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Spectral damping without quasiparticle decay: The dynamic structure factor of two-dimensional
quantum Heisenberg antiferromagnets
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Two-dimensional Heisenberg antiferromagnets play a central role in quantum magnetism, yet the nature of
dynamic correlations in these systems at finite temperature has remained poorly understood for decades. We
solve this long-standing problem by using a quantum-classical duality to calculate the dynamic structure factor
analytically and, paradoxically, find a broad frequency spectrum despite the very long quasiparticle lifetime.
The solution reveals multiscale physics whereby an external probe creates a classical radiation field containing
infinitely many quanta. Crucially, it is the multiscale nature of this phenomenon which prevents a conventional
renormalization group approach. We also challenge the common wisdom on static correlations and perform
Monte Carlo simulations which demonstrate excellent agreement with our theory.
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I. INTRODUCTION

The dynamic structure factor encodes the fundamental
physical processes involved in the response of a system to
an external probe and is the most common experimental
observable in studies of magnetic systems, determined, for
example, using inelastic neutron [1] or resonant x-ray scat-
tering spectroscopy [2]. However, quantitatively accurate and
physically insightful theoretical analyses of these processes
can be elusive. The two-dimensional quantum Heisenberg
antiferromagnet (2DQHA) plays an important role in the
field of quantum magnetism precisely because of the the-
oretical challenges it poses in addition to its descriptive
power: First, the model describes the parent compounds of
cuprate high-temperature superconductors [3]. Second, while
the model supports long-range order at zero temperature, or-
der is destroyed at any finite temperature [4]. Because of the
importance of thermal fluctuations, 2DQHAs manifest highly
nontrivial classical and quantum long-range dynamics which
are not fully understood [5,6]. The nature of quantum critical
points to and from quantum spin liquid phases is also a prob-
lem of intense theoretical interest (see Ref. [7] for a review).
Somewhat surprisingly, the physics of thermal fluctuations in
isotropic 2DQHAs is closely related to the zero-temperature
quantum Lifshitz phase transition between antiferromagneti-
cally ordered states and a spin-liquid phase in systems with
long-range frustrated interactions (e.g., the J1-J3 model) [8].
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In their seminal work, Chakravarty, Halperin, and Nel-
son used the O(3)-symmetric nonlinear σ model (NLSM)
to describe the long-wavelength physics of 2DQHAs at low
temperature and argued that the spin-spin correlations in
the so-called renormalized classical regime are essentially
classical in nature [9]. Crucially, their analysis relied on a
quantum-classical mapping which integrates out all dynamics
of the quantum model. Consequently, this approach allowed
the authors to derive a scaling form for the static structure fac-
tor but not for the dynamic structure factor. Later studies of the
dynamic structure factor raised surprising questions. First, a
direct perturbative calculation of the magnon decay rate due to
scattering from the thermal bath predicted the dynamic struc-
ture factor should have a very narrow linewidth [10]. Simi-
larly, a 1/N expansion of the O(N ) NLSM predicted a narrow
quasi-Lorentzian frequency distribution [11]. In contrast, clas-
sical time-dependent numerical simulations showed a broad
dynamic structure factor [12], and it has so far remained un-
clear how to rigorously reconcile this apparent contradiction.

We resolve the long-standing discrepancy in this paper
with an analytical calculation of the dynamic spin structure
factor of the isotropic O(N � 3) NLSM at finite temperature.
In recent works [8,13], we demonstrated that infrared-
divergent fluctuations—either thermal or quantum—lead to
the emergence of a quantum-classical duality: when an ex-
ternal probe interacts with the system, it creates a classical
field which contains an infinite number of quanta with finite
total energy. This concept actually originates from particle
physics, where it was first developed by Bloch and Nordsieck
to solve the problem of the radiation field of accelerating elec-
trons [14]. Since the O(2) NLSM is exactly solvable, we were
able to rigorously show that despite the infinite quasiparticle
lifetime, the dynamic structure factor at nonzero temperature
is broad and non-Lorentzian [13].

The O(N � 3) models are not exactly solvable, and hence,
the diagrammatic expansion we derived in Ref. [13] is not
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applicable. However, we leverage the concept of the infrared
catastrophe to develop an analytical technique and use it to
show that the dynamic spin structure factor of the O(N )
quantum NLSM at finite temperature is very broad and non-
Lorentzian. Our analysis demonstrates that this broadening is
not due to short-lived quasiparticles but, instead, is due to
the radiation of multiple spin waves by the external probe.
With this result, we also obtain the static structure factor by
integrating over frequency and find similarities with the scal-
ing form known in the literature [6,9,11]. However, our static
structure factor has a different temperature dependence which
originates from the underlying quantized nature of the highly
classical radiation field. Fortunately, unlike the dynamic fac-
tor, the static structure factor can be calculated numerically
using path integral quantum Monte Carlo—referred to here-
after as Monte Carlo (MC). Therefore, to confirm our result
for the static structure factor we also perform extensive MC
simulations of the O(3)-symmetric NLSM and find excellent
agreement.

The rest of this paper is structured as follows: In Sec. II,
we introduce the nonlinear σ model as the effective field
theory for the 2D quantum Heisenberg antiferromagnet and
summarize some of its most important features, including the
renormalization group running coupling constants. In Sec. III,
we present the main result of this paper: a calculation of the
dynamic structure factor of the O(N ) NLSM which accounts
for the nontrivial multiscale physics. In Sec. IV, we use our
expression for the dynamic structure factor to study the equal-
time correlations of the NLSM and present the results of
MC simulations, which support our predictions. Section V
presents our conclusions.

