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Graphene as a nanoelectromechanical reference piezoresistor
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Motivated by the recent prediction of anisotropy in piezoresistance of ballistic graphene along longitudinal and
transverse directions, we investigate the angular gauge factor of graphene in the ballistic and diffusive regimes
using highly efficient quantum transport models. It is shown that the angular gauge factor in both ballistic and
diffusive graphene between 0◦ to 90◦ bears a sinusoidal relation with a periodicity of π due to the reduction
of sixfold symmetry into a twofold symmetry as a result of applied strain. The angular gauge factor is zero at
critical angles 20◦ and 56◦ in ballistic and diffusive regimes, respectively. Based on these findings, we propose
a graphene-based ballistic nanosensor which can be used as a reference piezoresistor in a Wheatstone bridge
readout technique. The reference sensors proposed here are unsusceptible to inherent residual strain present
in strain sensors and unwanted strain generated by the vapors in explosives detection. The theoretical models
developed in this paper can be applied to explore similar applications in other two-dimensional Dirac materials.
The proposals made here potentially pave the way for implementation of nanoelectromechanical strain sensors
based on the principle of ballistic transport, which will eventually replace conventional microelectromechanical
piezoresistance sensors with a decrease in feature size. The presence of strain-insensitive “critical angle” in
graphene may be useful in flexible wearable electronics also.
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I. INTRODUCTION

The development of microelectromechanical/nanoelectro-
mechanical systems (MEMS/NEMS) has brought significant
changes in every aspect of human life. The applications
of MEMS in areas such as biotechnology [1,2], medicine
[3,4], avionics [5,6], particle transportation [7], and defense
[8,9] are virtually limitless. High-performance microscale
systems, devices, and structures, including transducers
[10,11], switches [12,13], logic gates [14,15], actuators
[16,17], and sensors [18,19], are currently used in day to
day life. Graphene, a single-atom-thick material, possesses
extraordinary electromechanical properties such as high
elasticity (≈20%) [20,21], Young’s modulus (≈1 TPa)
[22], mobility [23], and mean-free path (in submicron
range) [23–25]. Due to these properties, it is considered a
promising material for next-generation microelectromechan-
ical/nanoelectromechanical systems. Graphene is already
used in MEMS systems as sensors [26–28], switches [29],
resonators [30], and actuators [31,32], to name a few.

Rapid miniaturization of MEMS systems as a result of
state-of-the-art nanofabrication techniques, on one hand, of-
fers multiple applications in a single chip, and on the other,
necessitates the revamping of the theoretical understanding
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of electronic transport processes at a microscopic level in
both the ballistic [33–38] and the diffusive regimes [39,40].
A deeper theoretical understanding of electronic transport
across these systems will hence lead to novel functionalities
that govern the next-generation NEMS devices. In this work,
we explore the use of graphene in strain sensing in both the
ballistic and diffusive limits.

The piezoresistance of graphene in both ballistic and dif-
fusive regimes has been studied previously by various groups
[26,41–43]. The value of the gauge factor (GF) of ballistic
and diffusive graphene for a uniaxial strain is reported in the
range 0.3–6.1 [26,41,43]. In ballistic graphene, an anisotropy
of the order of 10 exists between the longitudinal gauge factor
(LGF) and the transverse gauge factor (TGF) [41]. Motivated
by the presence of such an anisotropy in GF, we further ven-
ture to explore the variation of GF along different directions
(0◦ to 90◦).

