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Lieb-Robinson bounds and out-of-time order correlators in a long-range spin chain
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Lieb-Robinson bounds quantify the maximal speed of information spreading in nonrelativistic quantum
systems. We discuss the relation of Lieb-Robinson bounds to out-of-time order correlators, which correspond
to different norms of commutators C(r, t ) = [Ai(t ), Bi+r] of local operators. Using an exact Krylov space-time
evolution technique, we calculate these two different norms of such commutators for the spin-1/2 Heisenberg
chain with interactions decaying as a power law 1/rα with distance r. Our numerical analysis shows that
both norms (operator norm and normalized Frobenius norm) exhibit the same asymptotic behavior, namely,
a linear growth in time at short times and a power-law decay in space at long distance, leading asymptotically
to power-law light cones for α < 1 and to linear light cones for α > 1. The asymptotic form of the tails of
C(r, t ) ∝ t/rα is described by short-time perturbation theory, which is valid at short times and long distances.
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I. INTRODUCTION

One of the most general concepts to study the dynamical
properties of quantum many-body systems is the dynamics of
quantum information, generalizing the spreading of all possi-
ble types of correlations in the system. Of particular interest
is the dynamical spreading of local operators [1–3], which
contains information about all correlation functions composed
of these operators. While in relativistic systems the spreading
of information is limited by the speed of light, there is no such
strict limit in nonrelativistic quantum mechanics. However, it
was shown by Lieb and Robinson [4] that quantum systems
with short-range interactions exhibit a similar, nonuniversal
speed limit, implying a causal structure. This emergent “light
cone” has important consequences for the behavior of many-
body interacting systems such as the area law of entanglement
[5,6], the decay of correlations [7,8], and the stability of
topological order [9], as well as for the timescales of ther-
malization [10–12]. Recently, much progress has been made
in establishing similar speed limits for the spreading of infor-
mation in systems with long-range interactions and it is clear
that also in such systems, information cannot spread infinitely
fast [7,13–24]. However, it is not always clear whether the cur-
rently established analytical bounds on information spreading
are tight for experimentally relevant lattice models. Power-law
decaying interactions are present in several quantum simulator
platforms, such as trapped ions [25,26], Rydberg atoms [27],
ultracold atoms [28], and superconducting qubits [29], and it
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is therefore important to obtain tight bounds on information
scrambling and thermalization timescales.

A useful measure to quantify the spreading of an initially
local operator Âi(t ) is the commutator with another local
operator B̂i+r ,

Ĉ(r, t ) = ||[Âi(t ), B̂i+r]||, (1)

where B̂i+r serves as a probe and the operators Âi and B̂i+r act
only on sites i and i + r of the system, respectively. Âi(t ) =
exp (iĤt )Âi exp (−iĤt ) is the operator Âi under time evolu-
tion in the Heisenberg picture and ||.|| denotes any matrix
norm. Vanishing C(r, t ) indicates that no information has trav-
eled from site i to i + r at time t . It should be noted here that
this generally depends very little on the choice of the operator
in chaotic quantum many-body systems and only fine-tuned
situations exist, where a dependence on the operator at short
times can be observed [13].

In systems with short-range interactions, C(r, t ) is bounded
within a “light-cone” region t > r/v, where v is a velocity
that depends on the microscopic model. This bound does not
represent a strict cutoff since exponential tails exist outside
the light cone [4,30,31].

Similarly, analytical bounds have been derived in systems
with long-range interactions decaying as a power law 1/rα

with distance r. Hastings and Koma suggested a logarithmic
bound t ∼ ln(r) [7] for any α.

In the case of strongly long-range systems with small
α < D (D is the spatial dimension), the logarithmic bound
is dominant [16,32]. Polynomial light cones have been pro-
posed [14,17,33] of the form t ∼ r (α−2D)/(α−D+1) in the regime
α > 2D, which consistently recovers the linear light cone in
the short-range limit α → ∞. This bound was tightened to
t ∼ r (α−2D)/(α−D) [18]. In general, large but finite α is con-
sistently found to exhibit asymptotically short-range behavior
[13,19,21,23,34]. It was argued by Gong et al. that a linear
light-cone structure persists for α > D [15], which is also sup-
ported by numerical simulations [13,34]. A stochastic model
of the operator spreading in long-range interacting systems
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points to linear light cones for α � D + 1
2 [35]. For general

quantum state transfer protocols, only a weaker bound for a
linear light cone for α > 2D + 1 is valid [36,37].

