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Bottom-to-top decomposition of time series by smoothness-controlled cubic splines:
Uncovering distinct freezing-melting dynamics between the Arctic and the Antarctic
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The classical methods of identifying significant slow components (modes) in a strongly fluctuating signal
usually require strict stationarity. A notable exception is the procedure called empirical mode decomposition
(EMD), which is designed to work well for nonstationary and nonlinear (quasiperiodic) time series. However,
EMD has some well-known limitations such as the end divergence effect, mode mixing, and the general problem
of interpreting the modes. Methods to overcome these limitations, such as ensemble EMD or complete ensemble
EMD with adaptive noise, promise an exact reconstruction of the original signal and a better spectral separation
of the intrinsic mode functions (IMFs). All these variants share the feature that the decomposition runs from
the top to the bottom: The first few IMFs represent the noise contribution and the last is a long-term trend.
Here we propose a decomposition from the bottom to the top, by the introduction of smoothness-controlled
cubic spline fits. The key tool is a systematic scan by cubic spline fits with an input parameter controlling
the smoothness, essentially the number of knots. Regression qualities are evaluated by the usual coefficient of
determination R2, which grows monotonically when the number of knots increases. In contrast, the growth rate
of R2 is not monotonic: When an essential slow mode is approached, the growth rate exhibits a local minimum.
We demonstrate that this behavior provides an optimal tool to identify strongly quasiperiodic slow modes in
nonstationary signals. We illustrate the capability of our method by reconstruction of a synthetic signal composed
of a chirp, a strong nonlinear background, and a large-amplitude additive noise, where all EMD-based algorithms
fail spectacularly. As a practical application, we identify essential slow modes in daily ice extent anomalies at
both the Arctic and the Antarctic. Our analysis demonstrates the distinct freezing-melting dynamics on the two
poles, where apparently different factors are determining the time evolution of ice sheets. Thus, we believe
that our methodology offers a competitive tool to identify modes in strongly fluctuating data and advances
significantly the state of the art regarding the decomposition of nonlinear time series.
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I. INTRODUCTION

The decomposition of nonlinear time series is a gen-
eral problem pervading many branches of science, where a
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plethora of data is produced and recorded by advanced au-
tomated measuring systems. Thus, there is a great deal of
interest in general methods capable of providing fruitful in-
sight into the complex realm of time series. An interesting
method extensively used during the past decades is the so-
called empirical mode decomposition (EMD), which, along
with its many variants, has gained popularity in several fields,
especially in analyzing geophysical records [1–5], biomedical
signals [6–9], coupled chaotic systems [10–12], economic and
market data [13–15], and in other complex scenarios.

Decomposition of nonstationary, nonlinear, noisy signals
is not well performed by traditional methods. Empirical mode
decomposition provides a general tool for an adaptive signal
decomposition into a finite number of narrowband intrin-
sic mode functions (IMFs), which are derived directly from
the data [16–18]. The IMFs generated by the EMD algo-
rithm are determined by the local extrema of the signal, and
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FIG. 1. Daily ice extent over (a) the Arctic and (b) the Antarctic in units of 106 km2. Note missing data for 42 days at the end of 1988.

traditional EMD uses a cubic spline for upper and lower
envelope interpolation. Variants such as the ensemble EMD
(EEMD) [19,20] or complete ensemble EMD with adaptive
noise (CEEMDAN) [21,22] are noise-assisted extensions of
EMD, where the IMFs are constructed as a mean of an ensem-
ble of decompositions where the original signal is decorated
by different added white-noise series. These and other im-
provements can handle some shortcomings of the traditional
EMD algorithm, e.g., mode mixing, where segments of a
given characteristic frequency range are randomly distributed
among two or more IMFs [23–25], or the problem of miss-
ing data points (see, e.g., [26]). Notably, the EMD algorithm
works as a dyadic filter bank, that is, the mean frequency of a
given IMF is approximately half of the previous one [26–28].
For this reason, the basic problem of all top-to-bottom de-
compositions is the interpretation: how to distinguish relevant
IMFs and irrelevant IMFs in an efficient way.