II. FORMALISM

The long-range dynamics of 2DQHAs at low temperature
can be described by the O(3) NLSM with Lagrangian L =
(ρ0/2)[c−2(∂t �n0)2 − (∇�n0)2], �n2

0 = 1, where ρ0 and �n0 are the
spin stiffness and staggered magnetization order parameter,
respectively, defined at the ultraviolet scale �0 ∼ π/b, and b
is the lattice spacing [9,15]. Quantum fluctuations are ultra-
violet divergent as a power of the momentum scale and, at
a scale �1 � �0 corresponding to several lattice spacings,
reduce the order parameter down to n0 = |〈�n0〉| < 1. To de-
scribe physics at the scale �1, the quantum fluctuations can
be integrated out, leading to the low-energy Lagrangian

L = 1

2
ρ

[
1

c2
(∂t �n)2 − (∇�n)2

]
, �n2 = 1, (1)

where ρ and �n are the spin stiffness and order parameter
normalized at �1. Both ρ and n0 as a function of the di-
mensionless coupling constant g = h̄c/ρ0b can be calculated
numerically using MC, and those of the O(3) NLSM are
shown in Fig. 1. In this paper, we address the regime g < gc ≈
1.46, which describes 2DQHAs [9].

For the sake of generality, we consider from here on the
O(N )-symmetric model in terms of �n = (n1, n2, . . . , nN ), with
N � 3, and use units of h̄ = c = b = 1. At zero temperature,
the ground state of the model has long-range collinear antifer-
romagnetic order—�n = const—which spontaneously breaks
the O(N ) symmetry. However, the Hohenberg-Mermin-

FIG. 1. Zero-temperature spin stiffness ρ and average staggered
magnetization n0 of the O(3) NLSM as a function of g = h̄c/ρ0b
measured using MC on a 643 lattice. Both ρ and n0 vanish at the
critical point g = gc ≈ 1.46.

Wagner theorem guarantees the destruction of long-range
order at any finite temperature [4,16]. Despite this, at suffi-
ciently low temperatures T � ρ, the system remains ordered
on scales up to the exponentially large correlation length ξ ∝
exp[2πρ/(N − 2)T ] [6,9,11,17]. This separation of scales
implies a notion of quasi-long-range order and allows for a
perturbative treatment of the NLSM on momentum scales
� satisfying ξ−1 � � � �1. For momentum scales on the
order of temperature to fall within this range, it suffices for
T � ρ. The effects of fluctuations on scales � ∼ T can be
determined within the leading order of perturbation theory.
However, there are two types of contributions governing the
physics of fluctuations on scales � < T : (i) renormalization
group (RG) “running” of physical parameters due to interac-
tions occurring at the same scale, which are the conventional
interactions which are well-understood in field theory, and
(ii) contributions originating from multiscale interactions to
which conventional RG techniques are blind, which we refer
to as the “beyond-RG” contributions. The general principle
underlying this paper is the technique we have developed to
unify these two different contributions.

The RG contributions are well understood [5,6,9], so we
summarize only the general principles here. The unit vec-
tor constraint of Eq. (1) generates interactions between the
components of �n, leading to renormalization of the spin stiff-
ness (ρ → ρ�) and fields (�n → �n� = Z1/2

� �n, where Z is the
quasiparticle residue). To one-loop accuracy at the momentum
scale � < T < �1,

ρ� = ρ − (N − 2)T

2π
ln

T

�
, (2a)

Z� = 1

n2
0

(
ρ

ρ�

)N−1
N−2

. (2b)

The ultraviolet cutoff for the fluctuations in (2a) is the
temperature T rather than �1 due to the bosonic statistics
of the quasiparticles; this is an important quantum correction
to classical thermodynamics [18]. In Appendix A, we give
a more detailed derivation of (2) and show that higher-loop
contributions are negligible when T � ρ.
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III. DYNAMIC STRUCTURE FACTOR

The dynamic structure factor (DSF) is the Fourier trans-
form of the order parameter correlation function1

S(k, ω)δi j =
∫

dt d2r 〈ni(r, t )n j (0)〉 ei(ωt−k·r), (3)

where the average is taken over the thermal ensemble and is
independent of the polarization indices i, j due to the absence
of long-range order at finite temperature. Expanding (3) in
a spectral representation in the basis of excited quasiparticle
Fock states |α〉 and |β〉 yields [19]

S(k, ω) =
∑
α,β

e−ωβ/T

Z |〈α|ni(0)|β〉|2

× (2π )3δ(ω − ωα + ωβ )δ(2)(k − kα + kβ ), (4)

where Z is the quantum partition function and ωα and kα are
the energy and momentum of the state |α〉. In this paper we
always work with ω > 0 since (4) implies that S(k,−ω) =
e−ω/T S(k, ω).

A. RG contributions

First, we account for RG contributions to the DSF by
renormalizing the fields in (4) at the scale of the incom-
ing momentum k, so that ni

k = ni/Z1/2
k ; since ξ−1 � k < T ,

local order exists at this scale. The absence of long-range
order means that the single-magnon intermediate state does
not contribute to (4) [13]. Therefore, we eliminate the �n2 =
1 constraint by writing the order parameter field as �nk =
( �πk,

√
1 − �π2

k ), where �π = (π1, . . . , πN−1) are small trans-
verse fluctuations, and use the component of �n in the direction
of local order—nN

k = √
1 − �π2

k —to compute the DSF. How-
ever, this approach assigns all dynamics to the directions
transverse to the local moment and hence does not respect
the O(N ) symmetry, which must remain unbroken at finite
temperature. To restore symmetry, we rotationally average
the DSF over all N polarizations by multiplying (4) by (N −
1)/N [6,11]. Therefore, suppressing Boltzmann factors and δ

functions for notational clarity, the DSF is

S(k, ω) =
(

N − 1

N

)
1

Zk

∑
α,β

∣∣〈α|√1 − �π2
k |β〉∣∣2

. (5)

We have primarily chosen the longitudinal component of �n
to simplify the calculations which follow. In Appendix B,
we describe the mechanism which is responsible for restor-
ing rotational symmetry in this representation of the order
parameter. The leading contribution is then obtained by ex-
panding

√
1 − �π2

k � 1 − �π2
k/2. Naively, the first term appears

to yield a k = 0 Bragg peak. However, we emphasize that
order only locally exists on scales 0 < ξ−1 < k, so it is in-
correct to use (5) for momenta k < ξ−1. Therefore, we take
1 − �π2

k/2 → −�π2
k/2 and evaluate the leading contribution

by using Fermi’s golden rule to find the probability of two

1Note that in a previous work [13], we defined the structure factor
as the Fourier transform of 〈�n(r, t ) · �n(0)〉, the total response from all
polarizations. The present definition differs by a factor of 1/N .

