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Higgs-mode resonance in third harmonic generation in NbN superconductors: Multiband
electron-phonon coupling, impurity scattering, and polarization-angle dependence
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We theoretically investigate the resonance of third harmonic generation (THG) that has been observed at
frequency being half of the superconducting gap in a multiband disordered superconductor NbN. The central
question is whether the dominant contribution to the THG resonance comes from the Higgs mode (the collective
amplitude mode of the superconducting order parameter) or quasiparticle excitations. To resolve this issue,
we analyze a realistic three-band model with effective intraband and interband phonon-mediated interactions
together with nonmagnetic impurity scatterings. Using the first-principles estimate of the ratio between the
intraband and interband pairing interactions with multiband impurity scattering rates being varied from clean
to dirty regimes, we calculate the THG susceptibility for NbN in a channel-resolved manner by means of
the BCS and self-consistent Born approximations. In the dirty regime, which is close to the experimental
situation, the leading contribution is given by the paramagnetic channel of the Higgs mode having almost no
polarization-angle dependence, while the second leading contribution comes from the paramagnetic channel
of quasiparticles generally showing significant polarization-angle dependence. The result is consistent with the
recent experimental observation of no polarization-angle dependence of THG, giving firm evidence that the
Higgs mode dominantly contributes to the THG resonance in NbN superconductors.

DOI: 10.1103/PhysRevResearch.2.043029

I. INTRODUCTION

The standard microscopic theory of superconductivity, i.e.,
the BCS theory, predicts the presence of the collective am-
plitude mode of the superconducting order parameter [1–6],
which is recently referred to as the Higgs mode due to the
close analogy with the Higgs boson in particle physics (for
recent reviews, see Refs. [7,8]). Despite the fundamental and
universal aspects of the Higgs mode, its observation in or-
dinary superconductors had been elusive until recently. One
exception was a superconductor 2H-NbSe2, which is special
in the sense that superconductivity and charge density wave
(CDW) coexist in a single material. In this particular situa-
tion, the Higgs mode becomes Raman active, and has been
observed in the early stage by Raman experiments [9,10] (see
also Refs. [11–13] for recent studies). However, the Higgs
mode itself should exist irrespective of the presence of CDW,
so that its observation in superconductors without any other
orders has been long awaited.

The difficulty in observing the Higgs mode in supercon-
ductors without other coexisting orders is that the Higgs mode
does not linearly couple to external electromagnetic fields,
and that the energy of the Higgs mode, which lies around
the superconducting gap energy 2�, is in the terahertz (THz)
frequency range, for which an intense light source had been
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lacking for a long time. The recent development of THz laser
techniques, however, has made it possible to excite the Higgs
mode directly through the nonlinear light-Higgs coupling
[14]. In fact, coherent oscillation of the superconducting order
parameter with frequency 2� after irradiation with a monocy-
cle THz pulse has been observed in a superconducting NbN
[15]. Subsequently, resonant enhancement of third harmonic
generation (THG) at the condition of 2� = 2� with � being
the incident light frequency has been reported for NbN using
multicycle THz pulses [16].

While all these measurements are consistent with the in-
terpretation that the Higgs mode is excited by THz laser
excitations, it is not sufficient to confirm that the mode energy
is 2�, since the pair-breaking energy of quasiparticles is also
equal to 2�. This forces one to distinguish the collective
Higgs mode from individual excitations of quasiparticles by
properties other than the mode energy.

One way to discriminate them is to measure the
polarization-angle dependence of the resonant THG [17]. Ac-
cording to the BCS mean-field calculation in the clean limit
for a single-band model, the quasiparticle contribution has
strong angle dependence in THG, whereas the Higgs-mode
contribution does not. Followed by the theoretical proposal,
the polarization-resolved measurement of THG has been per-
formed for a single-crystal NbN, showing that the THG
intensity at the resonance has almost no polarization-angle de-
pendence [18]. Does this mean that the origin of the resonant
THG observed in NbN is the Higgs mode?

The story is not so simple, because the BCS clean limit
calculation also suggests that the absolute magnitude of the
quasiparticle contribution to the THG resonance is generally
much larger than that of the Higgs mode in the BCS clean
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FIG. 1. A schematic picture of third harmonic generation in NbN
superconductors with disorders or impurities (for which we illustrate
lattice defects as an example).

limit [8,17]. Considering both the polarization-angle depen-
dence and absolute magnitude of the Higgs and quasiparticle
contributions to the THG, we come to the conclusion that at
least the BCS mean-field treatment in the clean limit fails to
describe the THG experiments for NbN superconductors.

There are several possibilities to circumvent this contro-
versial situation. One is to go beyond the BCS approximation
and include, e.g., phonon retardation effects. In fact, NbN
is known to have a moderately strong electron-phonon cou-
pling (with a dimensionless coupling constant λ ∼ 1) [19–21].
Based on the nonequlibrium dynamical mean-field theory
[22], it has been shown that the Higgs mode can contribute to
THG with an order of magnitude comparable to quasiparticles
[23].

Another possibility is to depart from the clean limit and
consider the effect of disorders or impurity scattering. Since
the optical conductivity of NbN used in the THz laser experi-
ments agrees well [15,16] with the Mattis-Bardeen form [24],
the NbN samples are close to the dirty limit. The effect of
impurity scattering on THG in BCS superconductors has been
studied in Refs. [25–27]. Strikingly, in the dirty regime the
magnitude of the Higgs-mode contribution to THG can exceed
by far that of quasiparticles.

These studies suggest that impurity scattering has more
substantial effects on the magnitude of the THG resonance
than phonon retardation. It is natural to expect so, because
the impurity scattering rate generally approaches a nonzero
constant value in the low-energy limit, while the electron-
phonon scattering rate decays to zero in the Fermi-liquid
regime. Hence, in the present study, we focus on the effect
of impurity scattering. A crucial key to the open issue of
which of the Higgs mode or quasiparticles are dominant in the
THG resonance in NbN is the polarization-angle dependence
of THG in the dirty regime of superconductors, which has not
been addressed so far.