The analysis of analytical bounds [4,7,14–
16,18,32,33,36,38] is mostly concerned with the operator
norm ||Ĉ(r, t )||2 [the largest singular value of the commutator
matrix Ĉ(r, t ) in Eq. (1)] because it encodes the “worst-case”
scenario, namely, the fastest spreading modes in the system.
On the other hand, numerical simulations of C(r, t ) usually
employ the square of the normalized Frobenius norm,
‖Ĉ(r, t )‖2

F [12,13,23], which is the average over the square of
its singular values and is directly related to the out-of-time
order correlator (OTOC) [39–42] as shown in Eq. (7). In
Ref. [37], a bound on the Frobenius norm was established
and found to be different from the bound on the operator
norm. The Frobenius norm, associated with typical states,
was shown to exhibit linear light cones for α > 5/2, while for
the operator norm, a weaker bound of α > 3 was found.

In a previous numerical study of long-range interacting
spin chains [13], the asymptotic shape of the light cone of
the OTOC (normalized Frobenius norm) was considered. In
the present work, we are interested instead in the behavior of
the operator norm of the commutator to compare the spreading
of the fastest mode to that of typical modes (Frobenius norm).
Interestingly, our analysis suggests that both the average and
the largest singular value of Ĉ(r, t ) have the same asymptotic
behavior: We find a linear growth in time of ‖Ĉ(r, t )‖2 at
short times, and a power-law decay with distance at long
distances with the exponent α, which can be understood from
perturbation theory.

II. MODEL AND METHOD

We study the isotropic one-dimensional Heisenberg XXX
model with long-range interactions,

H =
∑
i< j

J

|i − j|α
(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j + Ŝz

i Ŝz
j

)
, (2)

where Sγ
i = σ

γ
i /2 are spin-1/2 operators acting on site i, with

γ = x, y, z (σγ
i are the corresponding Pauli matrices). The in-

teraction exponent α controls the range of the interactions and
we set J = 1 throughout this paper. We do not use a rescaling
of the coupling constant with system size L to make the energy
extensive for small α since this essentially only rescales our
units of time. The model (2) conserves the total magnetization
Sz

tot = ∑
i Ŝz

i and we focus on the largest magnetization sector
Sz

tot = 0 for even L and Sz
tot = 1

2 for odd L, to maximize the
accessible system sizes. The limit α → 0 corresponds to all-
to-all interactions and α → ∞ is the nearest-neighbor limit,
which are both integrable points of the model. There is also
a special integrable point at α = 2, the so-called Haldane-
Shastry model [43,44].

For concreteness, we consider the dynamical spreading of
the local Ŝz

i (t ) operator, probed by the commutators

Ĉ(r, t ) = [
Ŝz

i (t ), Ŝz
i+r

]
. (3)

We note that due to the SU(2) symmetry of the model, all Sx
i ,

Sy
i , Sz

i operators spread in the same way.

A. Matrix norms of the commutator

In order to quantify the growth of the commutator norm
C(r, t ), we use two different matrix norms. The (normalized)
Frobenius norm is defined as

‖Ĉ(r, t )‖F :=
√

Tr[Ĉ(r, t )†Ĉ(r, t )]

N =
√∑

i s2
i

N , (4)

where si are the singular values of the commutator Ĉ(r, t )
[and, consequently, s2

i are the eigenvalues of Ĉ(r, t )†Ĉ(r, t )].
The operator norm ‖Ĉ(r, t )‖2, or 2-norm, is defined by the

largest singular value,

‖Ĉ(r, t )‖2 = sup
ψ∈H

‖Ĉ(r, t ) |ψ〉 ‖2

‖ |ψ〉 ‖2
= max

i
si. (5)

Therefore, the normalized Frobenius norm is always smaller
than (or equal to) the operator norm,

C2(r, t ) � CF (r, t ), (6)

where, for simplicity, we have denoted C2(r, t ) = ‖Ĉ(r, t )‖2

and CF (r, t ) = ‖Ĉ(r, t )‖F .