We devise a theoretical model using quantum transport
theory built from the tight-binding representation to calculate
the angular gauge factor (AGF) in the ballistic regime. Our
model is highly efficient and thus reduces the computation
time to 3% of that required by the conventional band-counting
method in Ref. [41]. The theoretical model used in this paper
can be extended to other two-dimensional (2D) Dirac materi-
als [44,45] as well. We obtain the AGF in the diffusive regime
using the conductivity model developed by Peres et al. [46].
The value of GF simulated previously in the diffusive regime
uses an approximation for Fermi velocity instead of the actual
value [41,42]. In this work, we calculate the actual value of
Fermi velocity along different directions which enables us to
get an accurate value of AGF in the diffusive regime. We find
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FIG. 1. Description of device schematic and transport setup for
AFG calculation. (a) Schematic of a uniaxial strained graphene along
the zigzag direction (y axis). The red and blue arrows represent the
respective directions of applied strain and electron transport. The
angle θ between them varies within the limit (0, π/2). (b) Voltage-
driven charge transport model across a strained graphene sheet (with
Hamiltonian Ĥ i, where i denotes strain percentage) sandwiched be-
tween electronic contacts C1 and C2 with Fermi levels μ1 = μ0 −
qV/2 and μ2 = μ0 + qV/2, respectively. Transport formalism is re-
stricted within the linear response regime.

that the AGF in ballistic and diffusive graphene is a sinusoidal
function of the transport direction with a periodicity of π due
to the reduction of sixfold symmetry into twofold symmetry
on the application of a uniaxial strain. The AGF becomes
zero at the critical angles 20◦ and 56◦ in ballistic and diffu-
sive graphene, respectively. Using these results, we propose
a ballistic nanosensor and a reference resistor using graphene
in a Wheatstone bridge based readout technique. Further, the
proposals made here potentially pave the way for implementa-
tion of NEMS strain sensors based on the principle of ballistic
transport, which will eventually replace conventional MEMS
piezoresistance sensors with a decrease in feature size. The
presence of strain-insensitive “critical angle” in graphene may
be useful in flexible wearable electronics also.

In the subsequent sections, we develop the mathematical
model to calculate the AGF of graphene across different trans-
port regimes, explain the underlying physics for the predicted
results, and discuss the applications and future scopes. The
detailed derivation of mathematical expressions is given in the
Appendix.

II. THEORETICAL MODEL

A. Simulation setup

The schematic diagram of the angular gauge factor setup is
presented in Fig. 1(a). A uniaxial strain (εy) is applied along
the zigzag direction, and the resistance is computed along
different transport directions represented by θ .

The quantum transport model for the given setup is
schematized in Fig. 1(b). The setup constitutes a graphene
sheet described by Hamiltonian Ĥ i, and ideal reflectionless
contacts C1 and C2. The equilibrium Fermi energy of the
graphene sheet and contacts are maintained at 0 eV. The
voltages applied at the terminals C1 and C2 are −V/2 and V/2
volts, respectively.

The simulation setup described here evaluates AGF in
the linear regime [−0.01-0.01 eV] for a linear elastic strain
[0%–10%].

B. Angular gauge factor calculation

The transport properties of graphene in the ballistic regime
depend on mode density [33], whereas in the diffusive regime
depends on Fermi velocity [46]. The value of mode density
and Fermi velocity depend on the applied strain. We eval-
uate the mode density and Fermi velocity of graphene as a
function of strain along different directions (θ ) from the band
structure of strained graphene. We derive the mathematical
models using quantum transport and semiclassical transport
formalisms to evaluate AGF in two different transport regimes
of graphene.

1. Tight-binding model

The tight-binding Hamiltonian of a honeycomb lattice is
expressed as

Ĥ i =
∑
l,τ

t i
τ clc

†
τ + H.c. (1)

In Eq. (1), t i
τ represents the hopping parameter that connects

the lattice site l with its neighbors τ in graphene at strain
εy = i%. cl and c†

τ are, respectively, the annihilation and
creation operators of electrons at sites l and τ . We consider
that the electron dynamics of graphene is governed by the
nearest-neighbor tight-binding Hamiltonian. Thus, the energy
eigenvalues of Eq. (1) are given by

Ei(k) = ±∣∣t i
1e− j�k· �ai

1 + t i
2 + t i

3e− j�k· �ai
2
∣∣, (2)

where �ai
1 and �ai

2 are the basis vectors of strained graphene, and
t i
1, t i

2, and t i
3 are the nearest-neighbor hopping parameters.