In this paper, we study the polarization-angle dependence
of THG in NbN superconductors with disorders (Fig. 1). For
this purpose, we use an effective three-band model including
the phonon-mediated multiband pairing interactions for NbN.
In particular, we take special care of the relative magnitude be-
tween the intraband and interband pairing interactions, since

the polarization-angle dependence might be strongly affected
by it. In the previous study [18], the calculations of the
polarization-angle dependence for the three-band model have
been performed at the BCS clean limit without first-principles
estimate of the pairing interactions. The calculations assuming
the same amplitude of the intraband and interband pairing
interaction have shown that the Higgs-mode contribution in
THG is isotropic, while the quasiparticle contribution has
significant angle dependence [18]. For other choices of the
relative magnitude between the intraband and interband in-
teraction parameters, the Higgs mode can also exhibit the
polarization-angle dependence [28]. In the present study, we
go beyond these previous studies by taking into account the
effect of impurities with a realistic estimate of the ratio be-
tween the intraband and interband interactions.

We first estimate the pairing interaction parameters for
NbN from first-principles calculations of the phonon band
structure and the electron-phonon couplings. Using the esti-
mated ratio between the intraband and interband interaction
parameters, we calculate the THG susceptibility for the multi-
band superconductor NbN within the BCS mean-field theory.
The effect of nonmagnetic impurity scattering is treated
by means of the self-consistent Born approximation. We
consider both intraband and interband impurity scatterings
for multiband NbN superconductors. The calculated THG
susceptibility is classified according to the physical origin
(quasiparticle or Higgs mode), the coupling channel to light
(diamagnetic or paramagnetic), and the diagrammatic repre-
sentation in the presence of impurities.

The results show that the THG resonance is dominated
by the paramagnetic channel in the dirty regime in NbN, in
which the Higgs-mode contribution generally becomes larger
than the quasiparticle contribution. This behavior is similar to
the previous results for single-band superconductors [25,27].
With the estimated ratio between the intraband and inter-
band pairing interactions, the quasiparticles always show clear
polarization-angle dependence of THG, while the Higgs mode
does not in general, except in the vicinity of the parameter re-
gion where the interband impurity scattering rate vanishes. By
comparing with the polarization-resolved THG measurements
for NbN [18], we conclude that the dominant contribution to
the THG resonance is coming from the Higgs mode rather
than quasiparticles.

The paper is organized as follows. In Sec. II, we evaluate
the electron-phonon couplings and the effective pairing inter-
actions in NbN from first-principles calculations. In Sec. III,
we describe the method to calculate the THG susceptibility
using an effective three-band model for NbN with multiband
pairing interactions and impurity scatterings. In Sec. IV, we
show the numerical results for THG in NbN superconductors,
focusing on its magnitude and polarization-angle dependence
of the Higgs-mode and quasiparticle contributions for various
impurity scattering rates. The paper is summarized in Sec. V.

II. FIRST-PRINCIPLES ESTIMATION OF THE
ELECTRON-PHONON COUPLING IN NbN

In this section, we evaluate the intraband and interband
effective pairing interactions of NbN from first principles,
which are important to determine the polarization-angle
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dependence of THG in multiband NbN superconductors as
discussed in the introduction. The electronic band structure of
NbN has been calculated from first principles in the previous
literatures [18,29–32]. The ab initio estimate of the phonon
band structure and the electron-phonon coupling constant of
NbN has been reported in [33–36]. While the total effective
pairing interaction (summed over the band indices) has been
derived in the previous calculations, here we need the band-
resolved matrix elements of the pairing interaction.

Our approach is based on the ab initio construction of a
low-energy effective model of NbN including the electron-
phonon coupling. To this end, we perform the density func-
tional calculation for NbN using QUANTUM ESPRESSO pack-
age [37,38]. We use the Troullier-Martins norm-conserving
pseudopotentials [39] in the Kleinman-Bylander representa-
tion [40] with the Perdew-Burke-Ernzerhof [41] exchange-
correlation functional. We set the cutoff energy for the wave
functions and charge density to be 100 and 400 eV, re-
spectively, and take Nk = 8 × 8 × 8 k points for electron’s
momentum mesh.

The phonon band structure and the electron-phonon cou-
pling constants are evaluated by the density functional
perturbation theory [42], for which we use Nq = 8 × 8 × 8 q
points for phonon’s momentum mesh. The previous phonon
band calculation [34,35] shows that NbN in the NaCl-type
structure has a structural instability as indicated by imaginary
phonon frequencies, which is, however, not observed in ex-
periments. To avoid such an instability, we employ a virtual
crystal approximation, where we create a pseudopotential for
Nb with the nuclear charge Z = +40.5. With this, we fully
optimize the lattice structure, obtaining the lattice constant
a = 4.497 Å, which agrees well with the experimental data
[43].

Our calculation of the electronic band structure of NbN
(red curves in Fig. 2) well reproduces the previous results
[18,29–32]. Near the Fermi energy, there are three bands
consisting of Nb’s 4d t2g orbitals (xy, yz, and zx), which
are occupied by two electrons in one unit cell in average.
Therefore NbN can be effectively regarded as a three-band
system at one third filling at low energy. We first construct
the effective three-band tight-binding Hamiltonian on the ba-
sis of the maximally localized Wannier orbitals [44,45], for
which we use the open-source package RESPACK [46]. We can
simplify the effective three-band model by taking the leading
hopping processes [18],

Hel =
∑
knσ

εknc†
knσ

cknσ (n = xy, yz, zx), (1)

where c†
knσ

is a creation operator of electrons with momentum
k, orbital n, and spin σ . The simplified energy dispersion for
the dxy orbital is given by

εk,xy = 4t cos
kx

2
cos

ky

2
+ 2t ′(cos kx + cos ky)

+ 4t ′′
(

cos
ky

2
cos

kz

2
+ cos

kz

2
cos

kx

2

)
. (2)

The remaining band dispersions εk,yz and εk,zx are given by
permuting x, y, and z in εk,xy. The three hopping parameters
t , t ′, and t ′′ are fitted with the three bands constructed from
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FIG. 2. The electron band dispersion of NbN obtained from the
first-principles calculation (red curves) and that of the simplified
model [Eq. (2), blue dots] with the hopping parameters fitted to the
effective three-band model constructed from the maximally localized
Wannier orbitals.

the maximally localized Wannier orbitals. The results are t =
−0.79 eV, t ′ = −0.22 eV, and t ′′ = 0.19 eV, which slightly
deviate from the previous result in Ref. [18]. The difference
arises because the previous study fit the expression (2) directly
with the original band structures (corresponding to red curves
in Fig. 2), while here we fit Eq. (2) using the band dispersion
of the maximally localized Wannier orbitals.

