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The simulation complexity of predicting the time evolution of delocalized many-body quantum systems has
attracted much recent interest, and simulations of such systems in real quantum hardware are promising routes
to demonstrating a quantum advantage over classical machines. In these proposals, random noise is an obstacle
that must be overcome for a faithful simulation, and a single error event can be enough to drive the system to a
classically trivial state. We argue that this need not always be the case, and consider a modification to a leading
quantum sampling problem—time evolution in an interacting Bose-Hubbard chain of transmon qubits [Neill
et al., Science 360, 195 (2018)]—where each site in the chain has a driven coupling to a lossy cavity and particle
number is no longer conserved. With cavity noise (but not qubit error) now included in the problem definition,
the resulting quantum dynamics are still complex and highly nontrivial. We argue that this problem is harder
to simulate than the isolated chain, and that it can achieve volume-law entanglement even in the strong noise
limit, likely persisting up to system sizes beyond the scope of classical simulation. Further, we show that the
metrics which suggest classical intractability for the isolated chain point to similar conclusions in the noisy case.
These results suggest that quantum sampling problems including nontrivial noise could be good candidates for
demonstrating a quantum advantage in near-term hardware.
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I. INTRODUCTION

Quantum sampling problems present the most promising
near-term way to demonstrate “quantum supremacy” [1,2],
where quantum hardware solves a problem that no classi-
cal supercomputer is capable of completing in a reasonable
amount of time. Interest in these problems began with the
boson sampling problem proposed by Aaronson and Arkhipov
[3], who argue that sampling the output distribution of groups
of identical, noninteracting bosons propagating through a lin-
ear optical network is likely to be extremely difficult for
classical machines. The years following that paper have seen
a number of other candidate quantum systems put forward
as challenging sampling problems [4–8], with perhaps the
most attention focused on the random quantum circuit pro-
tocol [5]. This protocol is based on sampling the output of
a random sequence of quantum gates acting on an initial
product state, which is likely to be exponentially difficult
for classical computers. Subsequent experimental work [9]
extended this class of problems to include continuous time
evolution (as opposed to a discrete collection of gates) in
sampling the output of a time-evolving Bose-Hubbard chain.
This paper fits into a growing body of works on the hard-
ness of simulating evolution in continuous time systems (see,
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for example, Refs. [10–16]). Like the other protocols, this
task is also very likely to be classically intractable once the
system becomes sufficiently large. Since the threshold for
superiority of quantum hardware depends on the state of the
art in classical hardware and software, it naturally presents
a moving target, and interest in quantum sampling problems
has in turn prompted an explosion of progress in classical
algorithms for simulating quantum circuits [17–30]. And in-
deed, in late 2019, quantum computational supremacy (in the
sense of performing a calculation beyond the reach of current
supercomputers) was achieved in a system of 53 interacting
transmon qubits [31].

These sampling problems all involve simulating purely
unitary quantum dynamics, and the introduction of local ran-
dom noise into any of them reduces simulation fidelity and
drives the system toward classically trivial configurations. In
this work, we argue through a mix of analytical arguments and
numerical simulations that this need not be the case in gen-
eral. Specifically, we propose a variation of the Bose-Hubbard
sampling problem which resonantly couples the system to
highly lossy elements (in this case, superconducting cavities).
Through a variety of numerical benchmarks we show that
this open quantum system should also be extremely hard to
simulate. Further, due to the expanded Hilbert space and need
to average over many quantum trajectories for accurate re-
sults, we expect the system to become classically intractable at
around two thirds the size of the equivalent unitarily evolving
chain, and half the size of a comparable circuit of qubits
enacting random discrete gates.

Since the lossy cavities are already included for state read-
out in any superconducting qubit implementation, the only
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additional experimental features required by our protocol are
additional microwave signals to resonantly drive qubit-cavity
interactions. As these cavities are left idle throughout the
evolution in other protocols, and are only populated for state
measurement at the end of the evolution, in traditional unitary
protocols fully half of the system’s quantum degrees of free-
dom are left idle. In contrast, in our proposal, they are integral
to the system’s dynamics, so our protocol thus nearly max-
imizes the quantum simulation complexity for a given hard-
ware layout. Our results here are focused on superconducting
qubit platforms due to the hardware efficiencies and relative
ease of engineering complex quantum dynamics through dis-
sipation [32], but could easily be generalized to other quantum
platforms such as trapped ions or neutral atoms. These results
expand the space of interesting sampling problems, and sug-
gest that a quantum advantage may be possible to demonstrate
in smaller systems than previously thought.

This paper is organized as follows. We first describe our
new protocol, then discuss important general considerations
for sampling problems which include noise. We then simulate
the dynamics of our protocol using experimentally realistic
target parameters, and compute a series of key benchmark
quantities to demonstrate classical hardness. These include
volume entanglement, signatures of quantum chaos in the
form of distance from a Porter-Thomas distribution, number
fluctuations, inverse participation ratio, and heavy output
generation. Extrapolating from these results, we provide
estimates for expected classical simulation difficulty at larger
system sizes, and show that, under the assumption that direct
Hamiltonian time evolution is the most efficient simulation
method, the system should become impossible to accurately
simulate with near-term classical hardware for chains or
grids of between 25 and 30 qubit-cavity pairs, depending on
protocol details.

II. PROPOSED PROTOCOL

Quantum sampling problems based on unitary evolution
amount to sampling from the distribution with probabilities
Pk of observing basis state |k〉 after evolving a trivial initial
state with a time-dependent H (t ) up to some time T . Sampling
problems including noise are also based on sampling from the
distribution Pk , which are in this case the diagonal entries of a
density matrix evolving under the Lindblad equation [33]:

∂tρ = i[Htot (t ), ρ] +
K∑

i=1

(
OiρO†

i + 1

2

{
O†

i Oi, ρ
})

. (1)

Here, K ∝ L is the number of Lindblad operators and L is the
system size. For simplicity we assume that the Hamiltonian
Htot (t ) (which generates unitary evolution) can vary in time
but that the Lindblad operators Oi do not, though of course
they may depend on time as well. The goal of our sampling
problem is to sample the output of (1), with the intentional
noise sources Oi included in the definition, but without any
other error sources, such as control error or single qubit de-
coherence. Within this extremely general class of possible
simulation problems, the protocol we consider in this work

is a modification of the gmon chain experiment reported in
Ref. [9]. We begin with the L-qubit Hamiltonian

HQ(t ) = −g(t )
L−1∑
i=1

[a†
i ai+1 + H.c.] (2)

+
L∑

i=1

[
hia

†
i ai −

nmax∑
n=2

δn|ni〉〈ni|
]
.

Here, hi are a set of local detunings, the δn are the qubit
nonlinearities and g(t ) is a time dependent coupling strength
which is ramped up and down. The pulse waveform is care-
fully optimized so that the population of |2〉 and |3〉 states is
negligible at the end of each pulse (though the population of
such states mid-pulse may be significant). In principle, each
qubit-qubit coupling can be tuned independently from the oth-
ers, but we ramp them all up and down with the same profile
for simplicity. Each qubit is weakly coupled to a lossy readout
cavity; in the default protocol, these terms do not appear in HQ

because the cavities are only used for state measurement and
do not effect the quantum evolution. As shown in Fig. 1, we
modify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout cavity
via the Hamiltonian

HQC(t ) =
L∑

i=1

[
hCia

†
CiaCi + �a†

CiaCia
†
i ai

]

+
L∑

i=1

[
�R

QCi(t )a†
Ciai + �B

QCi(t )a†
Cia

†
i + H.c.

]
.

(3)

Here, the hCi are a set of resonator detunings, � is the qubit-
cavity dispersive shift and �R

QCi and �B
QCi are the amplitudes

of the red and blue sideband qubit-cavity drives, respectively.
In the notation of Eq. (1), Htot (t ) = HQ(t ) + HQC(t ). These
can be engineered [34–37] in the gmon architecture of flux
tunable transmons qubits with fixed capacitive couplings to
their cavities through oscillating the qubit energy near the
difference of the qubit and cavity frequencies (red) or driving
the qubit or cavity at frequencies near half the sum of the
two frequencies (blue). Since the cavities are fixed frequency
objects and the �QCi terms are small, we do not need to worry
about bath spectral densities and can well-characterize their
lossy behavior through simple Oi = √

�CiaC j , where �Ci is
the cavity loss rate. This loss rate can fully characterized in
real devices. In more general cases where the bath spectral
density has nontrivial dependence, it may be more difficult
to specify the Oi and rigorously define the problem, though
the classical simulation complexity is enormously increased in
these cases [38]. For simplicity, we do not consider such cases
in this work, and likewise, we will consider only blue sideband
protocols (all �R

QCi = 0) since these terms are somewhat eas-
ier to engineer in a noise tolerant manner. Further, for reasons
which will become clear below, we require that all couplings
(qubit-qubit and qubit-cavity) are turned on simultaneously, as
sketched in Fig. 2, rather than sequentially or in disconnected
groups, as in gate model protocols. After being initialized in a
simple product state (in the z basis), the couplings are pulsed
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FIG. 1. Basic protocol studied in this work, an extension of the
experiment reported in Ref. [9]. As in the original work, a chain
of qubits is initialized in a simple product state in the z basis, a
random set of detunings is applied to the qubits (circles), the nearest
neighbor qubit-qubit exchange couplings (purple lines) are repeat-
edly pulsed on and off, and then the detunings are turned off and
all qubits are measured in the z basis. This program is repeated
a sufficient times to estimate the fidelity with the aid of classical
simulations. The key difference in our protocol is that driven side-
band interactions (dashed lines), coupling the qubits to their readout
cavities (boxes), are simultaneously turned on whenever the qubit-
qubit couplers are, significantly changing the quantum dynamics
and implementing a Hamiltonian where total photon number is no
longer conserved. The magnitudes of all detunings and sideband
interactions are weak compared to the qubit-qubit coupling terms,
ensuring delocalized evolution and sharp resonance conditions in the
qubit-cavity interactions.

on and off for a total of C cycles, at which point the states
of all the qubits are measured in the z basis. This sequence is
repeated many times to generate an output sample, which is
then compared to a theoretical model to calculate fidelity.