We obtain the tight-binding parameters of uniaxially
strained graphene from Ribeiro et al. [47]. Ribeiro obtains the
parameters by fitting Eq. (2) with ab initio band structures.
This model is valid for energy E in the range [−0.2-0.2 eV].

The nearest-neighbor tight-binding model of graphene de-
scribed by Eq. (2) accurately predicts the shift in Dirac cones
due to strain, band-gap threshold, and anisotropy in Fermi
velocity [48,49]. This model is consistent with ab initio calcu-
lations [42,47,50–52] and experiments [21,53]. Thus, Eq. (2)
is suitable for AGF calculation in the linear regime.

2. Ballistic regime

We compute the current-voltage characteristics of
graphene in ballistic regime using Landauer formula which is
expressed as

I i
θ (V ) = 2q

h

∫ ∞

−∞
Mi

θ (E )[ f1(E − μ1) − f2(E − μ2)]dE , (3)

where Mi
θ (E ) is the mode density at energy E , percentage

strain i, and electron transport direction θ . The resistance
calculated from Eq. (3) is expressed as

Ri
θ = 1

d
{
I i
θ (V )

}
/dV

. (4)
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FIG. 2. Validation of the tight-binding model and mode density
calculation in ballistic graphene. (a) Depiction of the Fermi window
( f1 − f2) as a function of energy predefined in Fig. 1(b). The window
opens up in the energy range [−0.2 eV, 0.2 eV]. (b) 3D view of
graphene band structure close to the Dirac point. (c), (d) Depict the
constant energy surface and modes along θ . Constant energy surface
shapes like (c) a circle for 0% strain and like (d) an oval for 10%
strain, respectively. In each case, modes are depicted by blue dots.

The expression for AGF in ballistic regime averaged over the
entire linear elastic limit is written as

(AGF)i
θ =

{
Ri

θ − R0
θ

εyR0
θ

}
, (5a)

(AGF)θ = (AGF)i
θ . (5b)

The Fermi window f1(E − μ1) − f2(E − μ2) depends on the
energy and applied voltage. We apply a variable potential
difference between −0.01 to 0.01 V across the contacts. The
Fermi-window plot as a function of energy at 0.01 V is shown
in Fig. 2(a). The Fermi window is nonzero between −0.2 to
0.2 eV. Thus, our model using Eqs. (2) and (3) can accurately
determine the angular piezoresistance of graphene in linear
regime.

We obtain the mode density Mi
θ (E ) from band structures

under the Dirac cone approximation. Figure 2(b) illustrates the
constant energy surface formed as a result of intersection of
the constant energy plane and the Dirac cone. Figures 2(c) and
2(d) illustrate the constant energy surface and modes along an
arbitrary transport direction θ at 0% and 10% strain. The blue
and green dots represent the modes for forward and backward
moving electrons, respectively. Since the effective number of
Dirac cones within the first Brillouin zone of strained and
unstrained graphene is two [41]. Thus, the effective number of
modes at energy E along transport direction θ is numerically
equal to the sum of modes of forward and backward moving
electrons in a single Dirac cone. As a result, the mode density
is given by

Mi
θ (E ) = 2ni

θ (E ), (6)

where ni
θ (E ) is the number of transverse modes (TMs) in-

tersecting the constant energy surface at energy E . The
separation between TMs in Figs. 2(c) and 2(d) is 2π/wi

θ

where wi
θ is the width of graphene sheet (see Appendix A).

The theoretical model described above (modified band-
counting method) reduces the computation time significantly
compared to full band mode density calculation (band-
counting method) [41]. A comparison between the band-
counting method [41,54], and the modified band-counting
method used in this paper is given in Table I.