FIG. 2. The dominant contribution to the dynamic structure fac-
tor is the emission by the probe (dashed line) of a quasiparticle with
energy ωk (thick wavy line) and a second “soft” particle with energy
|ω − ωk| � ωk (thin wavy line).

magnon radiation. More precisely, if ω > ωk, the external
probe excites two quasiparticles (see Fig. 2), and if ω < ωk,
one quasiparticle is emitted, and a second is absorbed. When
|ω − ωk| .= |�| � ωk, both processes have the same contri-
bution to the sum over initial and final states,

Ĩ2(k, ω) � N − 1

2!

∫
d2k1

(2π )2

d2k2

(2π )2

T

2ω2
1ρk

T

2ω2
2ρk

× (2π )3δ(ω − ω1 − ω2)δ(2)(k − k1 − k2)

= (N − 1)T 2

4ρ2
kω2

k|ω − ωk| , (6)

where the spin stiffness ρk is evaluated at k due to our choice
of renormalization scale.

However, by examining the structure of the phase space
integral above, we find that one emitted quasiparticle will
have energy ∼ωk and the other will have energy ∼|�| � ωk.
Hence, the two-magnon intermediate state is an inherently
multiscale process, and contributions at the “soft” scale � ∼
|�| are not properly accounted for; conventional RG is not
sufficient to describe the process accurately.

B. Beyond RG contributions

We now account for the multiscale nature of the two-
magnon intermediate state. First, observe that we can perform
a post hoc simplification of the phase space integral leading
to (6) using our knowledge of the momentum distribution and
find that it factorizes as

Ĩ2(k, ω) � (N − 1)

(∫
d2k1

(2π )2

T

2ω2
1ρk

(2π )2δ(2)(k − k1)

)

×
(∫

d2k2

(2π )2

T

2ω2
2ρk

(2π )δ(� − ω2)

)
(7)

into high- and low-energy processes. This implies that to
leading order, the RG corrections to the properties of the
emitted quasiparticles will also factorize. Importantly, we
can then account for the running of the parameters—the
quasiparticle residue and the spin stiffness—of the two parti-
cles independently at their respective momentum scales. This
leads to an explicit dependence of the spin stiffness on the
magnon momentum ρ → ρ(k j )—which we denote in this
manner to emphasize that the momentum argument is now a
variable—while the running of the quasiparticle residue from
the normalization point k down to the magnon momentum
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gives an additional factor of Zk/Z (k j ) for each particle. Note
that the additional factors of Zk in the numerator come from
the fact that the spectral expansion of the DSF (5) is already
normalized at the momentum transfer k from the external
probe, so there is no need to account a second time for the
running from the ultraviolet down to this scale. Therefore,
the beyond-RG version of (6)—denoted with no tilde—is
straightforward to evaluate to logarithmic accuracy,

I2(k, ω) � N − 1

2!

∫
d2k1

(2π )2

d2k2

(2π )2

T Zk

2ω2
1ρ(k1)Z (k1)

× T Zk

2ω2
2ρ(k2)Z (k2)

(2π )3δ(ω − ω1 − ω2)

× δ(2)(k − k1 − k2)

� Zk

Z�

(N − 1)T 2

4ρkρ�ω2
k|ω − ωk| . (8)

We note that there are two-loop corrections to the source
vertex which do not factorize. However, this will be only
a higher-order effect and so does not influence our current
discussion of the physics at leading order.

We understand from our exact solution of the O(2)
NLSM that the physics of the soft scale � ∼ |�| is char-
acterized by an interplay between thermal fluctuations and
the radiation of additional (more than two) arbitrarily low-
energy quasiparticles, the “probabilities” of both of which are
logarithmically infrared divergent; this divergence implies

that no finite number of quasiparticles can be excited by the
probe [13]. Therefore, the “second quasiparticle” with energy
|�| emitted/absorbed by the probe is actually accompanied by
a classical radiation field containing infinitely many quanta.
However, mathematically, this radiation field is indistinguish-
able from the long-wavelength static thermal fluctuations and
serves only to set an infrared cutoff at the smallest physically
relevant momentum scale �min = |�|. This is a peculiarity of
the Bloch-Nordsieck physics which has been long known in
particle physics: Accelerating matter always emits an infinite
number of gauge quanta, whether it be electrons emitting pho-
tons [14] or generic massive particles emitting gravitons [20].
Therefore, having already accounted for the multiscale nature
of two-magnon radiation down to |�|, we have implicitly
resummed all the leading large logarithmic contributions from
higher-order processes involving more than two magnons in
the intermediate state.

Therefore, we find that the DSF of the O(N ) NLSM in the
regime ξ−1 � |�| � ωk � T is

S(k, ω) =
(

N − 1

N

)
1

Zk
I2(k, ω)

= (N − 1)2

N

1

Z�

T 2

4ρkρ�ω2
k|ω − ωk| , (9)

so that in terms of the one-loop expressions for Z�, ρk, and
ρ� given by (2), the full form of (9) is

S(k, ω) = (N − 1)2

N

[
1 − (N − 2)T

2πρ
ln

T

ωk

]−1[
1 − (N − 2)T

2πρ
ln

T

|ω − ωk|

] 1
N−2 T 2n2

0

4ρ2ω2
k|ω − ωk| . (10)

It is common to express the structure factor in terms of ap-
propriate length and time scales. In the present case, the only
length scale is

λ = 1

T
exp

[
2πρ

(N − 2)T

]
, (11)

in which case we can write

S(k, ω) = (N − 1)2

N

2πρ

(N − 2)T ln(λωk )

×
[

(N − 2)T

2πρ
ln(λ|ω − ωk|)

] 1
N−2

× T 2n2
0

4ρ2ω2
k|ω − ωk| . (12)

Of course, this result assumes λ|ω − ωk| � 1 and hence
represents a very broad frequency distribution decaying more
slowly than 1/|�|. The limit N → 2 reproduces the exact
solution obtained in Ref. [13] using a direct summation of dia-
grams; this is clearly one important source of validation of our
present approach. While we used a very different technique
in Ref. [13], the hierarchy of multiparticle contributions was
compatible with the present approach. Since the case N > 2

is not exactly solvable, in this work we used the running of
parameters to correctly account for the beyond-RG contribu-
tions.