In Fig. 2, we show the simplified band dispersions εkn

by blue dots. One can see that both of the band dispersions
constructed from the density functional calculation and from
the simplified model (2) agree fairly well with each other.
We employ the simplified dispersion εkn for the model-based
calculation of THG in Sec. IV, where we need higher-order
derivatives of the dispersion such as ∂2εkn

∂ki∂k j
that can be analyti-

cally evaluated with the expression (2).
The effective model for phonons is represented by the

Hamiltonian,

Hph =
∑
qν

ωqνb†
qνbqν, (3)

where ωqν is the phonon frequency, and b†
qν is the creation

operator of phonons with momentum q at νth branch. There
are six phonon modes (ν = 1, . . . , 6) in total, corresponding
to two atoms (Nb and N) in the unit cell each of which
can oscillate along three orthogonal directions (x, y, and z).
In Fig. 3, we plot the phonon band dispersion ωqν of NbN
obtained from the first-principles calculation. Three of them
are acoustic phonons with linear dispersions around 
 point,
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FIG. 3. The phonon dispersion of NbN obtained from the first-
principles calculation.

while the rest are optical phonons with energy gaps. Here we
do not see imaginary phonon frequencies, implying that the
present lattice structure is dynamically stable.

The electron-phonon coupling term is written as

Hel−ph = 1√
Nq

∑
kq

∑
mnνσ

gν
mn(k, q)c†

k+qmσ
cknσ

× (bqν + b†
−qν ), (4)

where m, n = xy, yz, zx, and gν
mn(k, q) represents the matrix

elements of the multiband electron-phonon coupling constant
estimated from the density function perturbation theory. The
calculations of the matrix elements are done in the maximally
localized Wannier orbital basis [47].1

The electron-phonon coupling mediates an effective
attraction between the electrons, −Vmn(k, q, ω) =∑

ν |gν
mn(k, q)|2Dph

qν (ω), where we factor out the minus
sign in front of Vmn to indicate the attractive interaction, and
Dph

qν (ω) = 2ωqν/(ω2 − ω2
qν ) is the phonon propagator. If we

neglect the retardation effect of the phonon-mediated attrac-
tion and take the static part (ω = 0), the phonon-mediated
attraction is given by Vmn(k, q) = ∑

ν |gν
mn(k, q)|2 2

ωqν
. By

taking the momentum average of the attraction, we obtain the
following BCS-type Hamiltonian:

Hel−el = − 1

Nk

∑
kk′mn

Vmnc†
km↑c†

−km↓c−k′n↓ck′n↑. (5)

Here, Vnn ≡ Vintra and Vmn ≡ Vinter (m �= n) denote the av-
eraged intraband and interband effective attractions, respec-
tively. To estimate the realistic ratio between Vintra and Vinter,
we compute the static part (ω = 0) of the Fermi-surface(FS)-
averaged phonon-mediated attraction as

〈Vmn〉FS = 1

NqNk

∑
kqν

wk+qmwkn

D2(εF )

∣∣gν
mn(k, q)

∣∣2 2

ωqν

, (6)

1Note that our tight-binding model in Eq. (1) is written in the
Wannier basis. Since orbital-off-diagonal hoppings are negligible,
the Wannier and band indices agree with each other.

TABLE I. The magnitude of the static part (ω = 0) of the Fermi-
surface(FS)-averaged phonon-mediated attractions estimated from
first principles for NbN. The column “Broadening” shows the broad-
ening width η of the delta functions used to evaluate the FS average.
Vintra and Vinter denote the intraband and interband attractions, respec-
tively (see the text for details).

Broadening [Ry] 〈Vintra〉FS [eV] 〈Vinter〉FS [eV] 〈Vinter〉FS/〈Vintra〉FS

0.005 6.797 1.213 0.178
0.010 6.191 1.099 0.178
0.015 6.236 1.069 0.171
0.020 6.411 1.068 0.167
0.025 6.528 1.072 0.164
0.030 6.543 1.078 0.165
0.035 6.488 1.079 0.166
0.040 6.421 1.073 0.167
0.045 6.362 1.063 0.167
0.050 6.313 1.052 0.167

where D(εF ) is the density of states for each t2g orbital at the
Fermi energy (by symmetry, the density of states is the same
among t2g orbitals), and wkn is the weight of a maximally
localized Wannier orbital n at the Fermi energy at momentum
k given by wkn = ∑

α |U k
nα|2δ(εαk − εF ). Here, α is the Kohn-

Sham Bloch band index, and U k
nα is the unitary matrix relating

the Wannier and Bloch bases (c†
kασ

= ∑
n c†

knσ
U k

nα). For the
details of the derivation of Eq. (6), we refer to Appendix A.
In practical numerical calculations, wkn is calculated using the
Gaussian smearing e−x2/2η2

/
√

2πη with a broadening width η.
In Table I, we list the magnitude of the static part of

the FS-averaged phonon-mediated attraction 〈Vintra〉FS and
〈Vinter〉FS for NbN. We note that the density of states D(εF )
is about 0.12 states/eV and that the coupling constant λ =
D(εF )(〈Vintra〉FS + 2〈Vinter〉FS) amounts to ∼1, in accord with
the previous estimates [33–36]. The important quantity in the
following THG calculations is the ratio between the intraband
and interband interactions Vinter/Vintra in Eq. (5). We find that
the first-principles estimate of the ratio 〈Vinter〉FS/〈Vintra〉FS is
about 0.17–0.18. Referring to the ab initio value, in the fol-
lowing sections, we set the ratio Vinter/Vintra to be 0.18.

III. METHOD FOR THE CALCULATION OF THIRD
HARMONIC GENERATION

Having evaluated the effective intraband and interband
pairing interactions for NbN evaluated in the previous section,
we now move on to the calculation and classification of the
THG susceptibility for NbN with impurities. Here the nonlin-
ear susceptibilities are defined by expanding the current with
respect to the amplitude of the external field,

e · j(t ) = χ1A(t ) + χ2A(t )2 + χ3A(t )3 + · · · , (7)

where e is the polarization vector along which the current
is measured, and A(t ) is the amplitude of the vector poten-
tial. We are mostly concerned with the emitted light with
e parallel to the incident light. In parity symmetric systems
(as is the case for NbN), the even-order terms are absent.
The third coefficient χ3 is the THG susceptibility that we
are interested in. The induced current is accompanied by the
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electric polarization, which couples to electromagnetic fields
and emits light. Thus one can effectively regard the nonlinear
susceptibilities as being proportional to the amplitude of the
emitted light.