3. Diffusive regime

The electron transport in diffusive regime is described
via the semiclassical transport mechanism. The electrons are
treated as classical particles (wave packets) whose position
and momentum are precisely known [55]. The electron mo-
bility primarily determines the electron transport properties
in the diffusive regime as compared to the mode density in
ballistic regime.

The experimentally determined conductivity of graphene
in the diffusive regime shows a linear dependence on electron
density except at the charge neutrality point [23]. By consid-
ering random Coulomb impurities as the dominant source of
scattering, a linearly varying conductivity with gate voltage
is obtained in Ref. [56]. The expression for conductivity of
graphene as a function of the electron density, considering
the presence of charged impurities was formulated using the
Boltzman transport theory under relaxation time approxima-
tion by Peres et al. [46]. The expression for conductivity as
derived in Ref. [46] is given by

σ = 2e2π (h̄v f )2n

hu2
o

. (7)

The conductivity of graphene in diffusive regime depends on
the electron density and the Fermi velocity. However, varia-
tion in the conductivity due to a change in electron density is
prominent only in the presence of a gate voltage [49]. In the
absence of gate voltage, conductivity depends primarily on
Fermi velocity. The anisotropy in resistance due to a tensile
strain predicted using Eq. (7) complies with the experimental
results [21]. Hence, we use Eq. (7) to obtain the expression for
AGF in diffusive regime.

The resistance of a uniaxially strained graphene is given by

Ri
θ = l i

θ

σ i
θ wi

θ

, (8)

where Ri
θ , σ i

θ , l i
θ , and wi

θ are the resistance, conductivity,
length, and width, respectively, at percentage strain i along
the direction θ .

Thus, the expression for AGF in diffusive regime averaged
over the entire strain range is given by

(AGF)i
θ = 1

εy

{
�l i

θ

l0
θ

− �wi
θ

w0
θ

− 2
�vi

θ

v0
θ

}
, (9a)

(AGF)θ = (AGF)i
θ . (9b)

The AGF in diffusive regime depends on the variation
of Fermi velocity, electron density, and dimensions of the
graphene with strain εy and direction θ . The strain-induced
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TABLE I. Comparison between the band-counting and modified band-counting methods.

Methods Conventional band counting Modified band counting

Application 2D materials 2D Dirac materials
Approximation/assumption Identical TMs in each segments of Brillouin zone Dirac-cone approximation
Range of validity Full band structure Linear regime
Quality of prediction GF consistent with earlier works Same as band-counting method
Computation time Less efficient Highly efficient

variation of Fermi velocity is discussed in this section, while
the strain-induced change in dimensions is discussed sepa-
rately in the next subsection.

The velocity of electrons at an energy close to the Dirac
point is equal to its Fermi velocity. The Fermi velocity is
expressed as

vi
φ = 1

h̄
{∇kE i(k)}

∣∣∣∣
k=ki

φ

. (10)

Figures 3(a) and 3(b) show the Fermi-velocity vectors and
contours near a Dirac point at 0% and 10% strain, respectively.
The variation in magnitude of Fermi velocity with εy and
θ is given in Table II. From the table, we infer that strain
induces anisotropy in the Fermi velocity. The AGF in diffusive

FIG. 3. Calculation of average Fermi velocity in graphene for
computing AGF in the diffusive regime. (a), (b) Depict the Fermi-
velocity vectors (represented by the red arrows) and energy contours
near the Dirac point for εy = 0% and 10%, respectively. (b) Shows
that strain induces anisotropy in Fermi velocity. (c) Depicts the
schematics of the unit vector ki

θ along θ and Fermi velocity vi
φ

along φ.

regime depends on the average Fermi velocity along the di-
rection of transport. Figure 3(c) illustrates the methodology
for evaluation of average Fermi velocity along the transport
direction (θ ). The average Fermi velocity along θ at strain i is
expressed as

vi
θ = 1

π

∫ π
2

− π
2

{
vi

φ · k̂i
θ

}
dφ, (11)

where vi
φ is the Fermi velocity along direction φ and k̂i

θ is the
unit vector along θ . See Appendix B for detailed derivation of
Eq. (11).