III. GENERAL CONSIDERATIONS FOR SAMPLING
PROBLEMS WITH NOISE

Before presenting the results of our numerical simulations,
it is worth pausing to consider some of the important dif-
ferences between noisy sampling problems and their purely
unitary counterparts. In this section, we will discuss these
differences, and argue a number of key points. First, we
will demonstrate the perhaps obvious point that there exist
nontrivial choices of the {Oi} for which sampling the output
distribution of (1) is at least as difficult as any unitary problem.
Second, we will show that this is not the case for some of
the most natural choices, which include empirical models
of random qubit error. Third, we will show that the worst
cases of (1) are at most polynomially harder in total Hilbert

FIG. 2. Schematic picture of qubit-cavity interactions. In (a),
the qubits (circles) are uncoupled from each other; as a result, the
qubit-cavity drive (blue dashed lines) simply excites that qubit and
its corresponding cavity (boxes), ignoring the state of the other
qubits. A subsequent photon loss from the cavity thus acts as a local
measurement of that qubit. In contrast, in (b), qubit-qubit exchange
couplings (purple solid lines) are turned on at the same time as the
qubit-cavity drive. In the limit that these couplings are much stronger
than the qubit-cavity drive itself, the qubit-cavity drive can only
couple to propagating modes within a narrow energy range, which
have weight over the entire chain (represented by semi-transparent
blue arrows at each qubit). Photon losses from the cavity then act
as a measurement of a much more complex nonlocal operation, and
do not necessarily disentangle the state. This property is vital for
maximizing the simulation complexity of our noisy system, and more
generally for employing noise to generate and stabilize nontrivial
quantum states [32].

space size than their unitary counterparts, and that realistic
problems are likely to be more difficult by a factor which
is polynomial in the size of the system and total evolution
time. Following these results, we will outline key metrics for
classical hardness that candidate protocols should satisfy, and
then compute them explicitly in numerical simulations for the
noisy sampling problem at the center of this work.

A. Trivializing and nontrivializing noise

We begin by first noting that evolution under (1) for ar-
bitrary {Oi} has at least as much computational power as
unitary quantum evolution, as shown by Verstraete et al. [39],
who provided an explicit construction for a set of Lindblad
operators {Oi} capable of universal quantum computation,
even if the unitary Hamiltonian is zero. Thus systems evolving
under (1) can have at least as much computational power as
unitary gate model quantum computation, and thus should be
(in the worst case) extremely difficult to simulate on classi-
cal machines. Further, the operation of real, noisy quantum
hardware is often well-approximated by (1), and topological
error correction codes can be modeled through complex Lind-
blad operators; schemes to engineer self-correcting quantum
codes [40,41] are examples of such an approach. These results
further suggest that the general sampling problem of Lind-
blad evolution should be exponentially difficult for classical
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machines. Of course, simulating this evolution is not expo-
nentially difficult for a digital quantum computer [42–44].
By using ancilla qubits to model irreversible processes, one
can accurately simulate dissipative evolution with polynomial
overhead, at least for cases such as the one we consider here
where the Lindblad operators are fairly simple.

However, both these examples are obviously rather special-
ized, and in both cases the engineered Lindblad operators are
irreducibly nonlocal. It is thus reasonable to ask how Lindblad
operators deriving from a realistic noise model for modern
quantum hardware will effect complexity, and in this limit
things are naturally less clear-cut. In many cases, the addition
of noise simply makes the problem more trivial, and noisy
elements which cannot create any type of correlations on their
own are not good candidates for designing nontrivial sampling
problems. For example, the addition of depolarizing noise
(uncorrelated Pauli errors along x, y, and z applied randomly
at equal rates to each qubit) to random quantum circuits drives
the system toward incoherent uniform randomness (IUR), a
trivial distribution where all Pk = 2−L [5]. More recent the-
oretical studies have further reinforced our understanding of
this trivializing behavior [29,30,45]. In fact, due to the chaotic
nature of evolution in that system, to good approximation the
final distribution is given by (1 − Perr )ρU + PerrρIUR, where
Perr is the probability that at least one error has occurred in
any of the qubits, ρIUR is the incoherent random distribution,
and ρU is the distribution which would result from noise-free
evolution. We show in Appendix that realistic qubit error,
in the form of white noise dephasing and photon loss, has
similarly trivializing effects on the evolution of an interacting
Bose-Hubbard chain. On general grounds, we would expect
this behavior from any set of Hermitian {Oi} applied iden-
tically to all degrees of freedom in the system (since such
operators create an incoherent random walk in Hilbert space).
Likewise, many non-Hermitian choices of {Oi}, applied iden-
tically everywhere, will still drive the system toward trivial
distributions.

That said, while these considerations pose serious chal-
lenges to crafting sampling problems where the noise is
nontrivial, there is at least one key exception that offers
reasons to be hopeful. Consider a quantum system simulta-
neously evolving under a continuously applied, delocalized
many-body Hamiltonian H (which may vary with time) and
interacting with a bath that can be captured by a set of Lind-
blad operators {Oi} acting on the qubits. If these operators are
simple Pauli matrices (potentially including non-Hermitian
σ±

i terms), then we expect the resulting incoherent (though
perhaps biased) random walk to simply push the system to-
ward classically trivial states. Now imagine that the system is
weakly coupled to the bath through local couplings between
qubits and bath degrees of freedom, resulting in transition
rates which are sensitive to the energy difference between
the given pair of states. If the system is delocalized, the
resulting eigenstates are superpositions of many basis states
(exponentially many for a general, delocalized many-particle
system), and transitions between one eigenstate and another
require operations to be performed across large fractions of
the system, so for a transition induced by a local operator to
be sensitive to energy changes in the system’s state the oper-
ator must necessarily be modified into something extremely

complex and nonlocal, with weight distributed across the sys-
tem.1 In other words, given appropriate resonance conditions,
purely local Lindblad operators acting on a weakly coupled
auxiliary subsystem can generate highly complex, nonlocal
Lindblad operators acting on a delocalized primary system.
Such operations are not, in general, trivializing.

The most natural example of such nonlocal operators
arising from local couplings is a system’s interaction with
a low-but-finite temperature thermal bath, which has been
shown to be extremely difficult to faithfully simulate [38].
While the thermal states of many-body systems can often be
accurately simulated with quantum Monte Carlo if they lack
a sign problem, the detailed time dynamics of thermalization
beginning from an arbitrary initial condition cannot. Interac-
tion with a sufficiently cold bath can even provide a provable
quantum advantage for solving optimization problems, as
shown in Ref. [46] and references therein. And though these
operators do not occur naturally in high-coherence quan-
tum information platforms driven by oscillating fields, such
as trapped ions or transmon qubits, they can be engineered
straightforwardly by coupling the system to auxiliary, lossy
elements (see Ref. [32] for a review), as illustrated in Fig. 2.
It is this type of system we choose to study, and we will
show that configurations of this type are capable of generating
complex quantum dynamics, even when the noise is strong
and we expect multiple incoherent events to have occurred
in the course of the evolution. We note also that even mod-
estly complex noise operators can make systems as simple as
free fermions classically intractable to simulate, as shown in
Ref. [14].

B. Classical difficulty of simulating noisy evolution

Given that classically hard noisy protocols exist, and a
likely route toward them via engineering effective global op-
erations through resonant coupling to lossy subsystems, it is
natural to ask how much more (or less) difficult simulation of
these systems should be in comparison to unitary evolution.
From the chaotic signatures presented below, we assume that
the only classical algorithms to simulate the required sampling
involve calculating the ideal probabilities Pk . Clearly, storing
the full density matrix in Eq. (1) is horrendously inefficient
(it has a memory cost proportional to N2

H for Hilbert space
size NH ), since the protocol is designed to explore a large
fraction of Hilbert space and thus ρ will not be sparse. One
can reduce the memory cost by using trajectory methods [47].
These schemes require only O(NH ) in memory (since only a
wave function needs to be stored), and evolving a single tra-
jectory costs only O((T/dt ) × L × NH ) in time (where dt is a

1The “range” of these new operators depends on the details of the
Hamiltonian and on the energy-dependence function which modu-
lates the matrix elements (on general grounds, we expect slowly
varying functions to correspond to shorter ranges than sharply
peaked ones, based on the inverse polynomial splitting of prop-
agating modes in the free particle case), but we will argue later
in this work that it can be quite long, and thus, applications and
measurements of these operators have highly nontrivial effects on the
system’s state and, being nonlocal, do not necessarily disentangle it.
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sufficiently small time step), since each sparse matrix-vector
multiplication requires O(L × NH ) operations. However, we
have to sample a large number of trajectories Nt to accurately
solve (1). Let us assume we want to find all the Pk over
some restricted fraction of Hilbert space A, with dimension
NHA; in our case A is the qubit subspace and NHA = 2L. As
discussed in Ref. [48] and other works, the worst case estimate
of Nt is exponentially large, since we want Nt to be large
compared to the average per-trajectory variance δPk divided
by Pk itself, and 〈Pk〉 = 2−L. In this limit, trajectory methods
are hardly faster than density matrix evolution, though they do
use substantially less memory.

However, the true scaling of the variance δPk is problem
dependent and the worst case assumption may be exceed-
ingly pessimistic. First note that to produce a sample we can
output one bitstring with the correct probability from each
trajectory. In addition, to produce a sample of size M with
fidelity α, it suffices to sample αM bitstrings from the ideal
distributions [26]. This upper bounds the number of quantum
trajectories required. From a different point of view, for the
delocalized system we consider in this work all Pk ∝ 1/NHA

in a typical trajectory, and therefore δPk ∝ 1/NHA and Nt does
not grow exponentially with system size (as shown below,
we empirically find Nt grows linearly or quadratically with
the product of system size and evolution time, depending
on the observable of interest). However, in cases where a
typical trajectory has most Pk values nearly equal to zero and a
few values exponentially larger than 1/NHA the variance may
be larger, provided that the locations of the large Pk values
can vary substantially from one trajectory to the next. These
arguments apply equally well to simulations based on matrix
product states or similar constructions, as we describe in the
Appendix. We thus conclude that simulating noisy evolution
at least as hard as noise-free Hamiltonian time evolution and
polynomially harder in the worst case.