Our method of evaluating the THG susceptibility is based
on the BCS mean-field approximation, where we neglect
phonon retardation effects (see the discussion in Sec. I). We
also do not explicitly consider dynamical screening effects
due to long-range Coulomb interactions, which do not signif-
icantly modify the behavior of THG in superconductors [17].
For the treatment of impurities, we employ the self-consistent
Born approximation, which is valid in the weak disorder case
(i.e., the impurity scattering rate is much smaller than the
hopping but can be larger than the superconducting gap). In
the calculation of the THG susceptibility, we need to take into
account the vertex corrections represented by impurity ladder
diagrams [25,27,48].

A. Formalism

Let us consider a multiband system described by the BCS
Hamiltonian with the intraband and interband pairing interac-
tions and nonmagnetic impurity scatterings,

HBCS(t ) =
∑
knσ

εk−A(t ),nc†
knσ

cknσ

− 1

Nk

∑
kk′mn

Vmnc†
km↑c†

−km↓c−k′n↓ck′n↑

+
∑
imnσ

vimn(c†
imσ cinσ + H.c.), (8)

where A(t ) is the vector potential for external electromag-
netic fields and vimn represents the impurity potential that
hybridizes m and n bands at a lattice site i. We assume that vimn

is a Gaussain random variable with the disorder average given
by 〈vimnvi′m′n′ 〉disorder = γ 2

mnδii′δmm′δnn′ . Here the impurity scat-
tering rate is parametrized by the intraband and interband
ones, γintra = γnn and γinter = γmn (m �= n), respectively.

To calculate real-frequency spectra, we introduce nonequi-
librium (retarded, advanced, and lesser) Green’s functions for
multiband superconductors,

GR
kn,ab(t, t ′) = −iθ (t − t ′)〈{�kn,a(t ), �†

kn,b(t ′)}〉, (9)

GA
kn,ab(t, t ′) = iθ (t ′ − t )〈{�kn,a(t ), �†

kn,b(t ′)}〉, (10)

G<
kn,ab(t, t ′) = i〈�†

kn,b(t ′)�kn,a(t )〉, (11)

where �
†
kn = (c†

kn↑ c−kn↓) is the two-component Nambu
spinor, a, b = 1, 2 are the Nambu space indices, and θ (t ) is
the step function [θ (t ) = 1 (t � 0) and θ (t ) = 0 (t < 0)]. The
Green’s functions satisfy the following Dyson equation,

[i∂t − ξk−A(t )τ̂3,nτ̂3]Ĝα
kn(t, t ′)

−
∫

dt̄ [�̂n(t, t̄ )Ĝkn(t̄, t ′)]α = δα (t, t ′) (α = R, A,<),

(12)

where ξk,n = εk,n − μ (μ is the chemical potential), τ̂i (i =
1, 2, 3) are Pauli matrices in the Nambu space, and �̂n(t, t ′)
is the self-energy. We put a hat on a matrix which has

FIG. 4. The Dyson equation for the electron Green’s function
in the BCS mean-field and self-consistent Born approximations.
The thin and bold lines represent the noninteracting and interacting
Green’s functions, respectively. The dotted line represents the pairing
interaction, and the dashed lines represent the impurity scattering.

Nambu spinor indices. The superscript α should be under-
stood according to the Langreth rule [49], i.e., (XY )R =
X RY R, (XY )A = X AY A, (XY )< = X RY < + X <Y A, and so on.
We use a convention of δR(t, t ′) = δA(t, t ′) = δ(t, t ′) (Dirac’s
delta function) and δ<(t, t ′) = 0. In equilibrium with A = 0,
the retarded Green’s function is given in a Fourier transformed
form as

ĜR
kn(ω) = [

(ω + iε)τ̂0 − ξknτ̂3 − �̂R
n (ω)

]−1
, (13)

where ε is a positive infinitesimal constant and τ̂0 rep-
resents the unit matrix. In equilibrium, the advanced and
lesser Green’s functions are given by ĜA

kn(ω) = ĜR
kn(ω)† and

Ĝ<
kn(ω) = f (ω)[ĜA

kn(ω) − ĜR
kn(ω)], where f (ω) = 1/(eβω +

1) is the Fermi distribution function and β = (kBT )−1 is the
inverse temperature.

In the BCS and self-consistent Born approximations, the
self-energy is determined by

�̂α
n (t, t ′) = �n(t )τ̂1δ

α (t, t ′)

+
∑

m

γ 2
nm

1

Nk

∑
k

τ̂3Ĝα
km(t, t ′)τ̂3, (14)

where �n is the superconducting gap for a band n defined by

�n(t ) = i

2

∑
m

Vnm
1

Nk

∑
k

Tr[τ̂1Ĝ<
km(t, t )]. (15)

In the above, we have assumed that Cooper pairs are formed
within each band. The equilibrium superconducting gap, self-
energy, and Green’s functions are self-consistently determined
by Eqs. (12), (14), and (15). In Fig. 4, we show the dia-
grammatic representation for the Dyson equation in the BCS
mean-field and self-consistent Born approximations.

In order to evaluate the third harmonic generation, we
employ the field-derivative approach developed in Ref. [23],
which allows one to systematically derive nonlinear optical
susceptibilities. The idea is to analytically differentiate the
current,

j(t ) = − i

Nk

∑
kn

Tr(vk−A(t )τ̂3,nĜ<
kn(t, t )), (16)

with respect to the amplitude of the external field A(t ) =
eAe−i�t , where vk,n = ∂εkn

∂k is the group velocity, e is the unit
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polarization vector (‖e‖ = 1), A and � are the amplitude and
frequency of the field. In this process, we repeatedly differen-
tiate the self-consistent equations (12), (14), and (15) in the
presence of the external field A(t ).