4. Strain distribution in graphene

Apart from the variation of Fermi velocity, AGF also de-
pends on the magnitude of strain along the transport (θ ) and
transverse directions (90◦ + θ ). The changes in dimensions
modify the mode density and conductivity of graphene [see
Eqs. (6) and (9)].

The strain εy generates components along different direc-
tions of graphene. The stiffness or compliance matrix due to
a uniaxial strain along the basal plane of the graphene sheet
is the same irrespective of the choice of coordinate axes [57].
Consequently, the Poisson’s ratio of graphene sheet is same
irrespective of the direction of tensile strain in the basal plane
[49].

The mean-free path of graphene is very high and is in the
submicron range [23–25]. Therefore, we treat graphene as a
continuum sheet in strain-related calculations in this work.
The strain components along the electron transport direction
(εθ ) and its transverse direction (ε†

θ ) are expressed as [57]

εθ = 1
2 (εx + εy) + 1

2 (εy − εx ) cos 2θ, (12a)

ε
†
θ = 1

2 (εx + εy) + 1
2 (εy − εx ) cos 2(θ + 90◦), (12b)

where εy is the longitudinal strain and εx is the transverse
strain (−σεy). In the ballistic regime, mode density depends
on the separation between two adjacent TMs which is given
by 2π/wi

θ , where wi
θ = w0

θ (1 + ε
†
θ ). In the diffusive regime,

TABLE II. Variation of Fermi velocity (in the scale of ×105 m/s)
with different values of strain (εy) and transport angle (θ ).

εy 0◦ 30◦ 60◦ 90◦

0% 8.41 8.41 8.41 8.41
5% 7.35 7.75 8.37 8.59
10% 6.12 7.32 8.45 8.77
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FIG. 4. Piezoresistance along different transport directions in the
ballistic graphene. (a) Color map of resistance of a 1-μm-wide
graphene sheet as a function of εy and θ . (a) Shows that the resis-
tance remains constant at θ = 20◦. (b) Depicts AGF along with its
sinusoidal fit. It infers zero AGF at θ = 20◦.

apart from Fermi velocity, AGF varies with εθ and ε
†
θ also

[see Eq. (9)].

III. RESULTS AND DISCUSSIONS

In this section, we obtain the AGF of graphene using
the theoretical models discussed earlier and obtain a suitable
mathematical fit. We discuss the physics behind the predicted
results along with their applications and prospects.

We show in Fig. 4(a) the variation of resistance of a 1-μm-
wide ballistic graphene sheet with εy and θ . The resistance
at 0% strain is constant irrespective of the direction θ . Nev-
ertheless, the variation in resistance increases with θ as εy

increases. Thus, Fig. 4(a) validates the fact that graphene is
electrically isotropic at 0% strain and becomes anisotropic on
the application of tensile strain [41,49]. The anisotropy in-
creases with an increase in strain. The resistance along θ = 0◦
increases by a small amount with an increase in strain. How-
ever, it decreases significantly along θ = 90◦ with an increase
in strain. We note that the resistance remains constant with
applied strain at θ = 20◦. We show in Fig. 4(b) the variation
of AGF with θ and the corresponding sinusoidal fit which is a
sinusoidal function of the form

AGF = A cos 2θ + B, (13)

where A = 1.475 and B = −0.975. We see in Fig. 4(b) that
the AGF along 0◦, 20◦, and 90◦ are 0.6, 0, and −2.5, respec-
tively. The observed pattern of AGF in the ballistic regime
is a result of the deformation of Dirac cone and change in
separation of TMs due to strain. We report a GF of 0.5 at the
terminal angle θ = 0◦ in the ballistic regime, as compared to
a GF of 0.3 reported in Ref. [41]. The transmissions along
θ = 20◦ at different strains are identical as shown in Fig. 5,
thereby substantiating our claim of resistance invariance along
that direction.

