (C2)

where


z = z2 − z1 ≡ |
z|exp(iθz ) (C3)

defines the distance between the two poles of D(ω) in
the lower-half complex plane. In turn, we may also pro-
ceed to parametrize the OQS–discrete-mode couplings g′

jl =

043058-10
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� j
√−irl via

g′
j = � j

(cos θ1

sin θ1

)
≡ � jU (−θ1)

(1
0

)
, (C4)

which by construction satisfies the normalization property
(20), i.e., ‖g′

j‖2 = �2
j . Since the relative magnitude of these

couplings depends only on a single free parameter θ1, we can
more conveniently characterize Eq. (C4) in terms a complex
ratio μ, where

μ = tan θ1 = g′
j2/g′

j1. (C5)

We will now proceed to write the new couplings g̃′
jm as

g̃′
j = U (θ0)g′

j

= � jU (θ0 − θ1)
(1

0

)
, (C6)

so that with the help of these basic definitions, the rotation
angle θ0 can be determined in principle according to the
physical constraints placed on the quantities g̃′

jm and �mm′ =
−Im[z̃mm′] (see the details provided in Sec. V A of the main
text). This is in part what we shall now discuss below.

Following Ref. [39], we first note that the off-diagonal
elements of Eq. (C2) are constrained to be real. As such, we
may write

z̃mm′ ≡ (ξ̃m − i�m)δmm′ + V12(δmm′−1 + δmm′+1) (C7)

with⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ̃m = 1

2
(ξ1 + ξ2 + (−1)m Re[
z cos 2θ0])

�m = 1

2
(λ1 + λ2 + (−1)m−1 Im[
z cos 2θ0])

V12 = 
z sin 2θ0

2
.

(C8)

While this is not a necessary condition for the approach, due to
the fact that the resulting matrix �mm′ is diagonal, i.e., �mm′ =
�mδmm′ , its positivity can now be guaranteed by the simpler
constraint that only �m must be non-negative (�m � 0):

λ1 + λ2 � (−1)m{(ξ1 − ξ2)Im[cos 2θ0]

+ (λ1 − λ2)Re[cos 2θ0]}, m = 1, 2. (C9)

This inequality, which relates the allowed values θ0 to the
parameters of correlation function (18), may or may not be
possible to satisfy depending on the choice λl or ξl , so that
its validity must be checked in the general case (though this
should not be too demanding to satisfy based on the examples
shown in Ref. [39]). The second constraint comes from the
requirement that g̃′

jm must be real, and so

Im[θ0] = Im[θ1]. (C10)

Thus the problem of determining z̃mm′ and g̃′
jm reduces to elim-

inating θ0 from Eq. (C8) through the constraints (C9)–(C10).
Although this will not be explicitly shown here, it ultimately
follows from Ref. [39] that z̃mm′ (ξ̃m, �m,V12) and g̃′

jm can be
expressed solely as functions of the known variables 
z, μ,
and θz. Indeed, for the coupling between discrete modes V12,
we find

V12(μ, θz ) = − |
z|
|1 + μ2|

Im[μ](1 + |μ|2)√
sin2 θz(1 + |μ|2)2 + (2 Im[μ] cos θz )2

, (C11)

while the discrete-mode frequencies and decay rates ξ̃m and �m are given by (k = 1, 2)

ξ̃m(μ, θz ) = 1

2

(
ξ1 + ξ2 + (−1)m Re

[ −
z

|1 + μ2|
(1 + |μ|2)2 sin θz + i(2 Im[μ])2 cos θz√

(1 + |μ|2)2 sin2 θz + (2 Im[μ]cosθz )2

])
, (C12)

�m(μ, θz ) = 1

2

(
λ1 + λ2 + (−1)m−1 Im

[ −
z

|1 + μ2|
(1 + |μ|2)2 sin θz + i(2 Im[μ])2 cos θz√

(1 + |μ|2)2 sin2 θz + (2 Im[μ]cosθz )2

])
. (C13)

Finally, the expressions for the OQS–discrete-mode couplings read

(g̃′
j1)2 = �2

j

2

[
1 − (1 − |μ|4) sin θz − 4 Re[μ]Im[μ] cos θz

|1 + μ2|
√

(1 + |μ|2)2 sin2 θz + (2Im[μ] cos θz )2

]
, (C14)

(g̃′
j2)2 = �2

j

2

[
1 + (1 − |μ|4) sin θz − 4 Re[μ]Im[μ] cos θz

|1 + μ2|
√

(1 + |μ|2)2 sin2 θz + (2Im[μ] cos θz )2

]
. (C15)
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