B. Out-of-time order correlator and relation to Frobenius norm
of the commutator

Expanding the definition of the normalized Frobenius norm
(4) for the commutator Ĉ(r, t ) = [Ŝz

i (t ), Ŝz
i+r] yields

CF (r, t )2 = ∣∣∣∣[Ŝz
i (t ), Ŝz

i+r

]∣∣∣∣2

F

= 1

8
− 2

N Tr
[
Ŝz

i (t )Ŝz
i+r Ŝz

i (t )Ŝz
i+r

]
. (7)

The correlation function 1
N Tr[Ŝz

i (t )Ŝz
i+r Ŝz

i (t )Ŝz
i+r] is known

as the out-of-time order correlator (OTOC) and can be viewed
as an infinite-temperature four-point function, where the par-
tition function is given by the dimension of the Hilbert space,
Z = N .

In order to study the long-distance behavior of this quan-
tity, it is crucial to access large enough system sizes to ensure
the convergence of our results in the thermodynamic limit and
we therefore use dynamical typicality [45] for computing the
trace which appears in the Frobenius norm Tr[C(r, t )†C(r, t )].
This method consists of replacing the trace operation by the
expectation value 〈ψ |Ĉ(r, t )†Ĉ(r, t )|ψ〉, where ψ is a random
vector in the Hilbert space drawn from the Haar measure [46],
and averaging over random vectors |ψ〉. Equation (7) is then
boiled down to Tr[Ĉ(r, t )†Ĉ(r, t )] = 〈ψ ′|ψ ′〉, where |ψ ′〉 =
C(r, t )|ψ〉, up to an error that is exponentially small in the sys-
tem size L, requiring a very small number of random vectors
(typically 1, . . . , 100) for large enough systems. The opera-
tion C(r, t )|ψ〉 is performed as a sequence of matrix-vector
multiplications and several time propagations e−iHt |ψ〉 of (in-
termediate) wave functions |ψ〉. These propagations can be
performed efficiently using massively parallel sparse matrix
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Krylov space techniques. Technical details of this method for
the calculation of the OTOC are discussed in Refs. [12,13,47].

C. Operator norm of the commutator

In the present paper, our main focus is on the operator norm
(2-norm) of the commutator

C2(r, t ) = ∥∥[
Ŝz

i (t ), Ŝz
i+r

]∥∥
2, (8)

which corresponds to the largest eigenvalue [equivalent to the
largest singular value of C(r, t )] of the Hermitian form of the
commutator iC(r, t ) = i[Ŝz

i (t ), Ŝz
i+r]. We use a matrix free im-

plementation of the matrix vector product |ψ̃〉 ← iC(r, t )|ψ〉,
such that we never have to deal with dense matrices, and
use the Lanczos algorithm to obtain the largest eigenvalue of
iC(r, t ).

This means that we calculate

iC(r, t ) |ψ〉 = i
[
Ŝz

i (t ), Ŝz
i+r

] |ψ〉
= iŜz

i (t )Ŝz
i+r |ψ〉 − iŜz

i+r Ŝz
i (t ) |ψ〉

= ieiĤt Ŝz
i |ψ2(t )〉 − iŜz

i+reiĤt Ŝz
i |ψ (t )〉

= ieiĤt |ψ3〉 − iŜz
i+reiĤt |ψ4〉

= i |ψ3(−t )〉 − iŜz
i+r |ψ4(−t )〉

= i |ψ3(−t )〉 − i |ψ5〉
→ |ψ̃〉 . (9)