Here we propose an alternative procedure providing a
bottom-to-top decomposition. Similarly to EMD, this is an
empirical method, purely data driven, and uses cubic spline
fits. We have successfully validated the procedure on a series
of synthetically constructed composite signals (see below and
the Appendix). Specifically, we demonstrate the efficiency of
the method on two real signals: daily sea ice extent over the
Arctic and over the Antarctic as determined by satellite image
processing (Fig. 1).

The original idea of smoothness-controlled cubic spline fits
was explained by de Boor [29]. Smoothing splines are com-
monly used function estimates for a set of noisy observations
with the goal of striking a balance between having a smooth
curve and being close to the given data. The starting point
to find an optimum is the smoothest possible curve, a straight-
line fit. When the data set is segmented with a growing number
of knots, local cubic fits (with matching second derivatives at
the knots) approach better and better the data set. A perfect
fit is achieved by the natural cubic spline incorporating all

the data points, with the consequence that the smooth fit can
exhibit extreme waviness. The goodness of fit monotonically
improves with an increasing number of knots; nevertheless,
we have observed that the rate of improvement is not mono-
tonic for composite signals. A large number of numerical
experiments indicated that the growth rate of any correlation-
based measure of goodness of fit slows down when the cubic
spline approaches an essential slow mode (ESM), a given
component in a synthetic signal. This observation is the key
which permits a bottom-to-top decomposition of nonstation-
ary nonlinear signals, as it is demonstrated in the remainder of
the paper.

II. DATA AND METHODS

A. Daily ice extent over both poles

Figures 1(a) and 1(b) illustrate time series of daily ice
extent over the Arctic and the Antarctic in the period between
26 October 1978 and 15 May 2020. These freely available
data are collected and maintained by the U.S. National Ice and
Snow Data Center [30]. During the first eight years of satel-
lite observations, data for every second day were recorded,
with a gap of 42 days at the end of 1988 [clearly visible in
Fig. 1(b)]. Since the freezing-melting dynamics is apparently
smooth enough, we used linear interpolation as a proxy for the
missing data, resulting in the two evenly sampled time series
of N = 15 177 days.

Climatological mean values for each calendar day were
determined in the usual way [31]; averages over 36, 37, or
38 years were computed (depending on the available sam-
ples), including the 10 leap days (29 February). The results
are plotted in Fig. 2 for both poles. The width of the orange
band represents one standard deviation illustrating the larger
variability of the Arctic ice cover around the annual cycle, as it
is well known. Our starting point for the subsequent analysis
is the ice extent anomaly, namely, the difference between a
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FIG. 2. Climatological mean of daily ice extent over (a) the Arc-
tic and (b) the Antarctic in units of 106 km2.

given observation and the climatological mean value on the
particular calendar day. Note that the removal of climatolog-
ical means does not affect long-term trends, e.g., when an
average calculated over systematically decreasing values in
consecutive years is subtracted, the tendency in the anomaly
time series obviously remains the same.

B. Smoothness-controlled cubic spline fits

We implemented the PYTHON package CSAPS (version
0.11.0) developed by Prilepin for univariate, multivariate, and
n-dimensional grid data approximations using cubic smooth-
ing splines [32]. The methodology is based on the original
algorithm of de Boor [29], where a smoothing spline S with a
smoothing parameter p minimizes the sum of an error measure
and a roughness measure

p
N∑

i=1

[yi − S(xi )]
2 + (1 − p)

∫
S′′(t )2dt, (1)

where {xi, yi} is the original data set and S′′ denotes the
second derivative. The smoothness parameter p ∈ [0, 1] has
well-defined limits: p = 0 belongs to a least-squares linear fit,
while p = 1 is the natural cubic spline.