We show in Fig. 6(a) the variation of average Fermi veloc-
ity with θ and εy. The average Fermi velocity is constant at
0% strain along differnt directions θ and has a magnitude of
5.35×105 m/s. The average Fermi velocity decreases sharply
along θ = 0◦, becomes zero θ ≈ 60◦, and finally slightly in-
creases along 90◦ with the increase in strain. The variation in
average Fermi velocity with εy and θ is similar to the variation
of Fermi velocity (see Table II). Figures 6(b) and 6(c) depict

FIG. 5. Variation of transmission as a function of energy within
the Fermi window at different strains εy keeping the transport angle
θ fixed at 20◦.

εθ and ε
†
θ as a function of εy and θ . The color maps of εθ and ε

†
θ

are mirror images of each other due to twofold symmetry and
isotropic nature of a uniaxially strained graphene (explained
in the next paragraph).

Figure 6(d) presents the AGF in diffusive graphene. The
plot of AGF with θ can be approximated by a sinusoidal curve
given by

AGF = C cos 2θ + D, (14)

FIG. 6. Study of the parameters determining the AGF in diffusive
regime. (a) Color map of the average Fermi velocity as a joint
function of strain (εy) and transport angle (θ ). Color map of strain
along (b) the transport direction and (c) the transverse direction as
a function of εy and θ , respectively. (d) Depicts the AGF and its
sinusoidal fit as a function of θ .
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FIG. 7. Variation of the (a) normalized mode density (in case
of ballistic graphene) and (b) average Fermi velocity (in case of
diffusive graphene) as a function of transport direction (θ ) and their
sinusoidal fit. (a), (b) Provide explanation for the sinusoidal variation
of AGF with θ .

where C = 6.85 and D = 3. The value of AGF varies sinu-
soidally between 9.85 to −3.85 and is zero at 56◦ in the
diffusive regime. The GF in diffusive graphene reported ear-
lier is in the range 2.4–6.73 [26,42] as compared to a GF
of 9.85 obtained in this paper. We see that ballistic graphene
has higher GF along θ = 90◦ whereas diffusive graphene has
higher GF along θ = 0◦.

Graphene has a sixfold symmetry, but due to the appli-
cation of tensile strain, its symmetry reduces to a twofold
symmetry. In Figs. 4(b) and 6(d), the AGF plots have a period-
icity of π which is due to the twofold symmetry of uniaxially
strained graphene lattice.

The results obtained in this paper are for a strain applied
along the zigzag direction. Nevertheless, the results are same
for strain along the armchair direction due to the isotropic
Poisson’s ratio [49] in the basal plane and identical defor-
mation of the Dirac cone for strain along with armchair and
zigzag directions [41]. The explanation for sinusoidal AGF
and the application of these results are discussed in the subse-
quent sections of this paper.

A. Physics of sinusoidal AGF

The mode density along transport angle θ changes as a
result of the applied strain εy due to the deformation of
Dirac cone [41]. The change in mode density is inversely
proportional to the change in normalized resistance along the
transport angle θ . In other words, AGF is inversely propor-
tional to the change in normalized mode density. The mode
density and change in the normalized mode density averaged
over the entire strain range [0%–10%] is mathematically ex-
pressed as

Mθ (E ) = wθ ∗ Lθ+90◦ (E )

2π
, (15a)

�Mθ (E )

Mθ (E )
= �wθ

wθ

+ �Lθ+90◦ (E )

Lθ+90◦ (E )
, (15b)

where Mθ (E ), wθ , and Lθ+90◦ (E ) are, respectively, the mode
density, width of the graphene sheet, and length of the axis of
Dirac cone along the transverse direction 90◦ + θ as shown in
Fig. 3(c). We show in Fig. 7(a) the plot of �Mθ represented
by Eq. (15b). Figure 7(a) is similar to the reciprocal of AGF
in Fig. 4(b). Thus, the sinusoidal nature of AGF in ballistic

TABLE III. Variation of normalized average Fermi velocity,
strain along the transport direction θ , and width along the transverse
direction (θ + 90◦).