Given all these considerations, we can wrap up our general
discussion of noisy sampling problems with a set of bench-
marks that must be met if we are to strongly believe that
no polynomial classical algorithm could reproduce the output
distribution. First, and most obviously, the evolving wave
function should require an exponential amount of classical in-
formation to store. This requirement implies that the evolution
should explore a large fraction of Hilbert space (as measured
through inverse participation ratio [49]) and achieve volume-
law entanglement.2 We make this requirement as states whose
total entanglement does not grow exponentially with system

2In a 2d grid of locally coupled qubits, area-law entanglement,
which is the maximum entanglement achievable for noisy evolution
for sufficiently long times and large system sizes [50–52], would also
lead to a superpolynomially growing cost to store the wave function,
scaling roughly as ec

√
N for some c. However, given that random qubit

error reduces the fidelity by a factor which is exponential in the num-
ber of qubits (and not its square root), unless entanglement grows
sufficiently quickly the fidelity of a simulation on real hardware
could become vanishingly small by the time classical intractability
is reached. It thus strikes us as sensible to require entanglement to
scale with the volume in a 2d system as well.

size should in principle have an efficient classical representa-
tion, though actually finding such a representation in practice
may be difficult. Second, the output distribution should be
(informationally) easy to distinguish from classically trivial
configurations, such as incoherent uniform randomness. It
is desirable on general grounds if the evolving mixed state
displays features of quantum chaos [53], such as a Porter-
Thomas distribution of amplitudes and rapid scrambling of
any initial information, since this strengthens expectations for
classical simulation difficulty. However, this is not a strict
requirement, as there are many quantum problems (such as
finding the ground states of local Hamiltonians [54]), which
are not necessarily chaotic but have no efficient classical so-
lution. And importantly, we do not make any rigorous claims
of long-time quantum chaotic behavior here, but instead argue
that our work displays features of disordered and delocalized
(e.g., quantum chaotic) evolution which strongly suggest that
classically simulating it would be exponentially difficult. For
more details, see the Appendix.

Finally, it is worth pointing out one clear advantage of
intentionally noisy evolution: The possibility of achieving
nontrivial steady states, even when random qubit errors are
taken into account. In a purely unitary protocol such as RQC
or Bose-Hubbard evolution, introducing random qubit error
in the form of losses or dephasing leads inevitably to a trivial
final state at long enough times, typically either IUR or an
entirely empty lattice. However, this is not the case if the
random qubit noise is balanced by carefully tailored noise in
auxiliary elements. As summarized by one of us in a recent
review [32], engineered dissipation can be an extraordinarily
useful resource in quantum computing with superconducting
circuits, and complex many-qubit states can be stabilized. Un-
doubtedly, variations of the protocols we explore here could
lead to highly nontrivial long-time configurations, and this
work was partially inspired by earlier work on one of us in-
volving the stabilization of fractional quantum hall states [55].

Finding such protocols is not our purpose here, but it is
worth keeping in mind for future work. Since we only simu-
late blue sidebands in this work, the steady state in absence
of random qubit error just ends up being a full chain with one
particle per site (e.g., a trivial classical state). The triviality
of the final state leads us to define our sampling problem in
terms of predicting output distributions for short to interme-
diate times (and note also fairly general results showing that
dissipation reduces the volume of Hilbert space which can
be explored at sufficiently long times [56]), and the evidence
we now present shows that this task will still be classically
intractable as soon as L is reasonably large.

IV. NUMERICAL RESULTS

We now present the main results of this work: Extensive
numerical simulations of our protocol. Of necessity, the sys-
tems we consider—linear chains with L ranging from 4 to
11—are relatively small, but since each site corresponds to
a qubit-cavity pair, the system’s total Hilbert space is much
larger than for a qubit chain alone. We first describe our
simulation methods and parameters in detail, then plot results
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for entanglement negativity, a collection of different statistical
measures of the output distribution, and the expected fidelity
loss (in comparison to the output of an ideal evolution) from
various sources including approximations made in simulation
and error processes in the quantum hardware itself.

A. Simulation details

We consider blue sideband protocols, initialized in simple
product states of L/2 − 1 photons in the qubits (rounded down
for odd L) with all cavities empty. In all cases we draw
a random set of coupler pulses with gmax = 2π × 40 MHz
and durations randomly chosen within the range from 20
to 30 ns. All couplers are identically ramped up and down
using a symmetrized hyperbolic tangent profile. During each
pulse the same set of qubit-cavity interactions are applied
with �QC,max = 2π × 3.0 MHz, with a slightly narrower ramp
profile with the same duration. The qubit nonlinearity is δ =
−2π × 200 MHz, the qubit-cavity dispersive shift is � =
2π × 5 MHz. The cavity photon loss rate is chosen to be
�C = 10 MHz. As mentioned above, the Lindblad operators
we include in Eq. (1) are

√
�CaC j . Where applicable, these

parameters were all chosen to roughly match the experimental
parameters used in the unitary protocol which this work builds
upon [9]; other parameters (such as the cavity loss rate and
qubit-cavity interaction strengths) are chosen as “typical” val-
ues for superconducting qubit experiments. We consider two
variations of our protocol: Parametrization A, where all hi ∈
2π × {−20,+20} MHz and all hCi = 0, and parametrization
B, where all hi ∈ 2π × {−5,+5} MHz and where each hCi is
chosen to be equal to one of the L eigenvalues of the single-
particle hopping matrix with g = gmax (these assignments are
randomized from one protocol instance to the next). In both
cases, these disorder strengths place the system in the delocal-
ized regime, and they are generally weaker than the effective
qubit-qubit interactions derived in the Appendix. We expect
that the level statistics of the instantaneous Hamiltonian would
thus be GOE, strengthening our expectations for simulation
complexity [15]. Qubit and cavity detunings are fixed through
all Nc cycles of evolution.

We track various observables over 12 full cycles of evo-
lution. For context, we note that assuming gmax = 2π ×
40 MHz and 20 ns � tcycle � 30 ns, between L/4 and L/3
cycles are likely sufficient to fully entangle an L-site chain,
as observed indirectly in Ref. [9]. Given that g(t ) is ramped
up and down over the course of a cycle, an average cycle time
of 25 ns roughly corresponds to between 4 and 5 times 〈g〉−1,
a relatively long evolution time. A full 12 cycles thus amounts
to an average of around 50 〈g〉−1, and three times the cavity
photon lifetime.

To simulate the dynamics of our protocol, we use an event-
driven quantum trajectory method as outlined in Ref. [47]
to integrate the Lindblad equation beginning from a simple
product state at t = 0. This calculation uses standard meth-
ods to simulate the system’s dynamics, integrating (1) using
fourth-order Runge-Kutta methods. The system’s full density
matrix is computed by averaging the sum of |ψ (t )〉〈ψ (t )| over
many randomized trajectories, which is then used to compute
expectation values, entanglement measures, and so forth. For
more details, see the Appendix.

B. Negativity

The first, and arguably most important, quantity we mea-
sure is entanglement, since one can often find efficient
classical representations for weakly entangled states. To
measure entanglement in our system, we use the bipartite
negativity [57,58], N ≡ (1/2)(||ρTA || − 1) where ρTA is the
partial transpose of the density matrix ρ relative to sub-
system A and ||ρTA || is the sum of the absolute values of
its eigenvalues. The negativity, while expensive to compute
(since it requires fully diagonalizing the density matrix of
the full system), is equally well-defined for pure and mixed
states. In contrast, the more commonly used Von Neumann
and Renyi entropies only measure entanglement accurately
for pure states. A nonzero negativity is a sufficient, if not
necessary, condition for quantum entanglement. For a perfect
bipartition of the system the negativity is bounded by Nmax =
(1/2)(

√
NH − 1), where NH is the Hilbert space size of the full

system. If the system’s negativity grows exponentially with
L, then it obeys volume-law entanglement and it is extremely
unlikely that any efficient classical representation exists for its
state.

In Fig. 3, we plot the bipartitie negativity N and the ratio
N /Nmax, where Nmax is computed with NH = (1 + L) × 2L,
since we assume the resonator population is low. To keep
the Hilbert space sizes approximately equal the system is
partitioned such that partition A contains all of the cavities and
(L − 3)/2 qubits (fractions rounded up), with the remaining
qubits placed in partition B; we make this choice because
our nonlocal constraint on the maximum number of cavity
photons makes it impossible to partition the cavity Hilbert
space efficiently. As shown in the figure, the system rapidly
achieves volume-law entanglement, and at least within the
computationally accessible range of L � 9, even-odd effects
aside there are no obvious trends in the scaling which suggest
entanglement is beginning to saturate as L increases. Our
studies of entanglement are limited to L = 9 and below due
to the exploding cost of storing the full density matrix, which,
assuming a maximum of 2 photons in the cavities, is almost 9
GB for L = 9 and a bit over 52 GB for L = 10.

We can further probe the entanglement generated in our
system by tracing out the cavities before computing N . We
then compute the reduced negativity NQ which captures the
entanglement between two halves of the qubit subsystem.
While this is not a useful metric for predicting the ultimate
classical simulation difficulty in an MPS or PEPS-type sim-
ulation scheme (where the difficulty scales with the total
bipartite negativity, not just the qubit subsystem’s contribu-
tion), showing volume-law scaling of NQ further bolsters our
argument above that photon loss in the cavities does not fully
disentangle the state. Note also that tracing out the cavities is
equivalent to making measurements on the state (though the
effect of these measurements is nonlocal as described above).
We thus expect NQ to be smaller in this calculation than it
would be for an isolated, unitarily evolving chain, even before
any photon losses have not occurred. In Fig. 4, we show the re-
sults of this calculation. The observed subsystem negativities
at intermediate times (eight cycles) are an average of nearly
three times smaller than those computed for the purely unitary
chain (where there are no measurement effects), but still grow
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FIG. 3. Full system entanglement negativities after Nc cycles of evolution. In the top row, we plot N for parametrizations A [left, (a)]
and B [right, (b); see the “Simulation details” subsection for specific value ranges], and in the bottom row, we plot the same quantity (figures
(c) and (d)) divided by the maximum possible negativity Nmax = (1/2)(

√
NH,eff − 1), where we used NH,eff = (1 + L) × 2L as the cavity

photon population is kept low by photon loss and the full cavity Hilbert space is not explored. In this and all subsequent figures unless
otherwise noted, L = 4 is plotted with blue filled circles, L = 5 (gold boxes), 6 (green diamonds), 7 (red triangles), 8 (purple triangles), and 9
(brown open circles). The results in this and all subsequent figures are averaged over many random protocol instances. Aside from an even-odd
effect where odd L negativities tend to be larger, N /Nmax remains approximately constant as L increases, showing that the system achieves
volume entanglement at intermediate times. However, entanglement does begin to decay after a handful of cycles due to continuous photon
loss from the cavities. While we observe no saturation of N with increasing L, this should occur at some sufficiently large Lmax (see discussion
in text). That said, we expect Lmax to be large enough that classically simulating the system’s evolution will be impossible on any near-term
supercomputer.

exponentially with L, demonstrating that the quantum state of
the qubits is extremely complex.