A widely discussed point in the literature related to
smoothing splines is the optimal choice of smoothing parame-
ter p [29,33–35]. For a recent survey see, e.g., Ref. [36]. Here
we follow a different strategy by systematically evaluating
spline fits in a wide range of smoothing parameter p, because
we are interested in composite signals and not only in finding
the optimal smoothing cubic spline. Our approach is illus-
trated in Fig. 3 with a synthetic signal Y (t ) composed from
a chirp C(t ), a slow background trend B(t ), and an additive
Gaussian noise G(t ). Our construction mimics the time range
and amplitudes of the polar ice extent anomalies with the
parameters

C(t ) = a sin(�t + αt2), (2)

with a = 0.3, � = 1.115 × 10−3 day−1, α = 5 × 10−7day−1,
and t = 1, 2, . . . , N = 15 177, and

B(t ) = b sin(ω1t ) sin(ω2t ), (3)

with b = 0.5, ω1 = 2.867 × 10−4 day−1, and ω2 = 6.881 ×
10−4 day−1. The additive Gaussian noise G(t ) has a unit
amplitude and variance of 1

2 . The result for Y (t ) = C(t ) +
B(t ) + G(t ) is plotted in Fig. 3(a) (black), where also the
chirp component C(t ) (white) and the slow background B(t )
(yellow) are shown.

The quality of a smoothing cubic spline with a particular
smoothing parameter p is characterized by the usual coeffi-
cient of determination

R2 = 1 −
∑

i[yi − S(xi )]2∑
i(yi − 〈y〉)2

, (4)

where the nominator represents the sum of squared error of the
fit and the denominator is the total variance of the signal. We
are aware of the well-known limitations of correlation-based
measures (see, e.g., [37]). However, this work is not aimed
to analyze the occurrence of extreme cases such as enormous
outliers and strongly correlated noise components.

By definition, the coefficient of determination R2 grows
monotonically when p increases. Indeed, Fig. 3(b) illustrates
well this relationship for our synthetic test signal Y (t ), where
the results for 151 logarithmically placed p values are shown,
starting from p1 = 8 × 10−15 and iterating as p j = 1.24p j−1,
where j = 2, 3, . . . , 151.

Notably, the growth rate of R2 is not uniform, as demon-
strated in Fig. 3(c), where the derivative d (R2)/d p is plotted.
We have performed several numerical experiments with var-
ious synthetic signals composed of periodic, polynomial,
chirplike [see Eq. (2)], piecewise linear, etc., and additive
noise terms, obtaining the following general behavior. When
the smoothing cubic spline approaches a fundamental mode,
what we may call an essential slow mode, the growth rate of
R2 exhibits a local minimum. The first such minimum belongs
to ESM1 of the smallest characteristic frequency range, the
second minimum represents the superposition of the slowest
and second-slowest modes ESM1 + ESM2, and so on. This
behavior provides the key for decomposing a nonstationary
and nonlinear signal into ESMs with the following steps.

(1) Perform a scan over a wide enough range of smoothing
parameter p and determine R2 for each cubic spline fit Sp(t ).
(We recommend logarithmic spacing of p values because,

043040-3



JÁNOSI, BAKI, BEIMS, AND GALLAS PHYSICAL REVIEW RESEARCH 2, 043040 (2020)

FIG. 3. (a) Synthetic signal (black) composed of a chirp (2) (white), a slow background (3) (yellow), and a Gaussian noise term with unit
amplitude and variance of 1

2 . (b) Coefficient of determination R2 [see Eq. (4)] as a function of smoothness parameter p. The horizontal axis is
logarithmic. (c) Derivative of the curve in (b), d (R2)/d p, as a function of p. The local minima indicated by red symbols identify the first and
second ESMs; the corresponding smoothness parameters are p1 = 7.809 × 10−12 and p2 = 1.331 × 10−6. (d) Slow modes decomposed from
the bottom to the top: ESM1 (black) is the cubic spline fit Sp1 (t ), while ESM2 (blue, shifted upward by 1.0) is the difference Sp2 (t ) − Sp1 (t ).
The residual (gray) is shifted downward by 1.0.

in general, the growth of R2 has more or less logarithmic
tendencies.)

(2) Determine the local minima {p1, p2, p3, . . . , pM} of the
empirical growth-rate function d (R2)/d p.