C. Lifetime damping

We have so far neglected the lifetime of quasiparticles in
the O(N � 3) NLSM. The dominant decay process for an
on-shell magnon with energy ωk � T is 2 → 2 Raman scat-
tering from a particle in the thermal bath, which leads to the
well-known inverse lifetime [10,11],2

�k

ωk
� (N − 2)T 2

4πρ2
k

ln
T

ωk
. (13)

Importantly, in our regime of interest (ξ−1 � ωk � T � ρ)
�k/ωk is an O(T 2/ρ2) small quantity. It is then clear from the
analysis in the previous section that when �k < |�|, radiative
broadening of the DSF due to multiple emissions/absorptions
dominates over 1/|�|2 Lorentzian lifetime broadening. As a

2Here �k is the full width at half maximum of the quasiparticle
Green’s function. Some works define it as the half width, leading to
a spurious factor of 2 difference.
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side note, since �k ∝ N , radiative broadening may be hidden
in a 1/N expansion around N = ∞. However, for N not much
larger than O(ρ/T ), the region |�| < �k remains very nar-
row. Regardless, lifetime broadening cannot be neglected near
resonance.

The finite lifetime has the effect of “broadening” the
energy-conserving δ function in (8),

(2π )δ(ω − ω1 − ω2) → �

(ω − ω1 − ω2)2 + �2/4

� �k

(� − ω2)2 + �2
k/4

, (14)

since �� � �k. However, there is an important subtlety in
accounting for contributions from different pieces of phase
space. Without lifetime broadening, the following cases are
possible:

(i) ω > ωk > 0. Two particles are emitted.
(ii) ωk > ω > 0. One particle is emitted with energy ωk,

and one is absorbed with energy |�|.
(iii) 0 > ω > −ωk. One particle is absorbed with energy

ωk, and one is emitted with energy |�|.
(iv) 0 > −ωk > ω. Two particles are absorbed.
In principle, with accounting for lifetime broadening, any

of these processes can occur for any values of energy and
momentum transfer from the source. However, since we work
in the regime |�| � ωk, we can safely assume no mixing
between the positive and negative frequency branches of the
spectrum. However, for ω > 0, we must allow for mixing
between processes (i) and (ii). Therefore, we generalize the
integral (8) to give us the full form of the DSF,

S(k, ω) � (N − 1)2

N

T 2n2
0

4ρkω
2
k

∫ ωk

1/λ

d2q
(2π )2

1

ωqρ(q)Z (q)

×
[

�k

(� − ωq)2 + �2
k/4

+ �k

(� + ωq)2 + �2
k/4

]
,

(15)

which is plotted in Fig. 3, where it is compared to a Lorentzian
line shape with the same ω integrated spectral weight. Clearly,

FIG. 3. The dynamic structure factor (15) accounting for life-
time broadening with ωk = T/2 = ρ/4. The Lorentzian FWHM
�k/ωk ≈ 0.015 is given by (13). Both curves have the same ω in-
tegrate spectral weight.

the resonant response of the DSF is greatly suppressed com-
pared to the Lorentzian, with significant spectral weight
shifted to the tails of the frequency distribution. Note that we
must retain an infrared momentum cutoff for this expression.
Given that we have already established that the characteristic
momentum scale of the DSF in this regime is λ−1, we use
this as the cutoff. For process (i), the two emitted particles are
indistinguishable bosons, but we distinguish between them,
so we must impose the ultraviolet cutoff ωk to avoid double
counting states. For process (ii), the dominant contribution
comes from the absorption of particles with energy < ωk.
Finally, we note that in the limit |�| � �k, (15) reduces to
the expression with no accounting for the lifetime (10), as we
anticipated in our discussion above.

IV. EQUAL-TIME CORRELATIONS

The static structure factor can be calculated directly from
the DSF by integrating over frequency. Since the resonant
peak of the spectrum has a nontrivial spectral weight—as
indicated by the nonintegrable singularity at ω = ωk in the
zero-lifetime expression (12)—we must use the full inte-
gral form (15). Taking note of the fact that S(k,−ω) =
e−ω/T S(k, ω) � S(k, ω) when ω � T , we find that

S(k) � 2
∫ ∞

0

dω

2π
S(k, ω)

�
(

N − 1

N

)
T n2

0

ρk2

[
(N − 2)T

2πρ
ln(λk)

] 1
N−2

. (16)

We can also verify the total sum rule: Since the DSF we
derived was valid for ω � T , we should integrate (16) up to
T : ∫

d2k
(2π )2

S(k) �
∫ T

1/λ

d2k
(2π )2

S(k) = n2
0

N
. (17)

Therefore, summing up over the N polarizations, we recover
the correct normalization of the order parameter. We note that
this sum rule is not satisfied if all parameters are normalized
at the same scale—either ωk or |�|. This observation further
validates our approach to including multiscale physics.