Since odd-order derivatives of the self-energy �̂n and the
superconducting gap �n vanish due to the parity symmetry
of the system, what we need to calculate for the THG sus-
ceptibility is the second derivatives, ¨̂�n(ω) = ∂2

∂A2 �̂n(ω) and

�̈n = ∂2

∂A2 �n [23] (the derivative with respect to A is denoted
by dots), which are self-consistently determined by the doubly
differentiated equations. By taking the second derivative of
Eq. (12), one obtains the relation

¨̂Gα
kn(ω) = [Ĝkn(ω + 2�)ε̈knτ̂3Ĝkn(ω)]α

+ 2[Ĝkn(ω + 2�)ε̇knĜkn(ω + �)ε̇knĜkn(ω)]α

+ [Ĝkn(ω + 2�) ¨̂�n(ω)Ĝkn(ω)]α (17)

with α = R, A,<. In Eq. (17), one can see that there are two
types of couplings to the light field: one is the diamagnetic
coupling (∝ ρA2; ρ is the electron density) given through ε̈k,
and the other is the paramagnetic coupling (∝ j · A) given
through two ε̇k’s. The role of the latter paramagnetic coupling
has been emphasized as a dominant interaction between the
Higgs mode and electromagnetic fields [23].

The second derivative of the self-energy ¨̂�n(ω) is deter-
mined by doubly differentiating Eq. (14),

¨̂�α
n (ω) = �̈nτ̂

α
1 +

∑
m

γ 2
nm

1

Nk

∑
k

τ̂3
¨̂Gα

km(ω)τ̂3, (18)

where τα
1 = τ1 for α = R, A and τα

1 = 0 for α =<. The
first term on the right hand side of Eq. (18) represents the
effect of amplitude fluctuation of the superconducting gap
(i.e., the Higgs mode), while the second term corresponds
to the impurity-ladder vertex corrections. Finally, the second
derivative of the superconducting gap �̈n is given by doubly
differentiating Eq. (19),

�̈n = i

2

∑
m

Vnm
1

Nk

∑
k

∫
dω

2π
Tr[τ̂1

¨̂G<
km(ω)]. (19)

The second derivatives, ¨̂Gkn(ω), ¨̂�n(ω), and �̈n, are calcu-
lated by solving the self-consistent equations (17), (18), and
(19). The results are plugged into the third derivative of the
current ˙̇ ˙j to obtain the THG susceptibility. In this paper, we
focus on the THG induced along the polarization direction of
the incident light. More details of the derivation of the THG
susceptibility are described in Appendix B.

B. Classification of THG susceptibilities

In Table II, we list all the THG diagrams including both the
quasiparticle and Higgs-mode contributions. The distinction
between the two contributions is defined by whether or not
the diagram includes the Higgs-mode propagator depicted by
the double wavy lines. The Higgs-mode propagator contains
the fluctuation of the superconducting gap amplitude, which
is diagrammatically shown in Fig. 5. Here the dotted lines
represent the bare attractive interaction Vmn, while the bold
lines with arrows represent the electron propagator Ĝkn. The

FIG. 5. The self-consistent equation for the Higgs-mode propa-
gator (double wavy lines).

shaded square represents the impurity-ladder correction, as
shown in Fig. 6.

There are five topologically inequivalent diagrams for
quasiparticles and three diagrams for the Higgs mode. They
have different couplings to external laser fields (single wavy
lines) classified into the paramagnetic, diamagnetic, and
mixed channels in Table II. Each outer vertex attached to
� photon lines in the THG diagram is assigned to the �th
derivative d�εk

dA� , which has the same parity as the density if
� is even and has the same parity as the current if � is odd.
Hence we call the channel of the coupling to light diamagnetic
when � is even and paramagnetic when � is odd. There are
THG diagrams in which the paramagnetic and diamagnetic
couplings coexist, which we refer to as the mixed channel.
We remark that the impurity correction is absent for vertices
with odd number of photon lines since odd parity terms vanish
after momentum summation.

In Table II, we also show which THG susceptibility has a
resonance at frequency 2�. As we will see in Sec. IV, χ (i)

qp

(i = 3, 4, 5) and χ
(i)
H (i = 1, 2, 3) generally show the reso-

nance. The resonance of χ
(i)
H originates from the collective

Higgs mode whose energy gap corresponds to 2�. On the
other hand, the quasiparticle contributions χ (i)

qp also exhibit the
resonance at 2�, which is equal to the lowest pair-breaking
energy. The degeneracy of the resonance energy between the
Higgs mode and quasiparticles forces us to distinguish them
by properties other than the resonance frequency, as discussed
in Sec. I.

We also indicate in Table II which THG susceptibility is
robust (insensitive) against nonmagnetic impurity scattering.
Generally the THG susceptibility in the diamagnetic coupling
channels do not depend on the impurity scattering rate, while
the paramagnetic and mixed channels exhibit strong impu-
rity dependence, which plays a key role in enhancing the
Higgs-mode contribution in THG in dirty regimes. This fact
is related to Anderson’s theorem [50] (which states robust-
ness of the superconducting gap against nonmagnetic impurity
scattering in equilibrium s-wave superconductors), which can
be generalized to robustness of the Higgs mode [25,51]. We
confirm the robustness of each THG channel against impurity
scattering by numerical simulations in Sec. IV.

FIG. 6. The self-consistent equation for the impurity ladder cor-
rection (shaded squares).
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TABLE II. Classification of the THG susceptibility according to the physical origin (quasiparticle or Higgs mode), the coupling channel to
light (diamagnetic or paramagnetic), and the diagrammatic representation in the presence of impurities. In the diagrams, the lines with arrows,
single wavy lines, double wavy lines, and shaded squares represent the electron propagators, photon propagators, Higgs-mode propagators,
and impurity ladder corrections, respectively. In each diagram, three of the four photon propagators carry incoming frequencies �, while the
rest carries outgoing frequency 3�. The fifth column shows whether each THG susceptibility has a resonance at frequency 2� = 2�. The
sixth column shows whether each THG susceptibility is robust against nonmagnetic impurities.