Here, we have used the replacements |ψ2〉 = Ŝz
i+r |ψ〉, |ψ3〉 =

Ŝz
i |ψ2(t )〉, |ψ4〉 = Ŝz

i |ψ (t )〉, and |ψ5〉 = Ŝz
i+r |ψ4(−t )〉. The

matrix-free matrix-vector product involves again forward
|ψ (t )〉 = e−iĤt |ψ〉 and backward |ψ (−t )〉 = eiĤt |ψ〉 real-
time evolution of the wave function, very similar to the case
of the OTOC [12,13], for which we employ a Krylov space
technique for the matrix exponential [48–50]. Matrix-vector
multiplications of Ŝz

i operators with wave functions are trivial
since these operators are diagonal in the computational Sz ba-
sis, and the entire algorithm thus requires only storage of a few
vectors. This method gives access to the largest eigenvalue of
the commutator with controlled accuracy up to system size
L = 22 (N = 705 432 in the zero-magnetization sector). We
note that for larger α and short distances r, the convergence
of the Lanczos algorithm is particularly challenging due to
small gaps in the spectrum. Lastly, for treating small systems
L < 18, the calculations were performed using full exact di-
agonalization.

Throughout this paper, we fix the position of the spreading
operator to i = 3 (the leftmost is indexed i = 0) in such a way
that distances r = 0, 1, . . . , L − 4 are accessible (using open
boundaries) and the reflection of the left information front
does not interfere with propagation of the right one (which
is the one we study in detail).

III. RESULTS

In the following, we analyze in detail the space-time pro-
file of the operator norm of the commutator ‖Ĉ(r, t )‖2 of
the long-range XXX chain (2) and compare it to the case

of the normalized Frobenius norm (OTOC), for which a
very detailed analysis can be found in Ref. [13]. We pro-
vide additional complementary data for the XYZ chain in
Appendix B.

A. Causal space-time region

We start our analysis by providing a qualitative comparison
of the two norms of the commutators Ĉ(r, t ) = [Ŝz

3(t ), Ŝz
3+r]

for different range of the interaction α and all distances r as
a function of time. The synopsis of these results is shown in
Fig. 1, where the top row shows the operator norm and the
bottom row shows the normalized Frobenius norm (OTOC),
while columns correspond to different ranges of the interac-
tion α = 0.3, 0.7, 1.2, 2.4. Both norms are shown on the same
color scale. Full lines show contour lines of the space-time
profile for various thresholds θ , extracted from the solution of
the equation C(r, t ) = θ to obtain the light “cone” tθ (r). It is
already clear from a visual inspection of the two norms that
the essential behavior is identical. Both norms reveal a clear
causal space-time region outside of which the commutator is
very small, which means that almost no quantum information
is communicated at short times and long distances for all α.

The contours are calculated for the same set of threshold
values θ (indicated as vertical lines in the color bar for clarity),
clearly showing that the operator norm reaches a fixed thresh-
old earlier than the Frobenius norm due to the property given
by Eq. (6). Since no signal can travel faster than governed by
the operator norm, it strictly limits the amount of quantum
communication outside the causal region. The comparison
between the operator and the Frobenius norm shows that
typical modes in the system [singular values of Ĉ(r, t )] travel
significantly slower than the fastest mode (maximal singular
value), an effect which is particularly pronounced at small α,
as can be seen from a comparison of the contour lines between
the two norms.

The overall shape of the contour lines appears to be iden-
tical (with different prefactors). For large α, both norms are
consistent with asymptotically linear light cones.

For intermediate α = 1.2 and large thresholds (black con-
tour lines), we observe a “bump” in the case of the operator
norm, which is likely nonuniversal and stems from the re-
flection at the left edge of the system; therefore we focus on
smaller thresholds in these cases, where reflection does not
(yet) interfere due to the observed causality.