It then follows that the equal-time order parameter correla-
tion function, which is N times the Fourier transform of (16),
will be

〈�n(r) · �n(0)〉 = N
∫

d2k
(2π )2

S(k)e−ik·r

� n2
0

[
(N − 2)T

2πρ
ln

(
λ

r

)]N−1
N−2

. (18)

The static structure factor (16) has the same functional
k dependence as the well-known scaling form [6,9,11].
However, (16) contains ln(λk) instead of ln(ξk) in those ref-
erences, where ξ is the correlation length,

ξ = ξ0

T

[
(N − 2)T

2πρ

] 1
N−2

exp

[
2πρ

(N − 2)T

]
, (19)

ξ0 = (e/8)1/(N−2)�[1 + 1/(N − 2)], and �(x) is the gamma
function [6,11,17]. The replacement ξ → λ leads to a
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FIG. 4. Order parameter equal-time correlations at fixed g = 1
(ρ ≈ 0.504 and n0 ≈ 0.673). Symbols are Monte Carlo data, solid
lines are theory (18) for N = 3, and dashed lines are theory replacing
λ → ξ .

particularly drastic difference for the case N = 3, where the
preexponential factor of the correlation length is temperature
independent.

To confirm our results (16) and (18), we performed MC
simulations of the O(3) NLSM and measured the equal-time
order parameter correlation function. The zero-temperature
spin stiffness ρ and staggered magnetization n0 presented in
Fig. 1 have been calculated on a 643 size lattice. To measure
the correlation function we used lattices with Lx = Ly = 512
and Lβ = 4, 6, 8 imaginary time slices which correspond to
different temperatures T = gρ0/Lβ . In Fig. 4 we present the
MC correlation function for dimensionless coupling g = 1,
corresponding to ρ/ρ0 ≈ 0.504 and n0 ≈ 0.673. The solid
lines show the theoretical prediction (18) for N = 3; note that
the theory has no adjustable fitting parameters. At r � 2—
in units of the lattice spacing—deviations from theory are
due to the dominance of ultraviolet quantum fluctuations on
short length scales, and at r � 128, finite-size effects from
the periodic boundary conditions become important. Since
the parameters used lie within the domain of validity of the
theory, we find excellent agreement between our theoretical
predictions and the MC simulation data. Further data and
analysis can be found in Appendix C. The dashed lines show
the correlation function (18) with λ replaced by ξ and disagree
very clearly with the MC simulations.

To avoid misunderstanding we note the following: (i) The
correlation length is defined in terms of the exponential decay
of correlations on large length scales 〈�n(r) · �n(0)〉 ∼ e−r/ξ

when r � ξ . (ii) In this work, we are operating in the opposite
limit r � ξ . We are not claiming that the well-known expres-
sion (19) for the correlation length is incorrect. However, we
claim that correlations on shorter scales are characterized by
the parameter λ and not ξ .

V. SUMMARY

We have calculated the finite-temperature dynamic struc-
ture factor of the 2D O(N ) quantum nonlinear σ model
in the regime describing a Heisenberg antiferromagnet. The

dynamic structure factor displays a very broad frequency
distribution which decays more slowly than the first power
of the detuning from resonance. Since the quasiparticle life-
time remains very long, it is irrelevant to the broad tails
of the spectrum. Instead, the broadening is driven by the
emission and absorption of multiple soft excitations by the
probe. To perform this calculation, we developed an analytical
technique which accounts for both conventional single-scale
renormalization group contributions and beyond-RG effects
from multiscale physics. We expect this method to be broadly
applicable to studying the dynamics of a wide range of finite-
temperature interacting quantum field theories.

Using our result for the dynamic structure factor, we also
calculated the static structure factor and found agreement of
the functional momentum dependence with the previously
known result. However, we predicted a significant modifica-
tion of the characteristic length scale of correlations in the
so-called scaling regime. This result implies an important
correction to the temperature dependence of static correlations
from the bosonic statistics of the quasiparticles. To confirm
this prediction, we performed extensive path integral quantum
Monte Carlo simulations and demonstrated perfect agreement
between the numerical data and our analytical formula.
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APPENDIX A: FORMALISM

1. Finite-temperature one-loop renormalization of the
(2 + 1)-dimensional NLSM

In Sec. II, we discussed how quantum and thermal fluctua-
tions are taken into account via renormalization. Here we take
a pedagogical approach to showing how the RG equations (2)
can be derived.

The O(N ) nonlinear σ model (NLSM) in 2 + 1 dimen-
sions, normalized at the scale �0 ∼ π/b, where b is the lattice
spacing, is given by the Lagrangian

L = 1
2ρ0(∂μ�n0)2, �n2

0 = 1, (A1)

where ∂μ = (c−1∂t , ∂x, ∂y) and ρ0 is the spin stiffness. From
here on we set c = 1. The unit vector constraint can be elim-
inated explicitly by writing �n0 = ( �π0, σ0) = ( �π0,

√
1 − �π2

0 ).

The Lagrangian in terms of the transverse fluctuations �π0 is

L = 1

2
ρ0

[
(∂μ �π0)2 + ( �π0 · ∂μ �π0)2

1 − �π2
0

]
. (A2)

Expanding around the zero-temperature state of spontaneous
symmetry breaking σ0 = 1 and π i

0 = 0 yields

L = 1
2ρ0[(∂μ �π0)2 + ( �π0 · ∂μ �π0)2 + · · · ], (A3)
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where the ellipsis denotes terms of O(π6
0 ). The interactions

have the effect of renormalizing the spin stiffness, ρ0 → ρ�,
and the fields, �n0 → �n�

.= Z1/2
� �n0. To see this, we calculate

the self-energy by performing a one-loop decoupling of the
quartic term

( �π0 · ∂μ �π0)2 −→ 1

N − 1
〈 �π2〉�(∂μ �π0)2, (A4)

where 〈 �π2〉� are the fluctuations of the �π fields with momenta
in the interval (�,�0). At the scale �1 � �0 corresponding
to several lattice spacings, the fluctuations reduce the effective
length of the σ0 component down to n0 = |〈�n0〉| < 1. There-
fore, we require that the renormalized fields satisfy 〈σ�1〉 = 1;
the renormalized ground state should have the same form,
σ�1 = 1, π i

�1
= 0. Far away from the quantum critical point,

the first-order perturbative calculation gives

Z�1 = 1

n2
0

� 1 + 〈�π2〉�1 , (A5)

and hence,

ρ�1 � ρ0

(
1 − N − 2

N − 1
〈 �π2〉�1

)
. (A6)