susceptibility origin channel diagram resonance at 2Ω = 2Δ impurity robustness

χ
(1)
qp quasiparticle diamagnetic �

χ
(2)
qp quasiparticle paramagnetic

χ
(3)
qp quasiparticle diamagnetic � �

χ
(4)
qp quasiparticle mixed �

χ
(5)
qp quasiparticle paramagnetic �

χ
(1)
H Higgs mode diamagnetic � �

χ
(2)
H Higgs mode mixed �

χ
(3)
H Higgs mode paramagnetic �

IV. THIRD HARMONIC GENERATION IN NbN
SUPERCONDUCTOR

Based on the method described in Sec. III, we numerically
evaluate the THG susceptibilities for NbN superconductors.
We use the simplified band dispersion of NbN (2) derived
from the first-principles calculation in Sec. II. Throughout
this section, we use eV as the unit of energy, and fix the
ratio between the intraband and interband phonon-mediated
interactions to be Vinter/Vintra = 0.18 (Sec. II). The absolute
value of the interaction is chosen such that the supercon-
ducting gap is fixed. For the numerical feasibility, we take
a relatively large superconducting gap 2� = 0.8 to maintain
sufficiently high frequency and momentum resolution (cf. the

real gap size is in the order of few meV). This requires us
to take 50 × 50 × 50 = 125 000 k points. We have checked
that the results do not change qualitatively as we vary the
value of 2� within our reach of numerical calculations. The
intraband and interband impurity scattering rates γintra and
γinter are free parameters. In order for the self-consistent Born
approximation to be valid (which is the case in the experimen-
tal situation [16,18]), the impurity scattering rates should be
sufficiently smaller than the Fermi energy (γintra, γinter  εF ).
Here we restrict ourselves to γintra/2�, γinter/2� � 2.5 (cf.
εF ∼ 3 − 4). We first focus on the case of γintra = 2γinter = γ

with 0 � γ /2� � 2.5. Then we scan the parameter space of
(γintra, γinter) with 0 � γintra/2�, γinter/2� � 2.5. We set the
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filling to be one third for NbN superconductor (two electrons
in the three bands) and the inverse temperature β = 50, which
is sufficiently lower than the superconducting critical temper-
ature. In the numerical simulation, we take a finite value of the
constant ε = 0.01 [which has been introduced as a positive
infinitesimal in Eq. (13)].

A. Channel-resolved THG intensity

We first present the results for the THG intensity in NbN
superconductors in the channel resolved manner as classified
in Table II in Sec. III. In this subsection, the polarization
direction e of light is set to be parallel to x crystal axis.

In Fig. 7, we plot the frequency dependence of the THG
intensity for NbN superconductors with γintra/2� = 2.0 and
γinter/2� = 1.0 (the dirty regime) in the linear [Fig. 7(a)] and
log scale [Fig. 7(b)]. The leading contribution comes from
the Higgs mode in the paramagnetic channel (χ (3)

H ), showing
a clear resonance peak at 2� = 2�. The second dominant
contribution comes from quasiparticles in the paramagnetic
channel (χ (5)

qp ), which has a relatively broadened resonance
peak at 2� = 2�. One can see that the resonance at 2� = 2�

occurs in the channels χ (i)
qp (i = 3, 4, 5) and χ

(i)
H (i = 1, 2, 3),

being consistent with Table II. In Fig. 7(c), we plot the
total quasiparticle (|χqp|2 = | ∑5

i=1 χ (i)
qp |2) and Higgs-mode

(|χH|2 = |∑3
i=1 χ

(i)
H |2) contributions to the THG intensity in

the dirty regime of NbN superconductors. Clearly, the Higgs-
mode contribution is larger than the quasiparticles. This result
agrees with the previous observations that the Higgs-mode
contribution is drastically enhanced due to impurity scattering
[25–27]. Similar enhancement has been found due to phonon
retardation effects [23].

In Fig. 8, we plot the impurity dependence of the THG
intensity for NbN superconductors at frequency 2� = 2�,
where we set γintra = 2γinter = γ . The THG intensity in the
paramagnetic and mixed channels [|χ (i)

qp |2 (i = 2, 4, 5) and

|χ (i)
H |2 (i = 2, 3)] show sensitive dependence on γ , while

those in the diamagnetic channel [|χ (i)
qp |2 (i = 1, 3) and |χ (1)

H |2]
is less sensitive (especially at small γ /2�). This observa-
tion supports the general behavior of the THG susceptibility
against impurities shown in Table II in Sec. III. The γ de-
pendence of the quasiparticle and Higgs-mode contributions
in the diamagnetic and paramagnetic channels is qualitatively
consistent with the previous order estimate in [26].

In the clean limit (γ → 0), the most dominant contribution
comes from quasiparticles in the diamagnetic channel (χ (3)

qp ).
The second dominant one is the Higg-mode contribution in
the diamagnetic channel (χ (1)

H ). The paramagnetic channel is
also present at γ = 0, since we broaden the THG spectrum
by taking the finite value of ε (so that the results at γ = 0
slightly deviate from the ideal clean limit). As we increase
γ , the quasiparticle contribution in the paramagnetic channel
(χ (5)

qp ) quickly grows, and exceeds over the other components.
At the same time, the Higgs-mode contribution in the param-
agnetic channel (χ (3)

H ) also grows rapidly. Up to γ /2� � 1,
χ (5)

qp remains to be most dominant. When the system enters
the dirty regime (γ /2� � 1), the Higgs mode takes over the
dominant part of the THG resonance, and χ

(3)
H becomes the

largest contribution. This tendency seems to continue toward

γ intra/2Δ = 2.0

γ inter/2Δ = 1.0

(a) |χqp(1) 2

|χqp(2) 2

|χqp(3) 2

|χqp(4) 2

|χqp(5) 2

|χH
(1) 2

|χH
(2) 2

|χH
(3) 2
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(c)
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FIG. 7. [(a) and (b)] Channel-resolved THG intensity for NbN
superconductors with γintra/2� = 2.0 and γinter/2� = 1.0 as a func-
tion of the frequency 2�/2� in the linear (a) and logarithmic scale
(b). (c) The total quasiparticle and Higgs-mode contributions to
the THG intensity for the model of NbN superconductors (8). The
polarization of light is parallel to x crystal axis (θ = 0◦).

the dirty limit. The maximum magnitude of the THG intensity
in the paramagnetic channel is attained around γ ∼ �, in
agreement with the previous results [26].