B. Early time growth

In Fig. 2, we analyze the growth of the operator norm
C2(r, t ) = ‖Ĉ(r, t )‖2 as a function of time t for fixed distances
r. The results are shown for a system of size L = 22 and reveal
very clearly that the operator norm grows linearly in time
(linear growth shown by dashed black lines for comparison).
We have checked that this short-time behavior is converged
in system size. This is identical to the behavior of the nor-
malized Frobenius norm (OTOC) [13] and is expected in the
short-time perturbative regime when t � 1. We show how this
linear growth arises from short-time perturbation theory in
Sec. III C, where it also becomes clear that nearest-neighbor
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FIG. 1. Norms of the commutator Ĉ(x, t ) = [Ŝz
i (t ), Sz

x] as a function of time t and position x in the chain for different interaction exponents
α. The first operator is located at i = 3. The top row corresponds to the operator norm [largest singular value of C(x, t )] and the bottom row
shows the normalized Frobenius norm [root of the mean of squared singular values of C(x, t )]. The curves correspond to contour lines for
different thresholds θ , i.e., the solution tθ (x) of the equation ‖C(x, t )‖ = θ with θ = 0.05, 0.1, 0.15, 0.2, 0.25 for both norms (lines marked in
the color bar in increasing order). The interaction exponents α = 0.3, 0.7, 1.2, 2.4 correspond to system sizes L = 21, 22, 21, 20, respectively.

interactions lead to a different (power-law) short-time
behavior.
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FIG. 2. C2(r, t ) as function time at fixed distance r from site i =
3. Dashed lines are linear power-law fits to times t < 1. The fitted
lines are extended up to t = 3. The system size is L = 22.

C. Perturbation theory in the short-time limit

At short times, we can use the Baker-Campbell-Hausdorff
(BCH) formula,

eX̂Ŷ e−X̂ =
∞∑

m=0

1

m!
[X̂ , Ŷ ]m, (10)

with [X̂ , Ŷ ]m = [X̂ , [X̂ , Ŷ ]m−1] and [X̂ , Ŷ ]0 = Ŷ . Replacing
Ŷ = Ŝz

i and X̂ = it Ĥ , we get a perturbative expansion for
time-dependent Heisenberg operators,

Ŝz
i (t ) =

∞∑
m=0

(it )m

m!

[
Ĥ , Ŝz

i

]
m. (11)

The commutator given by Eq. (3) can then be written as

[
Ŝz

i (t ), Ŝz
i+r

] =
∞∑

m=0

(it )m

m!

[[
Ĥ , Ŝz

i

]
m, Ŝz

i+r

]
. (12)

For systems with long-range interactions, the commutator
to linear order, [[Ĥ , Ŝz

i ], Ŝz
i+r], is nonzero for any distance r,

and is therefore the leading order at short times, leading to
a dominant term linear in t . For the long-range XXX model
given by Eq. (2), we obtain, for r > 0,[

Ŝz
i (t ), Ŝz

i+r

] = it

rα

(
Ŝx

i Ŝx
i+r + Ŝy

i Ŝy
i+r

) + O(t2). (13)

Therefore, the operator norm C2(r, t ) to leading order in t
reads ∥∥[

Ŝz
i (t ), Ŝz

i+r

]∥∥
2 = t

2rα
+ O(t2). (14)
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FIG. 3. Time evolution of C2(r, t ) at fixed distance r = 3, 5, 7, 9
from i = 3 and α = 1.5, 2.0, 3.0, 4.0 for nearest-neighbor (dotted
lines) and long-range interactions. Dashed lines are the leading order
in perturbation theory given by Eq. (14). The system size is L = 14.

For any finite α, the operator norm given by Eq. (8) grows
linearly in time and scales as r−α at long distance and short
times. We note that this perturbative behavior is true for any
choice of the norm. In Fig. 3, the exact time evolution (colored
lines) is compared to the leading order given by Eq. (14) (gray
straight lines), yielding excellent agreement at short times.