C. Large-L limits on entanglement

A natural objection to this proposal is that continuous
photon loss from the cavities will ultimately limit entangle-
ment growth in the chain once L becomes sufficiently large
[60–63]. This in turn calls the ultimate difficulty of the prob-
lem into question, since states with bounded entanglement
often have efficient classical representations through matrix
product states or similar constructions [59], though they still
may be very difficult to simulate [64]. Further, recent stud-
ies in random quantum circuits have shown that continuous
(deterministically applied) measurement limits entanglement
growth to an area-law [50–52], a potentially trivializing effect
if entanglement were to saturate at a small enough L. Un-
fortunately, rigorously determining this limit for our protocol
given realistic circuit parameters is an exceptionally difficult
problem that we will not attempt to answer. Instead, we will
consider two methods for roughly estimating it, and show

that both arguments suggest that this L can easily pushed
into ranges beyond the simulation capacity of any forseeable
classical computer.

Inspired by the lower bound calculated in Ref. [65], we
can provide a lower bound for the maximum length scale
for correlations as follows. Let us imagine the Lieb-Robinson
velocity for information propagation is v, photon losses occur
at an average rate 〈ncav〉�C , where 〈ncav〉 is the average photon
density in a cavity during the evolution. Let us further assume
a single loss is sufficient to fully scramble the state, as it
does in RQC. Then the maximum length Lmax is given by the
distance information can propagate before a single loss has
occurred anywhere in the system; since these losses occur at
a total rate L〈ncav〉�C , and the time to entangle one end of the
chain with the other is t = L/v, we find Lmax � √

v/〈ncav〉�C .
For the gmon chain, v can be estimated from the inverse
of the time per iSWAP operation induced by the qubit-qubit
couplers. For our system, this value is around 3.5 ns assuming
gmax = 2π × 40 MHz, a ramp profile similar to that used in
Ref. [9], and that all couplers are turned on simultaneously.
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FIG. 4. Qubit subsystem entanglement negativities after Nc cycles of evolution. In the top row, we plot NQ for for parametrizations A [left,
(a)] and B [right, (b); see the “Simulation details” subsection for specific value ranges], and in the bottom row [(c) and (d)]. we plot the same
quantity divided by the maximum possible subsystem negativity NQ,max = 2floor(L/2)−1. For the system sizes studied NQ tends to continuously
decay with increasing Nc due to interaction with the cavities, as tracing out the cavities to calculate NQ acts as a measurement on the qubit
subsystem (albeit a complex, nonlocal one) even if no photon loss has occurred. However, it still clearly grows as a volume law, indicating
the quantum state of the qubits remains extremely complex even with the cavities traced out. Note that methods for simulating time evolution
which scale exponentially in bipartite entanglement, such as matrix product state representations [59], will scale exponentially in the full
system N and not merely the qubit subsystem entanglement plotted here.

〈ncav〉 is highly protocol dependent but a decent rough es-
timate is 0.05-0.1 based on the results detailed below, and
�C = 10 MHz is a typical loss rate in a readout cavity. This
places Lmax ∼ 17–24; as shown toward the end of this work,
the upper end of that scale pushes into the limits of what
is possible to simulate on near-term classical supercomput-
ers. Further, if our expectation that the classical simulation
difficulty scales exponentially in Lmax is correct, fairly small
reductions in �C can increase the difficulty enormously. And
finally, it is not at all obvious that the long-time value for the
system’s entanglement must be asymptotically zero even with
strong noise, as shown in previous studies [66,67].

D. Negativity after a single photon loss

However, the assumption that a single loss disentangles the
state is empirically false for our protocol, so Lmax could be
much larger. A plausible reason for this, introduced earlier
in the general considerations section, is illustrated in Fig. 2.
Let us for the moment ignore interactions and disorder, and
imagine the photons in the chain to be noninteracting bosons.
Let us further assume, as mentioned above, that all terms are
operated simultaneously. During the evolution, if we assume
�QC(t ) and �C are weak compared to gmax, then for a given

qubit-cavity interaction we only have a significant probability
of adding or removing a photon from the chain (and adding
one to the cavity) if the total energy change in system is
smaller than the minimum of �QC and �C . However, since
the system is delocalized this condition can only be satisfied
if the photon is added to or removed from a propagating
mode, which has approximately equal weight over the entire
lattice. A subsequent loss from the cavity, in other words, thus
measures a highly nonlocal operator, and such measurements
need not disentangle the state. The maximum length scale
in this limit should be set by the mode splitting, which is
approximately 5.8gmax/L near the center of the band for a 1d
chain. Requiring that the loss rate is less than half this gives
Lmax � 72 from the parameters listed above, a much higher
estimate than the lower bound of the previous paragraph.

Of course, interactions, disorder and the qubit-cavity dis-
persive shift all complicate this estimate, and the true value of
Lmax probably lies somewhere in between the two predictions.
Nonetheless, it is clear from these arguments that Lmax can be
increased by reducing �C , and assuming exponential difficulty
scaling such reductions could push Lmax into a classically
intractable range fairly easily. Furthermore, all of these con-
cerns are moot in a 2d implementation, where a grid of 5 × 5
or 4 × 7 qubit-cavity pairs will likely be sufficient to reach
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classical intractability (see the next section for details) without
any worries about the maximum range of correlations. Thus,
while the evolution in our noisy protocol ultimately saturates
in finite-ranged correlations, the range of those correlations
can be quite long. This effect does not keep this protocol
from being a good candidate for simulating a classically hard
quantum sampling problem with real quantum hardware.

We also note that, as mentioned above, the disorder
strengths chosen are weak enough that the system remains de-
localized, and at sufficiently strong local disorder the system
should many-body localize (MBL) [68]. In the MBL regime
the level statistics of the many-body Hamiltonian change and
the system becomes substantially easier to simulate (see, for
example, Ref. [15], and references therein). This difficulty
reduction largely comes from entanglement growth becoming
extremely slow in that case, making matrix product state con-
structions efficient [59]. Interestingly, this argument extends
to the simulation complexity of our engineered noise as well–
as soon as the system many-body localizes, our arguments
about the range of correlations induced by weakly coupled
resonances break down and the effective noise operations act-
ing on the transmon chain become short ranged. While MBL
is strictly defined only for closed systems and often disrupted
by interaction with an environment [69], as we described

FIG. 5. Entanglement negativities averaged over only those tra-
jectories where a single cavity photon loss has occurred during the
12 cycles, for parametrizations A (a) and B (b). These results show
that substantial entanglement persists even after a photon loss (which
acts as a local measurement of a cavity, but an effective nonlocal
measurement of the qubits) has occurred, and that a single incoherent
event does not decorrelate the state.

earlier, short ranged noise is typically trivializing and efficient
classical descriptions may be possible in that case. We thus
restrict our studies to fairly weak disorder in this work.

To support this prediction, we take advantage of the fact
that quantum trajectory simulations allow us to precisely track
the number of photon losses, and in Fig. 5, we present the
entanglement negativity calculated from an average of only
those trajectories where precisely one photon has been lost
by the end of 12 cycles. To create this ensemble, we generate
a large number of trajectories using the same method as in
the full simulation but only include those where one photon
has been lost in the subsequent averaging to construct the
density matrix ρ. As seen in the figure the system appears
to maintain volume entanglement even after a photon loss has
occurred, and in fact the final entanglement at 12 cycles is
slightly larger than in the full simulation for large L, which
we assume reflects the fact that an average of more than one
loss has occurred by that point in the full simulation. These
results indicate that, unlike RQC, while cavity photon loss in
our system does reduce entanglement, it does not completely
destroy it, nor does it decorrelate the state. This suggests
that the lower bound on the maximum range of correlations
Lmax calculated in the previous subsection is too low, and
that volume-law entanglement should persist in this system
to much longer chains, likely beyond the scope of classical
simulation.

E. Output distribution: Number fluctuations, distance
from Porter-Thomas, and incoherent uniform randomness

Having thoroughly studied entanglement generation and
loss in our noisy system, we now examine the output distri-
bution itself. To do so, we use the familiar Kullback-Leibler
divergence [71] to quantify the “distance” between our ob-
served output distribution and other important ones:

DKL(ρA, ρB) ≡
∑

i

PAi ln
PAi

PBi
. (4)

In Fig. 6, we plot the K-L divergence of the full output
distribution in the qubit basis from a Porter-Thomas (P-T)
distribution, as a function of the number of cycles of evolu-
tion, averaged over random instances of each protocol. The
P-T distribution used for comparison is defined over the full
2L-element qubit Hilbert space, and not a restricted subspace
as in the unitary protocol which conserves photon number.
Consistent with quantum delocalized evolution at interme-
diate times, the output distribution becomes very close to a
P-T distribution between 6 and 9 cycles of evolution (for the
simulation parameters chosen, and as seen in the figure, this is
somewhat protocol dependent) before gradually pulling away
at longer times; see Fig. 7 for example output distributions.
Note that since the point of “closest approach” varies from in-
stance to instance the averages plotted here tend overestimate
the minimum distance achieved for a given instance.

What is rather remarkable about these results is that cav-
ity photon losses are already significant (see Fig. 8) by the
time a P-T distribution well fits the observed output, with
(for L = 9) an average of ∼0.9 photons lost by 9 cycles for
parametrization A and ∼0.75 photons lost by 9 cycles for
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FIG. 6. Output statistics, showing significant information scrambling. In this and all subsequent figures unless otherwise noted, L = 4 is
plotted with blue filled circles, 5 (gold boxes), 6 (green diamonds), 7 (red triangles), 8 (purple triangles), 9 (brown open circles), 10 (light
blue open squares), and 11 (yellow open diamonds). The top row corresponds to simulations in parametrization A, the bottom row the same
quantities in parametrization B. [Left, (a) and (d)] Kullback-Leibler divergence from an ideal Porter-Thomas distribution over the entire qubit
Hilbert space, as a function of the number of cycles Nc of evolution. A Porter-Thomas distribution is a key signature of quantum chaotic
evolution; in our protocol both parametrizations come very close to such a distribution, with an average minimum K-L divergence of around
0.02, before slowly pulling away from one at long times as a likely trivial final state is approached. The time to reach such a state is expected
to be many times longer than the window shown here. [Middle, (b) and (e)] Inverse participation ratio (IPR) vs Nc. Consistent with the
Porter-Thomas output and volume-law entanglement, the IPR measurement shows that the system explores a constant fraction of its total
Hilbert space as L grows, demonstrating that an exponentially large amount of classical information is required to represent the state after just
a few cycles of evolution. [Right, (c) and (f)] Fraction of sampled bit strings which are “heavy,” e.g., larger than the median output probability.
Aaronson and Chen [70] have argued that a sufficient fraction, for example 2/3 (blue dashed line) is a strong indicator of classical intractability
for random quantum circuits; a Porter-Thomas distribution produces heavy output in approximately 85% of samples (gold line). All of our
simulations are well above the 2/3 threshold even at fairly long evolution times.

parametrization B. As discussed in the Appendix, this signa-
ture of delocalized evolution (“short time” quantum chaos) is
not observed when considering random incoherent processes
in the qubits, which rapidly drives the system toward trivial
configurations and cannot generate new correlations. Viewed
alongside the persistence of entanglement after a photon loss
discussed in the previous section, these results confirm that
photon loss from a resonantly coupled auxiliary system is
qualitatively different from random qubit error, and leads to
highly nontrivial quantum dynamics.