(3) A proper decomposition of the original signal is itera-
tively given: The slowest mode ESM1 is the cubic spline fit
Sp1 (t ) by p1, the second slowest mode ESM2 is the difference
of cubic spline fits Sp2 (t ) − Sp1 (t ) by p2 and p1, the mode
ESM3 is the difference of cubic spline fits Sp3 (t ) − Sp2 (t ) by
p3 and p2, etc. [note that Sp2 (t ) is already the superposition of
ESM1 and ESM2].

Figure 3(d) illustrates the result of signal decomposi-
tion with two ESMs determined by the two local minima
in Fig. 3(c) (red circles). A simple visual comparison with
Fig. 3(a) demonstrates that both the chirp and the slow nonlin-
ear background are nicely reconstructed with a little wriggling
at the first third of the signal.

C. Complete ensemble EMD with adaptive noise

In order to compare the results of our bottom-to-top de-
composition with results from the standard EMD, we used the

PYTHON package PYEMD developed by Lascuk [38]. Besides
the original EMD and EEMD procedures, the package con-
tains the CEEMDAN algorithm as described in Refs. [21,22].
Since the methodology is widely discussed in the litera-
ture [21,22,39,40], we do not repeat the details here. The
decomposition runs from the top to the bottom by using local
maxima and minima as upper and lower envelopes at each step
of the identification of an IMF.

The improved CEEMDAN algorithm [22] identified 12
IMFs for the synthetic test signal illustrated in Fig. 3(a). The
first six IMFs represent noise terms with decreasing charac-
teristic frequencies. The interesting part IMF-7, . . . ,IMF-12
is shown in Fig. 4. The top-to-bottom decomposition spectac-
ularly fails to reconstruct the essential slow modes: The chirp
part C(t ) is divided among IMF-7, IMF-8, and IMF-9; the
background part B(t ) is divided among IMF-10 and IMF-11
(even the sum of them has serious flaws at the ends of the
signal). The almost linear trend of small slope IMF-12 is a
clear artifact of the procedure.

The decomposition of chirplike modes is a particularly
demanding task where most classical methods fail. Since
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FIG. 4. Last six IMFs (blue lines) of the synthetic signal Y (t )
shown in Fig. 3(a) produced by the CEEMDAN algorithm. The chirp
component C(t ) [see Eq. (2)] is apparently distributed among IMF-7,
IMF-8, and IMF-9 in a strange way. Besides IMF-10 and IMF-11,
orange dotted line illustrates the slow background component B(t )
given by Eq. (3).

practical signal processing often meets with the problem of
smoothly changing internal frequencies, there are some re-
cent proposals to handle such situations [41–43]. Our method
seems to be by far the simplest.

III. RESULTS FOR POLAR ICE EXTENT TIME SERIES

As a representative example, we evaluate the two ice extent
time series described in Sec. II A. Although these data sets
are available at daily resolution, we have not found any pub-
lication where the whole records would have been evaluated.
Probably the smoothness of the curves in Fig. 1 suggests that
there is not much information in a daily datum; therefore,
practically every analysis in the literature use monthly mean
values as a starting point. Here we compare the results of our
bottom-to-top decomposition method with the CEEMDAN
procedure (see Sec. II C).

Figure 5 illustrates the results of the systematic scan by
smoothing cubic spline fits as a function of p. As it is ex-
plained in Sec. II B, local minima on the growth-rate curves
of the coefficient of determination d (R2)/d p identify the
ESMs. Figure 5(b) exhibits three local minima for the Arc-
tic time series, presumably a slow background tendency at
m1, a small-amplitude slow oscillatory mode at m2, and a