In practice, ρ and n0 are calculated numerically, which we do
using path integral Monte Carlo (see Fig. 1 and Appendix C).
By integrating out the ultraviolet quantum fluctuations, we can
obtain the low-energy “coarse-grained” Lagrangian normal-
ized at �1,

L = 1
2ρ(∂μ�n)2, �n2 = 1. (A7)

Turning to the case of finite temperature, we note that
long-range order is destroyed by thermal fluctuations and
no state of spontaneously broken symmetry exists [4,16].
However, the correlation length ξ ∝ exp[2πρ/(N − 2)T ] re-
mains exponentially large in the low-temperature regime T �
ρ [9,11,17]. Therefore, on momentum scales ξ−1 � � < �1,
we can apply the same analysis as above by expanding the
low-energy Lagrangian (A7) around a locally ordered state.
The thermal fluctuations 〈 �π2〉� can be evaluated directly when
� < T < �1:

〈 �π2〉� = (N − 1)
∫ �1

�

d2q
(2π )2

1

ωqρ

1

eωq/T − 1

� (N − 1)T

2πρ
ln

T

�
. (A8)

Within the Matsubara imaginary time formalism, this same
result can be obtained by noting that the dominant con-
tribution comes from the zero Matsubara frequency in the
low-temperature T � ρ regime. This statement is equivalent
to the common wisdom that the low-temperature regime of
the square lattice Heisenberg antiferromagnet is characterized
by classical static (zero Matsubara frequency) thermal fluctua-
tions [9]. Importantly, we note that the ultraviolet cutoff of the
logarithm in (A8) is imposed by the Bose occupation factor in
the momentum integral.

The renormalization group (RG) equations governing the
flow of ρ and Z from the scale �1 down to � then follow

directly from Eqs. (A5), (A6), and (A8) by considering an
infinitesimally small variation of l = ln(T/�):

dρ

dl
= − (N − 2)T

2π
, (A9a)

d ln Z

dl
= (N − 1)T

2πρ
. (A9b)

When N � 3, there is a nontrivial renormalization group flow,
and integrating the system of equations (A9) yields precisely
Eqs. (2).

2. Two-loop contributions to renormalization

At the end of Sec. II, we claim that higher-loop order
corrections to the spin stiffness and order parameter could
be neglected at scales ξ−1 � � < �1. Here, we consider
the well-known RG flow equations for the 2D NLSM [5,21],
which describe the interactions of classical fluctuations in the
(2 + 1)D model [9]. Since all calculations should be consis-
tent to leading order with perturbation theory, we again use the
temperature T instead of �1 as the ultraviolet normalization
point of the RG flow. The two-loop equations in terms of the
dimensionless temperature t = T/2πρ are [21],

dt

dl
= (N − 2)t2 + (N − 2)t3 + O(t4), (A10a)

d ln Z

dl
= (N − 1)t + O(t3). (A10b)

Rewriting these differential equations in terms of ρ, we find
the exact solution

ρ� = − T

2π

(
1 + W−1

[
XeX

(
T

�

)N−2])
, (A11a)

Z� = 1

n2
0

(
2πρ + T

2πρ� + T

)N−1
N−2

, (A11b)

where X = −(1 + 2πρ/T ), W (x) is the inverse function of
WeW = x—otherwise known as the Lambert W function or
product logarithm—which has two branches for real x. The
−1 branch satisfies W−1(xex ) = x if x � −1, which guaran-
tees that the initial condition of the differential equation is
satisfied.

In the regime we are interested in—T � ρ and � �
ξ−1—the argument of the W function in (A11a) is close
to zero. Using the asymptotic expansion W−1(x) = ln(−x) −
ln[− ln(−x)] + O(1), we find

ρ�

ρ
= 1 − (N − 2)T

2πρ
ln

T

�
+ O(T 2/ρ2), (A12a)

Z� = 1

n2
0

(
ρ

ρ�

)N−1
N−2 + O(T/ρ). (A12b)

Therefore, neither the quasiparticle residue nor the spin
stiffness are modified—to a good degree of accuracy—by
two-loop contributions in the low-temperature regime.

This result may surprise, given that it is well known that
the correlation length ξ is heavily modified by two-loop cor-
rections [6,9]. However, these differences appear only in the
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far-infrared limit. First, observe that the one-loop spin stiff-
ness (2a) vanishes at the scale � = λ−1, where λ is given
by (11). However, since W−1(−1/e) = −1, the two-loop spin
stiffness vanishes at the scale � = �, where

� = T

(
1 + 2πρ

T

) 1
N−2

exp

[
− 2πρ

(N − 2)T

]

= T

(
2πρ

T

) 1
N−2

exp

[
− 2πρ

(N − 2)T

][
1 + O

(
T

ρ

)]
.

(A13)

It is interesting to compare this expression to the correla-
tion length ξ (19). Most importantly, for the case N = 3
both ξ−1 and � have a temperature-independent preexponen-
tial factor—to leading order in T/ρ. This is a considerable
difference compared to the temperature dependence of λ.
Obviously, any perturbative calculation like RG is not valid
at and beyond the strong coupling scale. However, it is clear
from the above analysis that the behaviors of the spin stiffness
and order parameter are heavily modified by two-loop contri-
butions when approaching that scale.

Finally, we also acknowledge that there are two-loop cor-
rections to the speed c. However, the renormalized speed as
reported in Ref. [11] is only modified at O(T 2/ρ2) when
� � ξ−1.

APPENDIX B: COMPARISON OF TRANSVERSE AND
LONGITUDINAL SPECTRAL RESPONSES

In Sec. III, we argue that infinitely many quanta are created
by the source. Here we justify that this is not simply an artifact
of the power series expansion of the square root

√
1 − �π2.