On the other hand, Eq. (12) yields a very different behav-
ior when interactions are limited to only nearest neighbors.
In the short-range limit α → ∞, the support of the nested
commutator [Ĥ , Ŝz

i ]m grows by one lattice site at each m
term, which makes [[Ĥ, Ŝz

i ]m, Ŝz
i+r] vanish for m < r. This can

be seen more clearly by looking at the first term in the ex-
pansion [Ĥ, Ŝz

i ]1 = i(Ŝx
i Ŝy

i+1 − Ŝy
i Ŝx

i+1) + i(Ŝx
i−1Ŝy

i − Ŝy
i−1Ŝx

i ),
which has support only on sites i − 1, i, i + 1 and, therefore,
[[Ĥ, Ŝz

i ]1, Ŝz
i+r] vanishes as long as r > 1. Higher-order terms

in the BCH formula for r > 1 only become nonzero if a
string of nontrivial Pauli matrices of length r is generated
between sites i and i + r, and thus the leading order in the
BCH formula for nearest-neighbor interactions reads

[
Ŝz

i (t ), Ŝz
i+r

] ∝ t r

r!
Ô(1), (15)

where Ô(1) is given by the operator norm of a sum of Pauli
strings of length r. In other words, at short times and outside
the light cone, the operator norm grows as a power law in
time with an exponent given by the distance between the two
operators. This is a quite general result, valid for any pair of
local operators that are separated by a distance r larger than
the support of the most extended term in the Hamiltonian. In
Fig. 6, the exact time evolution of Eq. (8) for the XXX short-
range model is compared to the perturbation theory result
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FIG. 4. Commutator as a function of distance r from site i = 3 at
times t = 0.38, 0.68, 0.98, 1.27, 1.58, 1.88 (descending order in the
plots). Crosses denote the asymptotic form given by Eq. (14). The
overall behavior seems to be power law at any fixed time. The trends
of the smaller sizes are followed off by the larger ones.

given by Eq. (15). The power-law growth C2(r, t ) ∝ t r is in
excellent agreement with the exact calculation at short times.
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FIG. 5. Tail exponent of long-distance decay (see Fig. 4) com-
puted from the discrete logarithmic derivative β = ∂ln r ln C2(r, t ) as
a function of distance r for different system sizes L at fixed time
t = 0.67. The asymptotic exponent β converges towards the interac-
tion exponent α (dashed horizontal lines) for all values of α at long
distances.
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FIG. 6. Time evolution of the operator norm C2(r, t ) at fixed
distance r for the nearest-neighbor XXX chain with system size
L = 18. Black dashed lines are power-law fits C2(r, t ) ∼ t r for the
corresponding r. This is the behavior obtained in Eq. (15) from
perturbation theory.

D. Role of the nearest-neighbor part of the Hamiltonian
at large α

For large values of α, there is a significant speedup of the
growth of the commutator norm and a clear departure from the
linear growth of C2(r, t ) at intermediate times (cf. Fig. 2, lower
panels). On the other hand, when α is large enough, the com-
mutator C2(r, t ) is expected to exhibit a similar behavior as a
short-range interacting system, which corresponds to the limit
α → ∞ in Eq. (2). The Hamiltonian of the long-range model
contains the nearest-neighbor part plus longer-distance cou-
plings, decaying as 1/rα , which are strongly suppressed for
α  1. Therefore, a dominant effect of the nearest-neighbor
part is expected for large α [13,22]. In Fig. 3, we compare
C2(r, t ) for the long-range model (full colored lines) to the
nearest-neighbor model (red dashed lines) at fixed distances
r. At short times, the long-range model shows the perturbative
growth r−αt/2 for all α, and speeds up at intermediate times.
The initial growth is significantly faster than in the case of
nearest-neighbor interactions. For nearest-neighbor interac-
tions, the operator norm C2(r, t ) grows much faster due to the
large power law ∝ t r . Therefore, at later times and for α > 1,
the nearest-neighbor part catches up and dominates the overall
growth of the commutator and leads to an asymptotic linear
light cone.

Focusing only on large α, the operator norm of the com-
mutator exhibits two kinds of grows: linear at short times (see
Fig. 2) and short range like at intermediate times (see Fig. 3).
The short-range time evolution of C2(r, t ) is well character-
ized by (t/r)r [31], while the long-range part is described by

Eq. (14), i.e., t/rα , in the limit t � 1. These two results can
be combined into a single expression,

C2(r, t ) ∝ t

2rα
+ O(1)

( t

r

)r

. (16)

At short times, the linear term on the right-hand side is always
dominant; at intermediate times, the second term become
dominant and the dynamics is short-range like.