However, as shown in Fig. 9 there is some “trivializing”
effect to the cavity photon loss, in that the observed distribu-
tion grows closer to incoherent uniform randomness (IUR) at
long times (before eventually reaching a fully occupied lattice
at extremely long times, assuming that no photon loss pro-
cesses balance out the blue sideband terms), consistent with a
trivial final state. Given effort to tailor the protocol to stabi-
lize nontrivial configurations at long times (see, for example,
Refs. [55,72]), we would expect this effect to disappear, but
such considerations are beyond the scope of this work.

Importantly, in both sets of trials (though much more
pronounced in parametrization A), there are clear even-odd
effects; odd L cases have higher values for peak entanglement,
number fluctuations, and average cavity photon population
(and thus, loss rates). The reason for this likely comes from

the choice of cavity detuning—in parametrization A, the
cavity detuning hCi in Eq. (3) is set to zero, whereas all
the hCi are assigned random single photon hopping energies
in parametrization B. As remarked earlier, since �QC,max 

gmax, a photon can only be added or removed from the chain
if it populates a near-resonant propagating mode, and when
we consider the eigenvalues of a single particle hopping on
a 1d chain with open boundary conditions, there is a zero
energy mode for odd L, but not for even L. Thus, while this
simplistic picture is complicated by interactions, disorder, and
the qubit-cavity dispersive shift, it is reasonable to assume
that the odd L chains are on average closer to resonance
with the cavities than the even L chains, and thus interact
with them more strongly. Further, since the density of states of
the interacting system peaks at the center of the spectrum, we
expect some enhancement for odd L even in parametrization
B, where a single particle tunneling energy lines up with the
peak. This explains why odd L chains have larger peak entan-
glement, fluctuations and cavity loss rates than even L chains
do, though we expect this effect to diminish as L becomes
large.

Further, as shown in Fig. 6, we also computed the inverse
participation ratio (IPR), and as is to be expected from our
previous results, our protocol explores an O(1) fraction of
Hilbert space, typically reaching half of the maximum value
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FIG. 7. Distribution of output probabilities for parametrization
A, with L = 9, after three (blue), six (gold), nine (green), and twelve
(red) cycles of evolution, combining the results of 32 protocol in-
stances for a total of 16384 data points per curve. Here, N = 2L is
the qubit Hilbert space size, and the plotted quantity is the average
probability of a given configuration having probability p in the final
output distribution (note that the x axis is rescaled by a factor of
N). The black dashed line, e−N p, corresponds to an ideal Porter-
Thomas distribution, the result of fully chaotic quantum evolution.
At six cycles the distribution is very close to P-T, with an average
K-L divergence of 0.02 from an ideal P-T distribution. For longer
evolutions the system pulls away from it toward a distribution closer
to, but clearly distinct from, incoherent uniform randomness. See the
main text and Figs. (6) and (9) for more details.

of 2L between 6 and 10 cycles, depending on protocol de-
tails. Combined with the exponentially growing entanglement
negativity and the lack of any symmetries to exploit, an ex-
ponential amount of classical information is thus required to
exactly store the evolving quantum state.

F. Output heaviness

Recently, Aaronson and Chen provided an alternative
metric for quantum sampling hardness, called heavy output
generation (HOG) [70]. The HOG problem is stated as fol-
lows: Given a suitably randomized quantum circuit, generate
an output distribution for which at least two thirds of the
observed samples {x1, . . . , xN } have a higher probability than
the median value of all probabilities {Pk} in the full output
distribution. Aaronson and Chen proved that if a plausible
conjecture called QAUTH is true, no polynomial-time classi-
cal algorithm can solve the HOG problem in the most general
cases. Note that for a Porter-Thomas distribution, approxi-
mately 85% of the sampled outcomes will have greater than
median probability, so a perfectly executed random quantum
circuit or unitary Bose-Hubbard evolution easily satisfies the
heavy output criteria. Conversely, an RQC executed with poor
fidelity produces a distribution very close to IUR, and does
not satisfy the heavy output criteria, though it may still be
exponentially difficult to reproduce classically.

In practice, a heavy output distribution is not completely
sufficient to prove classical hardness, given that classically
easy examples, such as low-depth circuits or ones composed
entirely of Clifford gates, can also have heavy output dis-
tributions. However, absent any obvious simplifying factors,

heavy output can be a valuable metric for classical difficulty
[73], so it is reasonable to check if our simulations produce
it.3 In Fig. 6, we plot the heavy output fractions observed in
both parmetrizations; all simulations show an output heav-
iness substantially greater than 2/3. These results clearly
demonstrate that our protocols satisfy the heavy output crite-
ria, bolstering our expectations for classical difficulty. When
combined with volume-law entanglement scaling, full Hilbert
space exploration, output distributions showing signatures of
quantum chaos, high effective circuit depths, and the lack of
any symmetries to simplify the evolution, we find it extremely
doubtful that any polynomial-time classical algorithm could
reproduce our results once L becomes large.

Having studied the output of our protocol in detail, we now
turn to the question of the asymptotic classical difficulty to
simulate it. We shall see that, due to the enlarged Hilbert space
from including lossy cavities in the evolution, the threshold
beyond which classical simulation is impossible should lie at
substantially smaller system sizes than in the unitarily evolv-
ing chain upon which our protocol is based. We very roughly
estimate that values of L in the mid to high twenties are
likely beyond the reach of near-term classical supercomputers,
though we cannot rule out the possibility of more efficient
simulation algorithms that would push this threshold higher.

V. CLASSICAL DIFFICULTY ESTIMATES

We now consider the projected difficulty of classically
simulating the evolution in this circuit as L becomes large.
We assume throughout this section that the most efficient
method is an average over quantum trajectories based on
direct evolution of the system’s full wave function (in an
appropriately truncated basis). We offer no formal proof that
a more efficient algorithm does not exist, but as we discuss
below, exponentially growing entanglement means that matrix
product methods are unlikely to provide a significant advan-
tage over direct evolution (see the Appendix for more details),
and the partitioning and decomposition methods used to sim-
plify random quantum circuit simulations [18–25] are likely
not applicable to continuous time evolution under a varying
H (t ), with or without noise. Further, the cost of those methods
scales exponentially with gate depth, and given the large gmax,
6–8 cycles of evolution in our chain roughly corresponds to a
depth of 42–56 in RQC (where each qubit experiences a CZ an
average of once per two cycles). In other words, evolution in
this system corresponds to a relatively deep quantum circuit,
so any method which scales exponentially in gate depth will
likely fail to accurately capture its evolution. Given these
details, it is reasonable to conclude that direct wave-function

3Formally, the hardness proof for HOG assumes the output distribu-
tion is generated by a random quantum circuit, and while instances of
our protocol can of course be represented as a subset of that family
given that time evolution can be Trotterized and nonunitary opera-
tions can be modeled through coupling to additional ancillary qubits,
the constraints on randomness that result would make it very much an
edge case. It is thus possible that the HOG hardness proof could be
shown to not apply to our system, though we nonetheless consider
heavy output in our protocol to further bolster our arguments for
classical simulation difficulty.
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FIG. 8. Number fluctuations, cavity photon populations, and cavity photon loss. The top row corresponds to simulations in parametrization
A, the bottom row the same quantities in parametrization B. [Left, (a) and (d)] Average number of photons added to the qubits vs Nc, which
grows extensively with L, though with significant even-odd effects in parametrization A (see text for details). [Middle, (b) and (e)] Average
total cavity photon population, which also grows extensively, though with a small prefactor due to a combination of relatively weak coupling
to resonant modes in the qubit chain and the significant loss rate. This quantity has important implications for the simulation difficulty; the
larger it is, the more cavity photon states need to be included in the classical Hilbert space for faithful simulations. [Right, (c) and (f)] Average
number of cavity photons lost. This quantity is O(1) near the end of the evolution time, showing that the effects of noise cannot be ignored.

FIG. 9. Output statistics, showing that simple classical distributions do not capture the output of our system. The top row corresponds to
simulations in parametrization A, the bottom row the same quantities in parametrization B. [Left, (a) and (c)] K-L divergence from incoherent
uniform randomness (all Pk = 2−L), the result of noise in a random quantum circuit; such a distribution does not well approximate our system
even when photon loss has become significant. The dashed line at ∼0.422 is the K-L divergence between IUR and an ideal Porter-Thomas
distribution. [Right, (b) and (d)] K-L divergence from a reweighted variant of IUR, where relative probabilities are Poisson-weighted [see
Eq. (A4)] by the total number of added particles beyond the population of the initial state; while this distribution is a better representation than
pure IUR, it still does not capture the complex quantum structure generated in evolution.
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FIG. 10. Total wave function size vs L, in gigabytes, for a range
of possible Hilbert space truncations. As discussed in the text, we
keep up to {2, 1} or {3, 2} { doublons,triplons }, a manifold of states
with total qubit photon numbers in the range {0.35L, 0.65L}, and
a maximum of L/10, L/8, L/6, L/5, or L/4 total photons in the
cavities (all fractions are rounded to the nearest integer). Dashed lines
correspond to a megabyte, gigabyte, terabyte, petabyte, and exabyte,
respectively.

evolution will very likely be the most efficient simulation
method.

Proceeding from this assumption, we build on the esti-
mates in Ref. [9] through the following inclusions: A total
transmon Hilbert space consisting of O(CL) (for some small
C) manifolds with a fixed number M of photons in each, a
resonator Hilbert space including up to L/D photons across
all the resonators (for some D again depending on the details
of the protocol) and a total of Nt (L) trajectories that must be
averaged over. We assume that attempting to precisely predict
the probabilities Pk for real quantum hardware would forbid
us from employing the qubit subspace truncation used in this
work; a more precise calculation would instead truncate the
space of double and triple occupancies to a fixed number of
bands.