On the one hand, the DSF must be rotationally invariant.
On the other hand, the nN = √

1 − �π2 longitudinal compo-
nent contains all even powers of �π , while the transverse
components are linear in π i. There is no actual contradiction
here. To see this, consider Fig. 5, where we illustrate the
simplest loop corrections to the interaction of the source with
a transverse π i component. The first two diagrams correspond
to the one- and two-loop contributions to the self-energy of
the emitted quasiparticle. However, the third diagram shows
that the interactions (and self-interactions) between the π i

components allow the probe to create three real and on-
shell particles via an intermediate virtual state. The Feynman
rules for the interaction vertex in (A3) are given in text-
books (e.g., Ref. [22]). In particular, the propagator is G(q) =
iρ−1/q2, and the amplitude for an off-shell particle with three-
momentum q to decay into three on-shell particles is A(q) =
−iρq2 = 1/G(q). Therefore, the total quantum amplitude for
the intermediate state is G(q)A(q) = 1. Essentially, the virtual
particle “contracts” the interaction to a single point.

It is straightforward to see that all higher-order interactions
in the expansion of (A2) will lead to the same amplitude for
similar multiparticle emissions. We emphasize that this means
that the transverse components also lead to the emission of
infinitely many quasiparticles; whether this infinity is “odd”
or “even” is irrelevant, implying the preservation of O(N )
symmetry [13]. However, one can see that it is mathematically
much simpler to extract the leading contribution to the DSF

FIG. 5. The transverse response of the structure factor also con-
tains infinitely many multiparticle states. These are obtained from the
different ways of cutting diagrams (vertical dashed lines). The thick
line represents the exact π i propagator, normal lines represent the
bare π i propagator, and horizontal dashed lines represent the source.
The inset shows how the propagator G(q) of the virtual magnon
contracts with the scattering amplitude A(q) = 1/G(q) to a single
point.

from the probability of two-magnon radiation, as considered
in Sec. III.

APPENDIX C: PATH INTEGRAL QUANTUM MONTE
CARLO SIMULATIONS

In Sec. IV, we present a subset of our measurements of the
equal-time correlation function using path integral quantum
Monte Carlo simulations. Here we summarize the details of
our simulations—the Monte Carlo update algorithm we im-
plement and how we measure physical observables—and also
present a larger selection of data.

1. Heat bath algorithm for O(3) NLSM

The quantum partition function for the O(3) NLSM in
imaginary time is given by the path integral [9,23],

Z =
∫

D�n(x, τ )δ(�n2 − 1)e−S[�n]/h̄, (C1a)

S[�n]/h̄ = ρ0

2h̄

∫ h̄/T

0
dτd2x

[
1

c2
(∂τ �n)2 + (∇�n)2

]
, (C1b)
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where ρ0 is the bare, unrenormalized spin stiffness defined at
the lattice spacing b, �n = (n(x), n(y), n(z) ) and the δ function in
the integration measure enforces the unit vector constraint at
every point in space. Discretizing the action over a uniform
simple cubic lattice with spacing b yields [23]

S[�n]/h̄ = −1

g

∑
〈i, j〉

�n(xi ) · �n(x j ), (C2)

where xi = (cτi, xi ), g = h̄c/ρ0b = LβT/ρ0, Lβ is the size
(in number of lattice spacings) of the imaginary time dimen-
sion, and the summation is over pairs of nearest neighbors.
From here on, we set h̄ = ρ0 = b = 1. In these units, the bare
coupling constant g = c = LβT .

We performed path integral quantum Monte Carlo sim-
ulations of the O(3) model by implementing a heat bath
algorithm following Ref. [23]. A summary is as follows:

(1) Initialize the lattice in a uniformly magnetized grid.
(2) To update a lattice site at position xi, calculate the local

action

�ω(xi ) =
∑
〈i, j〉

�n(xi ) · �n(x j ), (C3)

so that the probability density for the vector �n(xi ) to lie within
the solid angle � is

P(�)d� = C exp

( | �ω| cos θ

g

)
sin θdθdϕ, (C4)

where C is the normalization constant of the distribution and
θ is measured from the axis directed along �ω.

(3) Generate a new configuration for �n(xi ) by picking θ

and ϕ from this distribution, convert from local to crystal axis
coordinates, and then update. Defining a “sweep” of the lattice
to be an update of every lattice site once, we allowed 2500
sweeps for the system to thermalize before starting measure-
ments. We then performed 50 000 sweeps, measuring once
every 10 sweeps to minimize correlations between measured
configurations; we estimated a correlation time from measure-
ments of the average action per site to be ≈2–3 sweeps.

2. Measurement methods

To measure the zero-temperature staggered magnetization
n0, we used the standard Monte Carlo estimator

n2
0 =

〈(
1

L3

∑
i

�n(xi )

)2〉
, (C5)

where L3 is the total number of lattice sites (at zero tem-
perature all dimensions are of equal size) and the ensemble
average 〈 · 〉 is estimated by an average over measurements.

The equal-time correlation function measurements were
obtained using the formula

〈�n(r) · �n(0)〉 = 1

4L2Lβ

×
〈 ∑

i,μ=x,y

�n(xi ) · [�n(xi+reμ)+�n(xi−reμ)]

〉
,

(C6)

where eμ is a unit vector along the μ direction and we aver-
aged over positive and negative displacements along the two
equivalent spatial dimensions to improve our measurement
statistics; at finite temperature, the imaginary time direction is
not equivalent, so it is not included in the sum over directions
μ. The sum over all lattice sites divided by Lβ approximates
the integral over the imaginary time dimension used to obtain
the equal-time correlation function.