In Fig. 9, we plot the ratio between the total Higgs-mode
(|χH|2) and quasiparticle (|χqp|2) contributions to the THG
intensity for NbN superconductors as a function of γintra =
2γinter = γ . In the clean regime (γ � 2�), the quasiparticle
contribution is dominant, whereas in the dirty regime (γ �
2�) the Higgs-mode contribution exceeds the quasiparticle
one. We expect that the ratio |χH|2/|χqp|2 continues to in-
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|χqp(1) 2

|χqp(2) 2

|χqp(3) 2
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|χqp(5) 2

|χH
(1) 2

|χH
(2) 2

|χH
(3) 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
10−6

10−4

10−2

100

102

γ/2Δ
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2

FIG. 8. Channel-resolved THG intensity for the model of NbN
superconductors (8) at frequency 2� = 2� as a function of the
impurity scattering rate γintra = 2γinter = γ . The polarization of light
is parallel to x crystal axis (θ = 0◦). The vertical axis is in the log
scale.

crease towards the dirty limit (as observed in the single-band
case [27]), while our calculation is limited to γ /2� � 2.5
in order to maintain the validity of the self-consistent Born
approximation. One can see a little increase of |χH|2/|χqp|2
around γ /2� = 0, which we attribute to the effect of the
relatively large superconducting gap (2� = 0.8) and the finite
broadening factor (ε = 0.01) in our simulation.

We separately change the intraband and interband impurity
scattering rates to plot |χH|2/|χqp|2 in Fig. 10. The quasiparti-
cle dominant region is shown by blue in the color plot, while
the Higgs dominant region is shown by red. The boundary
between the two regions is roughly given by γintra/2� ∼ 1.75
and γinter/2� ∼ 1. The interband scattering is more effective
to enhance the Higgs-mode contribution than the intraband
one, since the interband scattering takes place more frequently
in three-band systems.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

γ/2Δ

|χ
H
2 /
|χ
qp
2

FIG. 9. The ratio |χH|2/|χqp|2 between the Higgs-mode and
quasiparticle contributions to the THG intensity for the model of
NbN superconductors (8) as a function of the impurity scattering rate
γintra = 2γinter = γ at frequency 2� = 2�. The polarization of light
is parallel to x crystal axis (θ = 0◦).

FIG. 10. The ratio |χH|2/|χqp|2 between the Higgs-mode and
quasiparticle (QP) contributions to the THG intensity for the model
of NbN superconductors (8) at frequency 2� = 2� plotted in the
space of γintra/2� and γinter/2�. The polarization of light is parallel
to x crystal axis (θ = 0◦).

B. Polarization-angle dependence

Next, we study the polarization-angle dependence of the
THG intensity for NbN superconductors, which may allow
one to distinguish the quasiparticle and Higgs-mode contribu-
tions in experiments. The polarization angle is measured from
the x crystal axis, and the polarization vector e is rotated in the
xy plane.

In Fig. 11, we plot the normalized |χqp(θ )|2/|χqp(θ = 0◦)|2
and |χH(θ )|2/|χH(θ = 0◦)|2 for several values of γintra/2�

and γinter/2�. In the clean limit [Fig. 11(a)], we find that the
quasiparticle contribution grows monotonically by ∼6% as
the angle varies from θ = 0◦ to 45◦, whereas the Higgs-mode
contribution decreases by ∼7%. The angle dependence of
quasiparticles arises due to the anisotropic band structure of
NbN. The change of the quasiparticle contribution from θ =
0◦ to 45◦ is smaller than that of the previous result [18]. This
is mainly due to the difference of the hopping parameters that
we used in the effective model of NbN. The angle dependence
of the Higgs mode in the clean limit with small Vinter/Vintra is
consistent with the previous study [28].

As we increase γintra = 2γinter = γ [Figs. 11(b) and 11(c)],
we observe qualitatively different polarization-angle de-
pendence for quasiparticles. Namely, |χqp|2 decreases by
∼20%–30% as θ changes from 0◦ to 45◦. This behavior is
mostly coming from the paramagnetic channel, which be-
comes dominant in the dirty regime. Namely, the quasiparticle
contribution in the paramagnetic channel always tends to de-
crease from θ = 0◦ to 45◦ for arbitrary impurity scattering
rates. The transition from the increasing to decreasing depen-
dence on the polarization angle is very rapid, taking place
around γ /2� ∼ 0.1 where the paramagnetic channel starts to
exceed the diamagnetic one. Contrary to the significant angle
dependence for quasiparticles, the Higgs-mode contribution
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FIG. 11. The polarization-angle dependence of the quasiparti-
cle and Higgs-mode contributions to the THG intensity for the
model of NbN superconductors (8) at frequency 2� = 2� with
(a) γintra/2� = 0.0, γinter/2� = 0.0, (b) γintra/2� = 1.0, γinter/2� =
0.5, and (c) γintra/2� = 2.0, γinter/2� = 1.0. Each quasiparticle and
Higgs-mode contribution is normalized by the value at θ = 0◦,
respectively.

quickly becomes isotropic as one deviates from the clean
limit. The angle dependence of the Higgs-mode contribution
is no larger than 1.5% at γ /2� � 1.

In Fig. 12, we plot |χqp(θ = 45◦)|2/|χqp(θ = 0◦)|2
[Fig. 12(a)] and |χH(θ = 45◦)|2/|χH(θ = 0◦)|2 [Fig. 12(b)] in
the space of γintra/2� and γinter/2�. The quasiparticle contri-
bution generally shows clear angle dependence for arbitrary

impurity scattering rates. The increasing behavior of |χqp|2 as
a function of θ is seen only in the vicinity of the clean limit,
apart from which |χqp|2 decreases by 5%–50%. It seems that
the angle dependence of the quasiparticle contribution does
not vanish in the large intraband and/or interband impurity
scattering limit. On the other hand, the angle dependence of
the Higgs mode is suppressed for general impurity scattering
rates as compared to quasiparticles. At the vanishing of the
interband impurity scattering, the Higgs-mode contribution
shows slight angle dependence of few percent. One can also
see that the angle dependence of both the quasiparticle and
Higgs-mode contributions is sensitive to the interband im-
purity scattering rather than the intraband one in the dirty
regime.