First, we estimate the memory requirements for estimating
the Pk based on direct wave-function evolution. We plot a
range of values, corresponding to simulations which keep up
to {2, 1} or {3, 2} doublons/triplons in the qubit Hilbert space,
and a manifold of states with total qubit photon numbers in
the range {0.35L, 0.65L} (fractions rounded to the nearest
integer). We then tensor this with a cavity Hilbert space con-
taining no double occupancies and a maximum of L/10, L/8,
L/6, L/5, or L/4 total photons in the cavities, fractions again
rounded to the nearest integer. The number of photons that
need to be kept in the cavities depends on protocol details;
as a very rough estimate, assuming that we need to include
configurations with up to L/D cavity photons (rounded to the
nearest integer) to achieve reasonable fidelity, the results of
Fig. 14 suggest that D is in the range of 6 to 8. Assuming
sixteen bytes per entry for double precision complex numbers,
the total wave-function storage sizes are plotted in Fig. 10.
The petabyte range is reached for L between 21 and 26; the
exabyte range between 27 and 34.

Second, we estimate the time costs for this calculation.
As argued in Ref. [9], the cost to unitarily evolve the full

wave function for L sites and a total time T scales as L2T NH ,
where NH is the Hilbert space size; this estimate comes from
O(L) terms in H (t ), a cost per sparse matrix-vector multiplica-
tion proportional to NH , and a total number of matrix-vector
multiplications proportional to LT , since the minimum time
step dt scales as 1/L. The cost to evaluate a single trajectory
when noise is included scales similarly. Based on this and
the empirical scaling of their simulations at smaller L, they
provide a very rough estimate of 37 hours to fully evolve a 70
TB wave function over 1000 4th order Runge-Kutta steps on
a 4096 node cluster with 1.2 GB/s per socket of node-to-node
memory bandwidth.

We expect that evolution with noise should take consid-
erably longer. At the single trajectory level, the time step
dt required for faithful simulation in a trajectory method is
smaller than for unitary evolution. In the unitary case errors in
the wave-function norm from each evolution step can be sim-
ply renormalized away, whereas in a noisy trajectory method
decay of the wave-function norm is tracked and used to deter-
mine when to randomly insert noise operations (see Sec. III.D
of Ref. [47]). Consequently, a smaller timestep is required.
More importantly, many trajectories must be evaluated for an
accurate simulation. Comparing trajectory simulations with
the full density matrix evolution for L running from 4 to 8
led us to a very rough estimate that approximately 3L × Nc

trajectories were needed to evolve an L-site system over Nc

cycles, with an output distribution that had an average K-L
divergence from the exact result of 0.01 or less (we typically
used 6L2 trajectories in our simulations). Note that due to
the nonlinearity intrinsic to how the K-L divergence is cal-
culated, the K-L divergence from sampling a finite number of
trajectories Nt decreases as 1/Nt , not 1/

√
Nt as in most other

quantities.4

This consideration aside, the estimate 3L × Nc stretches
into the hundreds when the wave-function approaches the
PB scale, and suggests that runtime may ultimately prove
to be the limiting factor in an accurate simulation, given
that parallelization of the trajectories would quickly become
memory-limited even on the largest current supercomputers.
Note that, given experimental error the infidelity of the real
experiment would likely be much worse than this so one could
get away with sampling fewer trajectories, though given the
need for a smaller dt and other complications we still expect
that runtime should be a significant bottleneck. For further evi-
dence that the need to average over trajectories is unavoidable,
we also simulated evolution with the cavity loss rate �C set to
zero (but still including the truncated cavity Hilbert space and
the qubit-cavity interaction terms), and compared the result
of that perfectly unitary evolution to the full simulation. As
shown in Fig. 11, the fidelity drops to zero within just a few

4To see why this is, let Pk,ex be the exact probability of obtaining
bitstring k, and let Pk,Nt be an approximation computed from Nt

trajectories. We can write Pk,Nt = Pk,ex + δPk , where the individual
δPk scale as 1/

√
Nt but due to normalization,

∑
k δPk = 0 regardless

of how few trajectories are sampled. If we then plug this into (4)
and expand the logarithm, the lowest order nonvanishing term is
1
2

∑
k

(δPk )2

Pk,ex
, which is quadratic in the δPk and thus scales as 1/Nt
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FIG. 11. Fidelity of a simulation with no cavity photon loss,
compared to the full simulation, for parametrization A. For all L > 4,
the results of the two methods rapidly diverge, indicating that our
noisy protocol cannot be simulated with noise-free methods. This
implies that many trajectories will have to be sampled to obtain an
accurate result, significantly increasing the runtime of a classical
simulation. For a precise definition of the fidelity measure used here,
see Appendix.

cycles, confirming that the noise processes cannot be ignored
in classical simulation.

VI. CONCLUSIONS AND OUTLOOK

In this work, we presented a simple modification to a lead-
ing quantum sampling problem– weak but resonant coupling
to lossy cavities– and showed that it leads to dramatic changes
in the quantum dynamics. By considering a wide range of
metrics in direct numerical simulation, we showed that fea-
tures suggesting classical intractability, including volume-law
entanglement and an output distribution consistent with quan-
tum chaotic evolution at intermediate times, persist despite the
presence of strong noise in the system. These results suggest
that quantum sampling problems including noise in their def-
inition can still be extremely difficult to solve with classical
machines. This is doubly true for superconducting platforms,
where lossy elements in the form of readout cavities are al-
ready present for qubit measurement, and involving them in
the state’s evolution can greatly increase the quantum simula-
tion complexity without increasing the hardware complexity
of the implementation. These methods, or variations of them,
likely represent the most difficult simulation problem that can
be practically engineered with a given number of transmon
qubits (and associated measurement cavities).

For a variety of reasons, the basic protocol in this work,
and the parameters used in its numerical simulation, were
closely tied to the previously reported gmon chain experiment.
However, the fundamental mechanism– pulses of delocal-
ized evolution through tunneling terms combined with much
weaker, resonant, driven interactions coupling the primary
system to a lossy auxiliary one—is fairly generic, and we
have no doubts that variations of it would produce simi-
lar results. That said, when compared to unitary sampling
problems such as the isolated Bose-Hubbard chain or RQC,
families of dissipative protocols can be qualitatively more

sensitive to changes in protocol details (e.g., what classes of
operator to use in HP, the choice of which sideband terms
to employ, the choice of resonance energies for the lossy
objects, etc.), and some choices may lead to results which
can be efficiently reproduced classically. For example, simply
alternating the qubit-cavity and qubit-coupler pulses, rather
than operating them simultaneously as done in this work, can
lead to a situation where the qubits are repeatedly subjected
to effective local measurements, which disentangle the state
and open the door to efficient classical simulations. Further,
it strikes us as unlikely on general grounds for experimen-
tally realistic protocols with substantial dissipative elements
to exhibit chaotic behavior at arbitrarily long times, though
the intermediate-time behavior of the protocols considered
in this work certainly appears to be, and the time scale of
quantum chaos can be increased by reducing the loss rate of
the dissipative elements.

Finally, the techniques described in this work allow for
an intriguing future application: The simulation of thermal
many-body states using superconducting circuits. Multiple
previous proposals [74,75] have argued that a thermal bath
can be simulated in interacting photon systems using suitably
complex bath structures, though when these constructions are
combined with intrinsic qubit noise the character of the result-
ing steady state, and its effective temperature, remain an open
question. However, methods developed in studying cold atoms
[76] allow the system’s temperature to be extracted from local
density fluctuations in the presence of a slowly varying po-
tential (even if the underlying microscopic Hamiltonian is not
known), so sufficiently large circuits could be used to probe
the thermodynamics of novel interacting boson systems. In
cases where the system is small or analytically simple enough
to permit a classical solution, this measure could be further
bolstered by directly comparing the observed output distri-
bution to a theoretical model using the K-L divergence or
a similar sampling metric. These approaches could greatly
expand the space of models that can be probed in analog
quantum simulation.
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APPENDIX

1. More simulation details

Here, we expand in more detail on the numerical methods
we used to obtain our results. Specifically, to simplify the
calculation, we make two approximations. First, we truncate
the cavity Hilbert space to include at most one photon per
cavity, and cap the maximum number of cavity photons at a
fixed value, respecting the fact that the cavities are lossy, begin
in an empty state, and are coupled relatively weakly to the
qubits, so their average photon populations should be low. We
repeat our calculations with varying maximum cavity photon
number, and track the fidelity loss from the truncation as a way
of estimating the likely number of photons that would need to
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be kept in simulations at larger L. The effects of this truncation
(and potential fidelity loss in simulations) is considered in
detail below.

Our second approximation is to truncate the qubit Hilbert
space to zero or one photon per qubit, and in doing so we in-
clude additional qubit-qubit interactions (computed in second
order perturbation theory) to account for our having integrated
out states |2〉 and higher. As described in Ref. [9] this is
not expected to be a quantitatively good approximation for
long times or large L, but it should not qualitatively change
the behavior we are primarily interested in, such as bipartite
entanglement, information scrambling, inverse participation
ratios, and so on. We make this approximation primarily to
avoid having to perform the complex task of pulse shaping to
suppress local |2〉 and |3〉 states, which would be a substantial
effort ultimately not relevant to the conclusions we make
in this work. Specifically, perturbatively eliminating the |2〉
state generates nearest neighbor potential interactions and a
mediated hopping term. For a given three sites, these terms
take the form

H (t ) = −g(t )(a†
1a2 + a†

2a3 + H.c.) − δ

3∑
i=1

|2i〉〈2i| (A1)

→ −g(t )(σ+
1 σ−

2 + σ+
2 σ−

3 + H.c.)

+4g(t )2

δ

[
(n1n2 + n2n3) + 1

2

(
σ+

1 n2σ
−
3 + H.c.

)]
,

where ni ≡ (σ z
i + 1)/2. Our total Hamiltonian in simulation

is thus equal to

H (t ) =
L−1∑
i=1

(
−g(t )(σ+

i σ−
i+1 + H.c.) + 4g(t )2

δ
nini+1

)

+ 2g(t )2

δ

L−2∑
i=1

(σ+
i ni+1σ

−
i+2 + H.c.) (A2)

+
L∑

i=1

[hini + hCinCi + �ninCi]

+�(t )
L∑

i=1

(
σ+

i σ+
Ci + H.c.