At long distances, there is a clear transition from a linear
light cone for α > 1 to a power-law light cone at α < 1,
which can be understood with the following reasoning. The
asymptotic form of C2(r, t ) in Eq. (16) grows monotonically
and the two terms compete. The light cone is given by the set
of times tθ (r) as a function of distance r, for which C2(r, t )
reaches a threshold value θ , i.e., C2(r, tθ (r)) = θ . It is clear
that tθ (r) � tc(r) = 2θrα since this is the time the first (linear
in t) term needs to reach the threshold. If the second (power
law in t) term reaches the threshold first, we get a linear
light cone; otherwise, we get a power-law light cone. We
can estimate the power-law term at long distances and t � tc
by t r/rr � t r

c /rr = (2θrα )r/rr . Therefore, at tc, this term di-
verges for α > 1 and r → ∞, and overwhelms the linear term,
leading to a linear light cone tθ (r) ∝ r. For α < 1 and r → ∞,
this term is irrelevant and we are left with a power-law light
cone tθ (r) ∝ rα . Analogously, the linear term is bounded by
the time when the short-range front reaches the threshold, i.e.,
t/2rα � rθ1/r/2rα . The bounding term vanishes in the limit
r → ∞ and α > 1, and diverges otherwise, which agrees with
the bound to the short-range term. This behavior is consistent
with the numerical observation in Fig. 1.

E. Long-distance decay

In Fig. 4, we analyze the behavior of C2(r, t ) at long dis-
tances r outside the light cone. It falls off as a power law
at long distances, with an exponent that asymptotically ap-
proaches the interaction exponent α (see quantitative analysis
using a discrete logarithmic derivative in Fig. 5). The same
behavior was found previously [13] for the normalized Frobe-
nius norm. This power-law decay r−α is in perfect agreement
with the prediction from perturbation theory in the short-time
limit given by Eq. (14), and seems to be valid asymptotically
outside the causal region.

This analysis confirms the validity of short-time perturba-
tion theory (which is valid for any matrix norm) and shows
that the asymptotic shape of the tails (outside the causal
region) of long-range interacting spin chains is given by
C2(r, t ) ∝ t/rα .

IV. CONCLUSIONS

The operator norm C2(r, t ) of the commutator given by
Eq. (1) has been examined in the XXX chain with long-range
interactions falling off as a power law r−α with distance r and
interaction exponent α. In order to reach large enough systems
to check the convergence of our results with system size, we
introduce a Krylov space method for the direct calculation
of the operator norm of the commutator C(r, t ). We find a
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FIG. 7. Spreading of operator norm C2(x, t ) = ||[Sz
i (t ), Sx

x ]||2 in
the XYZ model (B1) with i = 3, over time and space for α =
0.4, 0.8, 1.3, 2.5. Continuous lines are contour lines given by the
equation ‖C(x, t )‖ = θ with θ = 0.1, 0.2, 0.25, 0.3, 0.35 (marked as
lines in the color bar in increasing order). System size is L = 14. The
shape of the “light cone” and their contour lines are very similar to
the ones discussed in the main text (see Fig. 1).

linear growth in t at early time t and a long-distance decay
outside the causal region given by r−α . Both the normalized
Frobenius norm (directly related to OTOCs) and operator
norm, which correspond to the average and fastest information
spreading modes in the system, have the same asymptotic
behavior (with different prefactors) of t/rα at long distance
and short time, which is strikingly different from systems with
nearest-neighbor interactions, which instead exhibit a leading
growth as a power law in time ∝ t r at short times and long
distances.

For α > 1, the information front is dominated by the con-
tribution from the nearest-neighbor part of the Hamiltonian,
which overtakes the initial linear growth of C2(r, t ), inducing
a linear light cone. These results are confirmed using a slightly
different XYZ model in Appendix B.