θ −2�vθ �Lθ −�wθ

0◦ 0.52 0.055 0.008
45◦ 0.13 0.024 −0.024
90◦ −0.15 −0.008 −0.055

graphene is due to the sinusoidal variation of mode density
along different θ .

The AGF in diffusive graphene depends on the average
Fermi velocity along θ , strain along the transport direction
(εθ ), and the transverse direction (ε†

θ ). Table III shows the vari-
ation of these parameters at transport angles 0◦, 45◦, and 90◦.
From the table, we infer that AGF predominantly depends on
the average Fermi velocity. We show in Fig. 7(b) the variation
of average Fermi velocity with θ is similar to a sinusoidal
function and resembles the AGF in diffusive regime. Thus,
the sinusoidal variation of AGF with transport angle θ is due
to the sinusoidal variation of average Fermi velocity with
transport angle θ .

B. Application and future scope

Piezoresistance sensor uses a Wheatstone bridge readout
technique for the detection of strain. We show in Fig. 8(a)
a Wheatstone bridge based piezoresistance sensing setup us-
ing ballistic graphene. The Wheatstone bridge consists of
identical ballistic graphene resistors R1, R2, R3, and R4. At
zero strain, the resistances are equal, and the Wheatstone
bridge is balanced. In this configuration, R4 acts as a strain
sensor, while the other resistors act as reference resistors.
When subjected to a strain, the resistance R4 changes, which
results in the generation of a potential difference (Vout) [see
Fig. 8(b)]. Figure 8(b) shows Vout versus strain for different
values of θ when the input voltage Vin is maintained at 0.02 eV.
Besides, Vout exhibits a linear dependence on strain along
different transport directions θ and is maximum at θ = 90◦.

FIG. 8. Setup for piezoresistance sensing of a graphene-based
ballistic nanosensor using the (a) Wheatstone bridge readout tech-
nique. R3 and R4 are the reference and the strain sensors, respectively.
(b) Variation in the output voltage (Vout) of the Wheatstone bridge
with strain (εy) and transport direction (θ ). Vout varies linearly with
the strain along different directions.
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This indicates a high-strain sensitivity of ballistic graphene
in the transverse configuration which can be used to detect
explosives and gases provided the strain generated is mapped
with the vapor density of explosives and gases [58–61].

A significant problem of strain sensor is the presence of an
inherent residual strain. As a result, Vout is nonzero, even in the
absence of an external strain. Besides, the reference sensors
in explosive or gas detectors are also vulnerable to unwanted
strain produced by the explosive’s vapor or gases [58–61]. We
address these problem without removing the residual strain or
unwanted strain generated during the detection.

As discussed earlier, the resistance of unstrained graphene
is the same along every direction in the basal plane and re-
mains the same even in the presence of strain when electron
transport is directed along the critical angle. Based on this
fact, we propose a graphene-based reference piezoresistor
with electron transport direction along the critical angle such
that the resistance remains steady and equal to that of the
unstrained graphene.

The modified band-counting method used in this paper for
graphene is also applicable to other 2D Dirac materials for
similar applications. Some of the prominent 2D Dirac mate-
rials apart from graphene are silicene, germanene, stanene,
several graphynes, just to name a few [62]. The modified
band-counting method can be used to obtain the transport and
piezoresistance properties by using a more generalized form
of Eq. (6) given by

M(E ) = a × n(E ), (16)

where a is the effective number of Dirac cones within the
first Brillouin zone. Using Eq. (16) and the Landauer formula,
piezoresistance properties of other 2D Dirac materials can
be computed. In the case of buckled honeycomb 2D Dirac
materials such as silicene, germanene, etc., the value of a is
two due to the presence of two effective Dirac cones in the
first Brillouin zone [41]. In the case of graphynes having Dirac
cones, the value of a generally varies from two to six [62,63].