FIG. 5. Systematic analysis of the smoothing cubic spline fits for
the Arctic and Antarctic ice extent anomaly time series. (a) Coeffi-
cient of determination R2 [see Eq. (4)] as a function of smoothness
parameter p for the Arctic anomaly fits. The horizontal axis is log-
arithmic. (b) Derivative of the curve in (a), d (R2)/d p, as a function
of p. The local minima m1 and m2 indicated by red stars identify the
first and second essential slow modes; the corresponding smoothness
parameters are p1 = 7.327 × 10−13 and p2 = 3.025 × 10−10. The
third local minimum m3 does not belong to a slow mode; it is an
almost perfect fit for the original time series. The vertical dashed
line at p3 = 5 × 10−6 defines a slow mode (see the text). (c) and
(d) Same as (a) and (b) but for the Antarctic anomalies. The first
three minima are at p1 = 2.148 × 10−12, p2 = 8.869 × 10−10, and
p3 = 2.953 × 10−7. The vertical dashed line indicates p4 = 10−4.

large-amplitude higher-frequency mode at m3. However, at
the smoothness parameter belonging to m3, the cubic spline
has an almost perfect match with R2 ≈ 1.0 [see Fig. 5(a)],
indicating that all the high-frequency noise spikes are already
incorporated in the fit. In order to have a smoother component,
we can choose p3 = 5 × 10−6 [vertical red dashed line in
Fig. 5(b)]. This provides a very close match [see Fig. 5(a)],
however with a dampened noise, as we will discuss below.

The same procedure for the Antarctic time series [Figs. 5(c)
and 5(d)] locates four local minima; the situation at m4 is the
same as for the Arctic m3. Instead of analyzing a perfect noisy
fit, we estimate the highest-frequency ESM with a smoothness
parameter p4 = 10−4 [vertical red dashed lines in Figs. 5(c)
and 5(d)].

We might have expected that the two time series shown in
Fig. 1 should be decomposed into similar ESMs (where ESM0

is the climatological mean plotted in Fig. 2 for both poles).
In contrast, the results in Fig. 5 reflect very essential differ-
ences between the freezing-melting dynamics at the Arctic
and Antarctic. Next we provide details and comparisons with
the CEEMDAN decomposition.

A. Arctic

The ice extent anomaly time series for the Arctic is plotted
in Fig. 6(a). Clearly, the removal of the climatological mean
[Fig. 2(a)] from the original record [Fig. 1(a)] did not affect
the long-term tendency, the well-documented dramatic ice
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FIG. 6. Bottom-to-top decomposition of the daily ice extent anomaly time series for the Arctic. (a) Full record. (b) Background trend ESM1

determined by p1 in Fig. 5(b). (c) ESM2 (red, shifted upward), ESM3 (blue), and residuals (gray, shifted downward) determined by p2 and p3

[see Fig. 5(b)].

melting at the northern pole. This smooth trend is the first
slow mode ESM1 [Fig. 6(b)] obtained with the smoothness
parameter p1 [Fig. 5(b)]. It seems that a regime change hap-
pened between 2000 and 2005: In the last two decades of the
20th century, fluctuations exhibited large-amplitude positive
(freezing) spikes, while in the first two decades of the 21st
century the sign changed and large-amplitude negative (melt-
ing) spikes dominate.

ESM2 [red curve in Fig. 6(c)] is a slow quasiperiodic os-
cillatory mode with a characteristic period of around 5 years,
with a visible phase shift in the early 2000s, coinciding with
the suggested regime change.

ESM3 [blue curve in Fig. 6(c)] exhibits much-larger-
amplitude oscillations than ESM2, as expected already from
the peak heights in Fig. 5(b). The dominating period is sharply
1 year and the regime change is also apparent: Large positive
peaks in the 20th century are followed by dampened fluctua-
tions in the early 2000s and large negative annual excursions
are dominating in the last 15 years.

The residuals [Fig. 6(c), gray line] have a broad, very-
small-amplitude Fourier hump centered at around 80–100
days (not shown here), which can be reasonably related to
short-term fluctuations of different amplitudes in the different
seasons.
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FIG. 7. Last five IMFs (blue lines) of the Arctic daily ice extent
anomalies [shown in Fig. 6(a)] produced by the CEEMDAN algo-
rithm. Red dashed lines illustrate the ESMs of approximately similar
characteristic frequencies.