To measure the zero-temperature renormalized spin stiff-
ness, we adapted the approach described in Ref. [24], which
we summarize here. The spin stiffness measures the response
of the system to a twist of the boundary conditions of dimen-
sion μ by a relative angle � = QLμ. At zero temperature,

ρ = 1

LxLy

∂2E (Q)

∂Q2

∣∣∣∣
Q=0

, (C7)

where E (Q) = −(g/Lβ ) lnZ (Q) is the ground state energy
functional in the presence of the twist and Z is the quantum
partition function. The twisted boundary conditions can be
eliminated by transforming to a “rotating” frame of reference
where the twist instead modifies the local interaction:

S[�n, Q] = −1

g

∑
〈i, j〉

�n(xi ) · R�n(x j ), (C8)

where R is a 3 × 3 rotation matrix in spin space. For a rotation
about the x̂ axis in spin space, along direction μ in real
space, expanding the action to second order in Q leads to a
modification of the energy,

E (Q) � E (0) − g

2Lβ

Q2
[〈

S(x)
μ

〉 + 〈(
I (x)
μ

)2〉]
, (C9)

TABLE I. Selection of zero-temperature parameters measured using Monte Carlo on a Lx = Ly = Lβ = 64 size lattice, the temperature in
units of ρ, and the length scale λ when Lβ = 4, 6, 8. Statistical fluctuations in measurements are O(10−5).

Lβ = 4 Lβ = 6 Lβ = 8

g ρ/ρ0 n0 T/ρ λ T/ρ λ T/ρ λ

0.10 0.958 0.975 0.026 1.5 × 10105 0.017 4.2 × 10157 0.013 1.1 × 10210

0.25 0.893 0.935 0.070 3.8 × 1039 0.047 1.7 × 1059 0.035 7.2 × 1078

0.50 0.779 0.862 0.160 4.1 × 1017 0.107 1.9 × 1026 0.080 8.3 × 1034

0.75 0.651 0.779 0.288 1.2 × 1010 0.192 9.9 × 1014 0.144 7.2 × 1019

1.00 0.504 0.673 0.496 1.3 × 106 0.331 1.1 × 109 0.248 7.9 × 1011

1.25 0.301 0.513 1.038 1.7 × 103 0.692 5.3 × 104 0.519 1.4 × 106
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FIG. 6. Order parameter equal-time correlation function of the O(3) NLSM measured using Monte Carlo on a 5122 × Lβ size lattice with
(a) g = 0.75, (b) g = 1.0, and (c) g = 1.25. Zero-temperature renormalized parameters and temperature T = gρ0/Lβ are given in Table I.
Symbols are Monte Carlo data, solid lines are theory (18) for N = 3, and dashed lines are theory replacing λ → ξ , where ξ is the correlation
length (19). (b) shows the same data as Fig. 4, reproduced here for comparison. All vertical scales are identical. The Lβ = 4 data are omitted
from (c) since T/ρ > 1 is outside the domain of validity of the theory.

where we have defined

S(x)
μ = −1

g

∑
〈i, j〉μ

[�n(xi ) · �n(x j ) − n(x)(xi )n
(x)(x j )], (C10a)

I (x)
μ = −1

g

∑
〈i, j〉μ

[�n(xi ) × �n(x j )]x, (C10b)

where summation is over lattice bonds directed in the μ direc-
tion. However, it is necessary to account for the fact that the
direction of the twist in spin space is not generally perpendic-
ular to the local magnetization. Therefore, the spin stiffness is
obtained by averaging over the other two twist axes, weighted
by 3/2—see the discussion in Sec. III regarding rotational av-
eraging. At zero temperature, all three Euclidean dimensions
are equivalent (Lx = Ly = Lβ

.= L), so we also averaged over
all bond directions to obtain a more accurate Monte Carlo

estimator of the spin stiffness:

ρ = − g

3L3

(
〈S〉 + 1

2

3∑
μ,a=1

〈(
I (a)
μ

)2〉)
, (C11)

where 〈S〉 is the average of the action (C2).

3. Results and further analysis

In Table I we present a subset of measurements of the
zero-temperature spin stiffness and average staggered magne-
tization on an Lx = Ly = Lβ = 64 size lattice. These results
are practically identical to measurements on a 323 lattice,
showing that finite-size scaling effects are negligible [away
from the O(3) quantum critical point g = gc ≈ 1.46]. We
also present the temperature in units of the renormalized spin
stiffness and the length scale λ. Evidently, as the coupling g
is increased, reducing the spin stiffness ρ, the relative impor-
tance of thermal fluctuations increases.

FIG. 7. Order parameter equal-time correlation function of the O(3) NLSM measured using Monte Carlo on a 5122 × Lβ size lattice with
(a) Lβ = 4, (b) Lβ = 6, and (c) Lβ = 8. Zero-temperature renormalized parameters and temperature T = gρ0/Lβ are given in Table I. Symbols
are Monte Carlo data, solid lines are theory (18) for N = 3, and dashed lines are theory replacing λ → ξ , where ξ is the correlation length (19).
All vertical scales are identical.
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In Figs. 6 and 7 we present measurements of the equal-
time correlation function on Lx = Ly = 512 and Lβ = 4, 6,
8 size lattices for a range of values of the coupling g. The
solid lines show the theoretical prediction (18) for N = 3
with the zero-temperature spin stiffness and magnetization
measured on the 643 lattice. We emphasize that the theory
has no adjustable fitting parameters. Evidently, the agreement
between the data and theoretical curves is excellent. As stated
in Sec. IV, disagreement on short length scales (r � 2) is
to be expected due to the dominance of ultraviolet quantum
fluctuations, and on larger length scales (r � 128) finite-size
effects originating from our choice of periodic boundary
conditions become important. Therefore, we see that the
Monte Carlo data agree perfectly with the characteristic length

scale λ but not at all with the correlation length ξ given
by (19).

Strictly speaking, our theory is valid in the regime T � ρ.
However, the exponentially large length scales (both λ and
ξ ) mean that it is still possible to study correlations at r � λ

when T ∼ 0.5ρ. For example, consider the case g = 1.25 and
Lβ = 6, shown in Fig. 6(c) in red. Here T/ρ ≈ 0.692, and
the theory still agrees quite well with the data. This is because
λ ≈ 53 000 remains more than two orders of magnitude larger
than the lattice. In contrast, when Lβ = 4, T/ρ > 1, and λ is
just over twice the (linear) size of the lattice, and as expected,
the theory (18) did not agree at all with the data [omitted
from Fig. 6(c) for clarity] since the temperature is outside the
domain of validity.
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