)
.

It is this time-dependent Hamiltonian, extended to larger
chains, that we use in our simulations. Note that the Hamil-
tonian is not symmetric about half filling (L/2 photons in
the qubits), as is to be expected from the underlying Bose-
Hubbard model it approximates. Further, for the parameters
we choose, the interaction terms in the first and second lines
are not small, for while they are smaller than g(t ) they are
larger than the disorder strength and qubit-cavity interactions,
and thus play a significant role in the physics. However, even
in the limit of δ → ∞ where the interactions vanish and
the isolated chain is integrable, interactions with the cavities
break integrability and would likely still lead to the quasi-
chaotic dynamics we observe here.

2. Chaotic behavior and delocalized evolution
in a noisy qubit chain

Repeatedly in this work, we drawn comparisons between
our system and unitarily evolving variants which are known
to display features of quantum chaos. We want to discuss that
issue in more depth here, to further clarify precisely what
these comparisons do (and do not) mean.

First off, we do not claim that our noisily evolving chain, or
any obvious generalization of it, meets the strict definition of
quantum chaos, since chaotic behavior itself is an asymptotic
statement about long times and the nontriviality of our work
lies in the short and intermediate time regimes. In comparison
to canonical examples such as the dissipative quantum kicked
top [77–79], we do not compute traditional measures of chaos
such as eigenvalues of the time-evolution superoperator, since
those measures would be prohibitively expensive in our case.
Further, eigenvalues of the superoperator would only be well
defined if we used the same operation each cycle, and not
the randomized pulse sequence simulated. Generalizing these
measures to the full many-body case and an effort to do so is
beyond the scope of this article.

We instead include a measure of “chaos”—statistical
distance from a Porter-Thomas distribution—to draw com-
parison to the more general case of delocalized quantum
evolution far from the ground state of a system. Specifi-
cally, chaotic behavior empirically strengthens computational
hardness assumptions, in that it implies strict precision re-
quirements for any approximate description of the dynamics.
But at an intuitive level, the bulk of the difficulty arises from
the fact that the evolution is both volume entangling (thus
requiring an exponentially growing amount of information
to describe the wave function) and disordered, so that we
cannot expect any simplifications from analytical methods or
appeals to symmetries. As discussed and cited earlier, this
type of evolution generically produces Porter-Thomas output
in the appropriate basis. The fact that our system displays
this phenomenological feature, along with our measures of
volume-scaling entanglement, shows that this type of evolu-
tion can still happen in the presence of significant noise, and
bolsters our expectations for computational hardness.

3. Fidelity loss from qubit error

In the main text, we did not consider the effect of random
qubit error on the output distribution and performance of our
protocol. We do so extensively here. To discuss the effect
of noise we must first define a fidelity metric. Throughout
this work we will use a simple, and experimentally relevant,
definition of fidelity based on the K-L divergence described
above:

F (Pobs) ≡ 1 − DKL(Pideal, Pobs)

DKL(Pideal, PTC )
. (A3)

Here, Pideal is the probability distribution of a perfectly exe-
cuted instance of the protocol, Pobs is the observed result of
the experiment (likely including noise), and PTC is a trivial
classical distribution, the choice of which depends on pro-
tocol details. While this does not coincide with the standard
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definition of fidelity, it captures a notion of statistical distance.
Note that while for RQC the choice of trivial distribution
is not fundamental [5], the most convenient is incoherent
randomness (IUR), where all Pi = 1/NA for an output space
of dimension NA. For the unitary protocol initialized with
Nph photons in the qubits, NA = ( L

Nph

)
. In cases where F falls

below zero, we assume it to be zero; for a Porter-Thomas
distribution, DKL(PPT , PIUR) = 1 − γ � 0.423, where γ is
the Euler-Mascheroni constant. The choice to normalize the
K-L divergence based on the divergence from trivial classical
distributions is motivated by the empirically observed results
from RQC, where IUR is the distribution that results from one
or more Pauli errors occurring during the evolution, thus send-
ing F to zero. It also in some sense measures performance
above a trivial classical result; since simulating the system’s
evolution with an IUR distribution is computationally “free”
it makes sense to let that level of accuracy be zero fidelity, and
let nonzero fidelities thus correspond to better approximations
of the intended quantum dynamics. Note that when studying
fidelities for the intentionally noisy protocol that we focus on
in this work, the ideal simulation Pideal includes the intentional
noise sources {Oi} (in our case, cavity photon loss), but not
unintentional ones (control errors in the operations, phase and
loss errors in the qubits, and so forth).

To ground our results, we first consider random qubit error,
in the form of white noise phase errors and T1 photon loss,
applied to the unitarily evolving chain without qubit-cavity
interactions. Since the applied Hamiltonian conserves total
photon number, a single photon loss instantly sends the fi-
delity to zero, though we can eliminate these events, as well
as most SPAM errors, through post-selection. Random photon
addition has the same effect, though this is an empirically
much weaker noise channel in superconducting qubits. Phase
noise, on the other hand, is not detectable, and reduces the
fidelity significantly, though unlike RQC a single error does
not appear to send F strictly to zero; as shown in Fig. 12
averaging over the insertion of a single error leads to F �
0.25 after 12 cycles of evolution for the parameters described
above. Averaging over two error insertions gives F � 0.076,
a further reduction by a factor of 3.3, suggesting that fidelity
decreases exponentially with the number of phase errors, as
we would expect for a system with chaotic dynamics. If
we use an alternative fidelity measure based on the absolute
distance DAbs(PA, PB) ≡ 1

2

∑
i |PAi − PBi| we find somewhat

smaller final fidelities for one and two phase errors, but in
both cases F remains nonzero.5 Note that since phase errors
are along the directions of both the initial product state and

5We hypothesize that a small but nonzero fidelity persists due to the
structure of the many-body “gate,” where all qubit-qubit exchange
couplers are turned on simultaneously. Since the qubit nonlinearity
strongly, though not completely, suppresses double occupancies, spin
configurations where many sites in a row are all occupied by photons
are less likely to be produced by applications of the coupler pulse
than ones where occupied and empty sites alternate. Consequently,
even in cases where phase errors have occurred, the same relative bi-
ases away from particular classes of states apply, and the divergence
between the error trajectories and the ideal ones is slightly lower than
between the ideal trajectory and IUR. Note that if this hypothesis is

FIG. 12. Fidelity (a) and K-L divergence (b) from incoherent
uniform randomness (bottom) for phase errors in the purely unitary
protocol with no qubit-cavity interactions, for L running from 6 to 9.
The colors used in this plot differ from other figures in this work–
in the top cluster of curves, L = 6 is blue, 7 is gold, 8 is green,
and 9 is red. In the bottom cluster, 6 is purple, 7 is brown, 8 is
light blue, and 9 is yellow. In the higher (in fidelity and divergence
from IUR) clusters of curves we average over a single phase error
insertion during 12 cycles of evolution, and the lower clusters of
curves correspond to averaging over two random phase error inser-
tions. Somewhat surprisingly, the fidelity loss from a phase error is
highest for L = 6 and decreases slightly as L increases toward 9,
though this effect would be swamped by the linearly increasing rate
of errors with L in a real experiment. As shown in the second plot,
the output distribution averaged over error insertions is difficult to
distinguish from incoherent uniform randomness, where all states
with the appropriate total photon number have equal probability. A
single photon loss error sends F to zero.

final qubit measurement, they can only influence the output
distribution through changing the result of subsequent coupler
pulses, and thus have less influence at short times. This effect
can be seen in real experimental data (see Fig. 4 of Ref. [9]),
and in numerical simulations; we found that averaging a single
phase error over just three cycles instead of twelve leaves a
final fidelity of approximately 0.5, twice the fidelity obtained
when averaging over a single error occurred in twelve cycles
of evolution.

correct, we expect its effect to be diminished in 2d, where photons
cannot blockade each others’ motion to the same extent, and residual
fidelities after phase errors will likely be closer to zero.
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We find similar results in our noisily evolving chain,
though care must be taken in defining a fidelity metric in that
case, due to the nonconservation of photon number. In our
noisily evolving chain with incoherent (if quantum correlated)
particle addition, we can better approximate the final distribu-
tion with a re-weighted modification of the IUR distribution,
which we call WIUR, where the individual bit string probabil-
ities are reweighted by a function of their total qubit photon
number, assuming a Poisson distribution of random addition
or loss events starting from the known initial photon number.
WIUR is also computationally trivial distribution, and like
IUR it does not accurately capture the output distribution of
our protocol, but does provide a somewhat better approxi-
mation to the full system dynamics than IUR over the full
2L-element qubit Hilbert space. For concreteness, assume the
system begins with N0 photons in the qubits, and an average of
δN photons are added after Nc cycles of evolution.6 We then
generate the WIUR distribution by assigning all bitstrings |k〉
probabilities given by

Pk = 0 {Nk < N0}, (A4)

= 1

W

(
L

Nk

)−1

e−δN (δN )(Nk−N0 )

(Nk − N0)!
{Nk � N0}.

Here, Nk is the number of photons in bitstring |k〉 and W is a
normalization factor such that

∑
k Pk = 1. Analogues of this

distribution can be easily defined for other protocol choices.
Using this distribution to replace the IUR distribution in (A3),
we can then estimate reductions to F by averaging the evolu-
tion of a given protocol over the insertion of a single photon
loss error, or one or two phase errors as in the unitary protocol
above.

As in the unitary protocol, we find that a single photon
addition or loss error leads to zero fidelity, though this was not
guaranteed a priori in the noisy chain since photon number
is not conserved. However, unlike in the unitary protocol,
these events cannot be removed by post-selection, and so
will directly reduce the observed fidelity in an experiment.
We find that z errors likewise reduce the fidelity, though as
shown in Fig. 13 the extent to which one or two z errors
reduces F is much more variable, with the system displaying
an apparent transition toward phase noise resilience when the
number of photons added by the cavities is more than ∼1. This
is puzzling because, as seen earlier, other complexity-related
observables such as entanglement, divergences from Porter-
Thomas and IUR, and IPR, display similar behavior to the
unitary case, and given this one would expect similar fragility
to qubit phase noise in our noisily evolving chain.

6While qubit z errors will scramble the relative amplitudes of states
within a given band of fixed photon number, we do not expect them
to significantly change the average number of photon creation or
loss events induced by the cavities. This statement assumes that the
positions and times of z errors are being averaged over, and may not
be the case for comparing the full output distribution of an error-free
protocol instance with one where one or more z errors occur at
specific point(s) in space-time.