The comparison of our results with the top-to-bottom
CEEMDAN decomposition is illustrated in Fig. 7. Similarly
to the synthetic noise in Fig. 4, the algorithm produced here 11
IMFs, the first six representing high-frequency modes. A vi-
sual inspection reveals again substantial mode mixing. While
IMF-7 seems quite similar to ESM3 identified in Fig. 6(c)
(blue line), large discrepancies are present at the peaks of
largest amplitudes. IMF-8 provides some amplitude correc-
tions to IMF-7, although the mismatch with ESM3 is obvious.
Particularly strong mode mixing is apparent when we com-
pare IMF-9 and IMF-10 with the essential slow mode ESM2.
Note that even the slow general trend of ESM1 is poorly
resolved by the last intrinsic mode function IMF-11.

B. Antarctic

We repeated the same analysis for the Antarctic ice extent
time series, following the steps of Sec. III A. Daily ice extent
anomalies are plotted in Fig. 8(a). The slowest background
mode ESM1 [Fig. 8(b)] identified by the cubic spline fit with
p1 in Fig. 5(c) is totally different from the monotonically de-
creasing long-term trend at the Arctic [Fig. 6(b)]. The lack of
overall shrinking of the Antarctic ice sheet until around 2015

FIG. 8. Bottom-to-top decomposition of the daily ice extent
anomaly time series for the Antarctic. (a) Full record. (b) Back-
ground trend ESM1 determined by p1 in Fig. 5(d). (c) ESM2 (red,
shifted upward), ESM3 (blue), ESM4 (brown, shifted downward),
and residuals (gray, shifted downward) determined by p2, p3, and
p4 [see Fig. 5(d)].

is well known again, and possible explanations are widely
discussed in the geophysical literature (together with the quick
melting during 2015–2016).

The slowest oscillatory mode ESM2 [Fig. 8(c), red curve]
seems to be similar to the Arctic 5-year mode. However, a
Fourier test suggests a somewhat longer period of around 5.5
years. Note the swing of ESM2 with an increasing amplitude
in the last two decades. (Since such behavior is not consistent
with the stationarity criteria required by spectral analysis, we
do not refer to details here.)

The next fluctuating mode ESM3 of p3 [Fig. 8(c), blue
curve] exhibits a characteristic peak at a period of 1.2–1.3
years, which is somewhat perplexing. The lack of a clear
1-year component (in strong contrast with the Arctic) might be
a consequence of interferences among the annual periodicity
and distinct climate modes, such as the Southern Annular
Mode, quasistationary wave pattern, Pacific South American
pattern, and SemiAnnual Oscillation, all known to be related
to the Antarctic ice extent [44–46].

Similarly interesting is the fastest oscillatory mode ESM4

of p4 [Fig. 8(c), brown curve]. It has a comparable ampli-
tude to ESM3 and a broad spectral hump centered at around
a period of 160–180 days, somewhat less than half a year.
This is again in contrast with the Arctic signal; however,
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FIG. 9. Last eight IMFs (blue lines) of the Antarctic daily ice
extent anomalies [shown in Fig. 6(a)] produced by the CEEMDAN
algorithm. Red dashed lines illustrate the ESMs of approximately
similar characteristic frequencies.

semiannual oscillations are known to determine many mete-
orological patterns on the southern hemisphere [44–46].

Unlike the Arctic, the Antarctic residuals [Fig. 8(c), gray
line] have negligible spectral peaks at small periods between
1 and 100 days and zero for larger values. This indicates that
the extra near semiannual mode ESM4 (superposed with the
slower ESMs) in the case of Antarctic explains all the relevant
variabilities apart from some uncorrelated random noise.

The CEEMDAN results for the Antarctic are illustrated
in Fig. 9, where the first four IMFs represent noise. Again,
the top-to-bottom decomposition cannot reproduce ESMs
properly. While IMF-9 seems to be close to ESM2, signifi-
cant discrepancies are obvious. The closest match is visible
between IMF-7 and ESM2, at least for the characteristic

FIG. 10. The IMF-11 (blue lines) from four runs of the CEEM-
DAN decomposition of the Antarctic ice extent anomaly time series
in Fig. 8(a). The only difference between runs is that the seed of the
random number generator producing the noise is set from an internal
timer. ESM1 [see Fig. 8(b)] is illustrated by red dotted lines.

frequencies, although amplitudes are overestimated by IMF-7.
Notably, the long-term trend ESM1 spectacularly suffers from
mode mixing; even the sum of IMF-11 plus IMF-12 does not
fit to ESM1, particularly at the ends of the signal.