Other theoretical studies predict a linear light-cone regime
only for α > 2 [7,14,17–19,33], which is in conflict with our
result α > 1. Since our numerics is limited to small sizes and
short times, we cannot exclude a change in behavior at very
long times and distances. Nevertheless, our exact calculations
and the analytical asymptotic form from perturbation theory
agree in a large parameter regime of our study (see, for ex-
ample, Figs. 3 and 2). Since we also observe virtually no
finite-size effects, our results provide no indication to expect
a change of behavior in the asymptotic limit t → ∞, r → ∞.

We conclude that the findings from the study of out-of-time
order correlators in Ref. [13] provide information about Lieb-
Robinson bounds and agree with the behavior of the fastest
spreading information mode in the system.
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FIG. 8. Spatial decay of C2(r, t ) in the XYZ model (B1) at fixed
time t = 0.38, 0.68, 0.98, 1.27, 1.58, 1.88. Similarly to the XXX
model treated in the main text, there is a power-law decay (see
Fig. 4).
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APPENDIX A: PERTURBATIVE TREATMENT
AT SHORT TIMES

In Sec. III C, the Baker-Campbell-Hausdorff (BCH) for-
mula was employed for treating the time evolution of Eq. (1)
at short times. From this analysis, the leading order of the op-
erator norm C2(r, t ) ≈ t r/r! was obtained. In Fig. 6, the exact
time evolution C2(r, t ) is shown along with the leading order
in the BCH formula (dashed lines), with excellent agreement
at short times.

APPENDIX B: RESULTS FOR XY Z MODEL

In order to test the universality of the results presented in
the main text, we have also performed similar calculations for
the long-range XYZ Heisenberg model,

H =
∑
i< j

1

|i − j|α
(
JxŜx

i Ŝx
j + JyŜy

i Ŝy
j + JzŜ

z
i Ŝz

j

)
, (B1)

with parameters Jx = 0.9, Jy = 1.2, Jz = 0.7. The XXX model
study in the main text is recovered by setting Jx = Jy = Jz =
1. The XYZ model does not have U(1) symmetry; therefore,
the Hamiltonian is not block diagonal and we must deal with
the full Hilbert space dimension N = 2L. Analogously to the
main text, we study the operator norm of the commutator,

C2(r, t ) = ∣∣∣∣[Ŝz
i (t ), Ŝx

i+r

]∣∣∣∣
2. (B2)
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fixed distance r0 and system size L = 14. Dot-dashed lines are the
asymptotic form t/4rα at short times t < 1. The overall behavior is
again similar to what was found for the XXX model (see Fig. 2).

The difference compared to Eq. (8) lies in the static operator
that is now Ŝx

i+r . The time evolution and operator norm com-
putation are carried out using exact diagonalization.

We analyze the behavior of Eq. (B2) as a function of both
r and t . In Fig. 7, the causal regions of C2(r, t ) are shown.
For all values of α, the overall shape of the causal region
is the same as for the XXX long-range model (see Fig. 1).

Small α exhibit fast spreading with power-law causal regions
and large α approach the linear light-cone limit α → ∞. The
long-distance decay is also similar to what has been found
in the main text (see Figs. 8 and 4), where outside the light
“cone,” there is a power-law decay of C2(r, t ). Time evolution
at fixed distance is displayed in Fig. 9 and is compatible with
linear growth at short times t < 1, which was also found in
the XXX version (see Fig. 2). In conclusion, the main features
of both operator norms discussed in the main text are the
same when considering a different commutator [Ŝz

i (t ), Ŝx
i+r]

and a different long-range model, namely, the long-range XYZ
model. As expected, only the interaction exponent α is crucial
for characterizing the dynamics of the commutator given by
Eq. (1).

Applying perturbation theory given by Eq. (12) up to first
order, we get the following expression for the commutator
when r > 0: [

Ŝz
i (t ), Ŝx

i+r

] = t

rα
Sz

i+rSx
i + O(t2), (B3)

yielding the following asymptotic form for the operator norm:

∣∣∣∣[Ŝz
i (t ), Ŝx

i+r

]∣∣∣∣
2 = t

4rα
+ O(t2). (B4)

In Fig. 9, this asymptotic form is compared with the exact
time evolution, yielding very good agreement. In conclusion,
the BCH formula also predicts the short-time behavior for the
XYZ model.
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