FIG. 13. Fidelity loss from one (a) or two (b) z errors inserted
at random space-time points over 12 cycles in parametrization A,
for L = 6, 7, 8, and 9 (blue circles, gold squares, green diamonds,
red triangles). At larger L, or more tellingly, higher numbers of
photons added by the cavity interactions, the system’s susceptibility
to phase noise markedly decreases. The dashed lines for L = 7 and 9
correspond to initializing the system with one additional photon in
the qubits (3 total for L = 7 and 4 total for L = 9), which reduces
the average number of photons added through interaction with the
cavities; those instances’ sensitivity to phase noise is substantially
higher. A possible reason for this is discussed in the main text. As in
the unitary protocol, single photon loss error sends F to zero.

One possible reason for this could be a measurement effect
from photon loss in the cavities—as discussed earlier, a pho-
ton loss from a cavity projects the system’s full wave function
onto the subspace where a photon has been added or removed
from the qubit chain via a very complex nonlocal operation,
and that projection may decrease the resulting scrambling
from a qubit z error that occurred prior to it. If it is likely
that a cavity-mediated photon addition occurs after the z error
has, then one would assume the fidelity loss from the z error
could be lower. As shown in Fig. 13, simply initializing the
system with one additional photon for L = 7 and 9, which cor-
respondingly reduces the average number of photons added by
20%–30%, is sufficient to eliminate the phase noise resilience
of those instances, bolstering this interpretation.

If this projection onto the action of nonlocal operators is
indeed responsible for suppressing phase noise, one might
naturally worry that it could lead to routes to efficient clas-
sical simulation, if the nonlocal operators themselves can be
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straightforwardly computed. We emphasize however that this
should not be the case. As argued earlier, computing the
appropriate matrix elements requires detailed knowledge of
high-energy excited states (near the middle of the system’s full
spectrum) of an interacting system with disorder, and while
we might be able to make predictions about instantaneous
eigenstates near the ground state using perturbation theory or
Arnoldi diagonalization, both methods break down once we
go higher in the spectrum, necessitating the diagonalization of
the full Hamiltonian. Even just focusing on the qubit subspace
and ignoring the effect of double occupancies, the cost of
doing so is O(22L ) space and O(23L ) time, making these oper-
ators impossible to compute in practice once the system gets
reasonably large. Further, this argument likely applies to any
simulation method which attempts to eliminate the cavities by
constructing new effective Lindblad operators for the qubits.
For the parameters considered in this work, �QC > �C , so
the internal dynamics of the cavities cannot be ignored and
they cannot be treated as purely Markovian noise sources.
However, even if this were not the case, when we include
relatively sharp energy modulation of the matrix elements
of a local creation or annihilation operator a†

i , the resulting
transformed operator ã†

i is no longer sparse, requiring a cost
O(22L ) to store it and O(23L ) operations to compute it. As we
shall see below in the classical difficulty estimates section,
this scaling is actually worse than the time and memory costs
of direct time evolution in a truncated basis, which does not
involve any uncontrolled approximations.

Given realistic numbers, the fidelities achievable in this
protocol are reasonably good. The previous unitary chain
experiment reported fidelity reductions of approximately 5%
per qubit for state preparation and measurement (which was
largely eliminated through post-selection), and 0.4% per qubit
per cycle for phase and control error accumulated during evo-
lution. Assuming (a) no improvement in SPAM error and (b)
no net increase in phase/control error due to the introduction
of the sideband terms, 27 qubits evolved for 9 cycles would
have an experimental fidelity of approximately 9.5%, which
is still good enough to clearly distinguish the contributions
from quantum dynamics to the observed output, and an order
of magnitude larger than typical fidelity targets for RQC.
Since SPAM error well below 5% has been realized in other
experiments, it is reasonable to assume this could be brought
down to 2% with suitable hardware refinement, which would
increase the fidelity to 22%. Improvement in the per-cycle
error is a trickier issue, as the protocol’s apparent reduced
sensitivity to phase noise would likely be balanced to some
degree by the introduction of the sideband terms, which ob-
viously bring with them additional error sources that would
have to be carefully calibrated away.

4. Fidelity versus number of cavity photons in simulation

While the cavity photon populations are not measured in
our protocol—indeed, the cavities themselves are expected
to be used to projectively measure the qubits, erasing any
information about their own state—they must be included in
the system’s Hilbert space for an accurate classical simulation.
However, due to the fast loss rate and comparatively weak

FIG. 14. Fidelity [defined in Eq. (A3)] after restricting the sys-
tem to have at most one photon in the cavity Hilbert space (in
comparison to truncating it to at most two photons), for parametriza-
tions A and B [(a) and (b)], for L running from 4 to 11, using
simulation parameters described in the text. These fidelities give a
rough estimate of how many cavity photons need to be included in
the cavity Hilbert space for an accurate simulation, and thus have
important implications for the classical simulation difficulty of our
protocol.

interaction between cavities and qubits, the actual photon pop-
ulations in the cavities are expected to be low, and as a result
substantial savings can be attained in classical simulation by
truncating the maximum number of photons in the cavity
Hilbert space. Doing so will reduce the fidelity relative to a
full simulation including the entire cavity Hilbert space, but
by precisely how much is a matter that must be estimated in
numerical simulation.

In Fig. 14, we plot the fidelity loss from truncating from a
maximum of two photons in the cavities (which we expect
to be sufficient for the system sizes studied) to just one.
These fidelity losses are important, since they can be used
to estimate the classical simulation difficulty. As we will de-
scribe shortly, for methods which store the full evolving wave
function, increasing the maximum number of cavity photons
increases the size of the state and the time costs to evolve
it. For methods which scale exponentially in entanglement,
such as MPS or tensor network constructions, higher cavity
photon populations increase the total explored Hilbert space
and thus the maximum possible entanglement of the evolving
state; in either case, higher cavity photon populations suggest
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a more complex classical simulation is necessary to accurately
capture the system’s evolution.

5. Classical simulation difficulty: Matrix product state methods

In the estimates of classical simulation difficulty provided
in the main text, we assumed that direct integration of the
Lindblad equation (via quantum trajectories) in a truncated
Hilbert space would be the most efficient simulation method.
An obvious possible objection to this is that matrix product
state (MPS) methods, which have time and memory costs that
scale exponentially in the system’s total entanglement and not
Hilbert space size, may prove more efficient. Given the many
successes of MPS methods in other contexts [59], it is natural
to ask whether or not they could simplify the simulation of
our noisy chain. Note that these questions likely do not apply
in a 2d implementation, where we expect most of our claims
about entanglement and complexity to still hold, but MPS or
tensor network methods are significantly less effective.

Assuming that the volume entanglement scaling we ob-
served in our simulations persists to larger L, we expect that
this should not be the case. The memory cost to store an MPS
wave function over L sites with negativity N is approximately
4LdN 2 complex numbers, where Nmax � √

NH/2, d is the
local dimension of each site and NH is the size of the full
Hilbert space. Treating each qubit-cavity pair as a composite
object and including states up through |3〉 gives d = 8 for
our chain. The cost to unitarily time evolve such a state is
higher by a factor proportional to d2N . MPS methods can
be used in noisy systems, through for example the quantum
trajectory methods in [80,81]. However, the memory cost of
a quantum trajectory simulation using MPS states is based
on the negativity of a typical trajectory, and not the averaged
negativity, and this can be substantially higher since the sys-
tem rapidly re-entangles after a photon loss. In Fig. 15, we
calculate the average per-trajectory negativity in our chain,
and show that, unlike the full dynamics averaged over random
quantum jumps, it does not decay with time and remains an
O(1) fraction of Nmax. We attribute this difference to the
system rapidly re-entangling after a photon loss; unlike the
full system the entanglement of the evolving state in a single
trajectory is not suppressed since we are not averaging over
different locations (in time and space) for the photon loss
operator insertions.

Consider also the decay of entanglement versus average
number of photon losses, discussed earlier in this work, which
would be relevant to methods which scale with the average
negativity and not the per-trajectory negativity. We found that
after a sufficiently long time, for an average of p cavity pho-
ton losses the bipartite negativity scales as N (p) � N0e−cL p,
where N0 ∝ Nmax and cL depends on L and protocol details,
and is generally close to but slightly less than 1. Since p scales
linearly with L and the number of cycles (see Fig. 8 ), extrapo-
lating to L = 27 at 8 cycles gives p � 2.7 for parametrization
A and p � 2.25 for parametrization B, the resulting entangle-
ment loss assuming cL = 1 should give a negativity equivalent
to that of a volume-entangled system with between six and
eight fewer total qubit degrees of freedom (e.g., a total system
Hilbert space smaller by a factor between 64 and 256). As an

FIG. 15. Average per-trajectory entanglement negativity (a), and
the same quantities plotted as a ratio of N to the square root of the
total Hilbert space size,

√
NH (b). Unlike the negativity of the full

simulation shown in Fig. 3 (which is averaged over many random
trajectories), the per-trajectory negativity does not appreciably decay
at long times, since the system can rapidly re-entangle after a cavity
photon loss. As discussed in the text, this result suggests that matrix
product state based methods for simulation evolution in our protocol
will not be efficient and likely will exhibit worse scaling than direct
wave-function evolution.

alternative estimate, we took the negativity measured at 7, 8,
or 9 cycles for each protocol as a function of L, and fit that
to ANmax(L)2−dL, where Nmax is the maximum possible neg-
ativity assuming at most two photons in the cavities and A and
d are fitting parameters; those fits returned values of d ranging
from 0.08 to 0.13, and thus predict a negativity equivalent to
true volume entanglement with 4–7 fewer qubits for L = 27
at 8 cycles, a nearly identical range. This is significant, but
when the additional time evolution cost of d2N is taken into
account we expect that MPS methods should still be substan-
tially less efficient than direct Schrodinger evolution averaged
over trajectories. These results suggest that MPS simulation
methods will be more expensive than the full wave-function
evolution, particularly given that runtime could prove to be a
bottleneck before memory does, due to the large number of
trajectories involved in a faithful simulation.

All that said, one could attempt a matrix product sim-
ulation where the total entanglement is bounded to reduce
computational difficulty. This would reduce the simulation
fidelity relative to a full wave-function evolution, perhaps to
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an acceptable degree (e.g., below the expected fidelity loss
from various error sources in the real experiment). The details

and scaling of such calculations are beyond the scope of this
paper, though the possibility deserves further exploration.
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