IV. DISCUSSION

While empirical methods based on mode decomposition
are able to provide a kind of basis function for noisy, non-
stationary, nonlinear signals, the method of top-to-bottom
decomposition suffers from several shortcomings. The basic
question is to interpret the IMFs: Do they represent physical
modes or not? The forced dyadic filtering usually results in
ten or more IMFs for empirical records; the first few are
the noise parts, depending strongly on the first local max-
ima and minima representing the upper and lower envelopes.
Noise-assisted variants like EEMD and CEEMDAN seem-
ingly override this randomness with a decomposition of an
ensemble of noise decorated records. However, Fig. 10 illus-
trates a peculiar feature of such procedures, namely, repeated
ensemble realizations often result in strongly different IMFs.

In Fig. 10, the results for four subsequent runs of CEEM-
DAN decomposition are illustrated for the Antarctic ice extent
anomaly time series [Fig. 8(a)]. In each run, an ensemble of
100 test sets is generated with an internal random number
generator seed [38]. Particularly the low-frequency intrinsic
mode functions, such as IMF-11 plotted in Fig. 10, suffer from
an extreme variability, questioning any interpretation as being
representative of a physical mode.

There are several proposals to identify relevant IMFs
(presumably representing some physical modes) (see,
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e.g., [47–50]). The limitation of all proposals is the follow-
ing. The first step always is the top-to-bottom decomposition
into a limited number of IMFs and then some measures of
correlation with the original signal are evaluated to discrimi-
nate relevant and irrelevant IMFs. In contrast, by evaluating
hundreds of IMFs our method is able to identify ESMs
which represent particularly well the overall tendencies of the
signal.

In conclusion, we believe the proposed bottom-to-top cubic
spline decomposition to provide a competitive tool to identify
modes in strongly fluctuating data and to significantly advance
the state of the art regarding decomposition of time series. The
computational cost (CPU time) demanded by our algorithm
with 100–200 cubic spline fits is at most one-tenth of a stan-
dard CEEMDAN procedure.
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APPENDIX: HOW DOES THE METHOD WORK?

Since our bottom-to-top decomposition method is a fully
empirical and data-driven procedure, it is impossible to pro-
vide a comprehensive exploration of the infinite variety of
artificial signals. Instead, we are using simple harmonic func-
tions and Gaussian noise as a first test:

y(t ) = sin[2πt/(365.25 × T )] + A × G(0, 1). (A1)

The harmonic component has a unit amplitude, the time t is
measured in days, T is measured in years, and G(0, 1) repre-
sents a Gaussian white noise of zero mean and unit standard
deviation, with amplitude A.

In order to check the sensitivity of the procedure for the
resolution of the smoothing parameter p, we constructed
three sets covering the range p ∈ [10−16, 3 × 10−3] (with
logarithmic spacing) as follows. The set p151 is formed
by p151n = 1.23 × p151n−1 for n = 2, . . . , 151. Similarly,
p301 is constructed as p301n = 1.11 × p301n−1 for n =
2, . . . , 301. Finally, p601 has the rule of p601n = 1.053 ×
p601n−1 for n = 2, . . . , 601. In all three cases the first value
is 10−16.