The excellent electromechanical properties of graphene
make it a strong contender for materials used in flexible elec-
tronics [21,64]. The critical angles obtained in this paper may
find application in future flexible devices where a constant
current is required despite the presence of a variable strain.

IV. CONCLUSION

In summary, we investigated the angular gauge factor of
graphene in the ballistic and diffusive regimes using highly
efficient quantum transport models. It was shown that the
angular gauge factor in both ballistic and diffusive graphene
between 0◦ to 90◦ bears a sinusoidal relation with a peri-
odicity of π due to the reduction of sixfold symmetry into
twofold symmetry as a result of applied strain. The angular
gauge factor is zero at critical angles 20◦ and 56◦ in ballistic
and diffusive regimes, respectively. Based on these findings,
we propose a graphene-based ballistic nanosensor, which can
be used as a reference piezoresistor in a Wheatstone bridge
readout technique. The reference sensors proposed here are
unsusceptible to inherent residual strain present in strain sen-
sors and unwanted strain generated by the vapors in explosives
detection. The theoretical models developed in this paper can

be applied to explore similar applications in other 2D Dirac
materials. The proposals made here potentially pave the way
for implementation of NEMS strain sensors based on the
principle of ballistic transport, which will eventually replace
MEMS piezoresistance sensors with a decrease in feature size.
The presence of strain-insensitive “critical angle” in graphene
may be useful in flexible wearable electronics also.
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APPENDIX A: SEPARATION BETWEEN ADJACENT
TRANSVERSE MODES IN A SHEET

The separation between adjacent k states of conduction
electrons in reciprocal space is determined by periodic bound-
ary condition [55]. Electrons in conduction band behave as
nearly free electrons. The wave function of these electrons is
expressed as

ψ = Aeik·r . (A1)

Equation (A1) represents a plane-wave equation traveling
along r. Let us consider a crystal of length L and wave func-
tion at r = 0 and L be denoted by ψ0 and ψL, respectively.
The wave functions at the boundaries are equal as a result of
periodic boundary condition. Thus,

ψ0 = ψL. (A2)

Using Eqs. (A1) and (A2), we obtain the allowed k state which
is expressed as

k = 2nπ

L
, (A3)

where n = 0, 1, 2, 3, . . . . The separation between k states in
reciprocal space is 2π/L, where L is the length of the crystal.
Extending the same reasoning along the width (w), we ob-
tain a separation of 2π/w between adjacent transverse modes
(TMs) along the width in reciprocal space.

APPENDIX B: AVERAGE FERMI VELOCITY
UNDER DIRAC CONE APPROXIMATION

Under the Dirac cone approximation, the velocity of
electrons along φ at different energies is equal to the

043041-7
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Fermi velocity (see Fig. 3). The magnitude of Fermi ve-
locity along different directions is equal in unstrained
graphene. Application of a tensile strain (εy) results in
anisotropic Fermi velocity [see Fig. 3(b)]. As a result,
evaluation of the conductivity of strained graphene using
Eq. (7) will require the value of average Fermi velocity
along θ .

Figure 3(c) illustrates the methodology for calculating
average Fermi velocity. The direction of Fermi velocity(φ)
forming an angle between −π

2 to π
2 with respect to θ have ve-

locity components along θ . The Fermi velocity (vi
φ) along φ is

expressed as

vi
φ = 1

h̄
{∇kE i(k)}

∣∣∣∣
k=ki

φ

. (B1)

The component of vi
φ along θ is vi

φ · ki
θ , where k̂i

θ is a unit vec-
tor along θ . Thus, the mean of these components for different
values of φ along θ is given by

vi
θ = 1

π

∫ π
2

− π
2

{
vi

φ · k̂i
θ

}
dφ. (B2)
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