Figure 11(a) illustrates the results for single harmonic
components with a period time T = 3 without noise, while
Fig. 11(b) presents analogous data for the same sinusoidal
slow mode with noise [A = 2 in Eq. (A1)]. The shape of the
R2(p) curves is a simple sigmoid (not shown here) starting
from zero and shooting up to one with a logarithmic slope;
consequently, the derivative is an almost symmetric peak on
a semilogarithmic scale. (Note that on a linear scale such
peaks are strongly asymmetric with typical skewness values
on the order of 2.4, almost independently of the location.)
When the single peaks are normalized by their peak maxima,

FIG. 11. (a) Gradient of the coefficient of determination
d (R2)/d p for a pure sinusoidal signal with T = 3 [see Eq. (A1)]
with three different series of smoothing parameter p defined in the
text. The peaks are normalized by the maxima. (b) Same as (a) with
a large noise component [A = 2 in Eq. (A1)]. (c) Logarithm (base
10) of peak location log(ppeak ) as a function of the logarithm of
period time log(T ) with zero noise (red symbols) and with a large
noise (A = 3, black crosses). The log-log plot indicates the scaling
of ppeak ∼ T −4 (dashed line). The smoothing parameter series p601
was used in the test.
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FIG. 12. (a) Gradient of the coefficient of determination
d (R2)/d p for a superposition of up to five sinusoidal signals with
T = 0.5, 1.5, 3.3, 7.1, and 15.3 with the p151 parameter series
defined in the text. Gaussian noise with A = 1 is also added for each
case. (b) Plot of d (R2)/d p for the superposition of two sinusoidal
signal with 25 different �T values. There is a fixed component
with T = 8.1 (leftmost peak), and the period time of the other
component increases from T = 0.3 (rightmost peak) by steps of
T+ = 0.3. (c) Critical separation distance �Tcrit where the higher-
frequency component can be clearly identified (double peak with
local minimum in between) as a function of the slow component
with T0. For comparison, the dashed line indicates the relationship
of �Tcrit = T0/2.

they fully coincide. Normalization is necessary for the com-
parison, because finer steps of the smoothing parameter p
obviously result in smaller values of the numerical gradient
d (R2)/d p. The remarkable result in Fig. 11(b) is that the
procedure is weakly sensitive to the high-frequency noise and
the slow sinusoidal mode is easily detectable with surprisingly
large noise amplitudes without any problem (the example A =
2 means twice larger noise amplitude than the slow mode).
The presence of noise is visible for larger and larger smooth-
ness parameters behind the peak and the quality of cubic
spline fits improves again by progressively representing the
noise better and better.

The position of the peak functionally depends on the
characteristic period time, as illustrated in Fig. 11(c). The
horizontal axis is log(T ) (covering the interval of [0.3, 7.5]
years by steps of 0.3 year) and the vertical axis is the position
of the peak log(ppeak ). The dashed line has a fitted slope of
−4.02, indicating a power-law dependence: ppeak ∼ T −4.

The widths of the peaks on semilogarithmic scales [such as
in Figs. 11(a) and 11(b)] are hardly dependent of the position,
but the scaling behavior with T −4 means that the separation
of peaks decreases sharply at increasing T values. This obvi-
ously limits the identification of slow sinusoidal components
of close frequencies.

Figure 12(a) illustrates that the superposition up to five
sinusoidal modes is clearly decomposable when the separa-
tion of characteristic frequencies is large enough. A feasible
bottom-to-top decomposition requires clear local minima be-
tween the peaks. As expected, when the separation is too
small, the peaks merge and the identification of such slow
modes is not possible, as clearly visible in Fig. 12(b). The
critical separation �Tcrit , where the double peak has a clear
local minimum, depends on the period time, as noted above.
We performed a series of tests similarly to the ones in
Fig. 12(b) with different period time of the slower component
T0 and identified the last clear double peak as a func-
tion of separation, which defines a critical difference �Tcrit .
Figure 12(c) illustrates the result, which suggests a sur-
prisingly simple linear relationship �Tcrit = T0/2 for two
sinusoidal components.

It is clear that there is a plethora of questions about the
sensitivity and selectivity of the bottom-to-top decomposition,
such as modes with different amplitudes, slow background
trends, and signals other than sinusoidal. A detailed analysis
of every such aspects is beyond the scope of this work. Nev-
ertheless, we believe that the method works and is efficient
and that it is able to identify slow nonlinear modes present
in complicated signals when the condition of large enough
characteristic frequency separation is fulfilled.
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