We expect that there are generally nonvanishing inter-
band impurity scatterings in NbN. Then, one can use the
polarization-angle dependence of THG to discriminate the
Higgs-mode and quasiparticle contributions in the dirty
regime of multiband superconductors. The optical conductiv-
ity measurement [16,18] suggests that the NbN samples used
in the THG experiment is close to the dirty limit (γ /2� � 1).
The experimental observation of no angle dependence of THG
in NbN superconductors [18] together with our results on the
channel-resolved THG intensity in the dirty regime imply that
the dominant contribution to the THG resonance originates
from the Higgs mode.

Finally, let us comment on the behavior of the polarization-
angle dependence on the ratio Vinter/Vintra. While we used
the realistic value of Vinter/Vintra = 0.18 for NbN estimated
from first-principles calculations throughout the paper, we
have checked the angle dependence for several other values
of Vinter/Vintra (not shown). In general, the angle dependence
of the Higgs mode tends to be strongly suppressed as one
increases Vinter/Vintra (for the case of Vinter/Vintra = 1 in the
clean limit, see [18]), whereas the angle dependence of
quasiparticles remains almost unchanged. Although the re-
alistic value of Vinter/Vintra = 0.18 that we obtained in the
present paper is not so large, we find that the Higgs-mode
contribution is almost polarization-angle independent in the
dirty regime for NbN superconductors. This suggests that
the effect of impurity scattering plays an important role in
understanding the behavior of the THG resonance in NbN
superconductors.

V. SUMMARY AND DISCUSSIONS

To summarize, we study the resonance of third harmonic
generation and its polarization-angle dependence in disor-
dered NbN superconductors based on the effective three-band
model constructed from first-principles calculations on the
electron and phonon band structures of NbN. Using the
density functional perturbation theory, we evaluate the band-
resolved matrix elements of the electron-phonon coupling
constants for NbN, and the ratio between the intraband and
interband pairing interactions, Vinter/Vintra, is found to be about
0.17–0.18.

We input the evaluated ratio between the pairing interaction
parameters in the effective model, whose THG susceptibility
is calculated in the channel-resolved manner with the BCS
mean-field and self-consistent Born approximations. The re-
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FIG. 12. The polarization-angle dependence of the quasiparticle (a) and Higgs-mode (b) contributions |χqp,H(θ = 45◦)|2/|χqp,H(θ = 0◦)|2
to the THG intensity for the model of NbN superconductors (8) at frequency 2� = 2� plotted in the space of the intraband and interband
impurity scattering rates.

sults show that in the dirty regime the dominant contribution
to the THG resonance is given by the Higgs mode in the
paramagnetic channel, which does not have polarization-angle
dependence with nonvanishing interband impurity scatter-
ing. The second dominant one is given by quasiparticles in
the paramagnetic channel, which exhibit clear polarization-
angle dependence in the dirty regime. Our results are
quite consistent with the polarization-resolved THG exper-
iment on NbN superconductors [18], which have found no
polarization-angle dependence in the THG resonance. It will
be interesting if one can test the impurity dependence of the
THG by controlling impurity concentration in NbN in future
experiments.

While we have focused on Higgs amplitude mode in the
present paper, there could arise the collective phase mode
coupled to electromagnetic fields at low energies in disor-
dered superconductors [4,52,53]. Since (i) the mode energy
is generally different from 2�, (ii) it can exist only in the
vicinity of Tc, and (iii) the phase mode is decoupled from
the amplitude mode when an approximate particle-hole sym-
metry is present (as is the case in the BCS approximation),
we expect that the phase mode (if it may exist) will not
affect the THG resonance observed at frequency being half
of 2�. In fact, such a phase mode has not been observed
as the THG resonance in experiments. However, it would
be worthwhile to pursue a possibility of detecting the low-
energy phase mode by nonlinear optical responses in the
future.

Our scheme of classifying and calculating THG suscep-
tibilities for disordered superconductors from first principles
can be applied not only to NbN but also to other super-
conductors. Interesting future applications include the THG
resonance in MgB2, a multigap superconductor with multiple
Higgs modes as well as the Leggett mode [54–57], and NbSe2,
where superconductivity and charge density wave coexist. For
unconventional superconductors such as cuprates [58–63] and
iron-based superconductors, we need to extend the present
formalism to take into account strong correlation effects be-
yond the BCS approximation in THG, which we leave as a
future problem.
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APPENDIX A: DERIVATION OF EQ. (6)

In this Appendix, we show the derivation of the Fermi-
surface average of the effective phonon-mediated attractive
interaction [Eq. (6) in the main text]. As we discussed in
Sec. II, the momentum dependent effective interaction is
given by Vmn(k, q) = ∑

ν |gν
mn(k, q)|2 2

ωqν
. Here m and n (=

xy, yz, zx) represent the indices for maximally localized Wan-
nier orbitals that we construct from the first-principles band
structure calculations. In the case of NbN, off-diagonal hop-
ping matrix elements are negligibly small between different
Wannier orbitals. If we neglect the off-diagonal components
and if we appropriately choose the ordering of the orbital
indices, the Fermi surface average of the effective interaction
Vmn(k, q) can be defined by

〈Vmn〉FS =
∑

k,q δ(εk+qm − εF )δ(εkn − εF )Vmn(k, q)∑
k,q δ(εk+qm − εF )δ(εkn − εF )

= 1

NkNq

∑
k,q

δ(εk+qm − εF )δ(εkn − εF )

D2(εF )
Vmn(k, q),

(A1)

where the density of states at the Fermi energy for orbital n is
given by

D(εF ) = 1

Nk

∑
k

δ(εkn − εF ). (A2)
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Note that the density of states D(εF ) does not depend on n due
to the symmetry among the t2g orbitals for NbN.

When off-diagonal hoppings in the Wannier basis are not
negligible, Eq. (A1) is not directly applicable since the orbitals
are highly mixed in the band basis near degenerate k points. To
see this, let us explicitly write the Hamiltonian in the Wannier
basis,

H =
∑
kmnσ

c†
kmσ

HWannier
mn (k)cknσ , (A3)

with the diagonal elements HWannier
nn (k) = εkn. If one goes to

the band basis, the Hamiltonian becomes diagonal,

H =
∑
kαβσ

c†
kασ

Hband
αβ (k)ckβσ , Hband

αβ (k) = εkαδαβ, (A4)

where α and β are the Bloch band indices. HWannier and Hband

are related through a unitary transformation,

HWannier
mn (k) =

∑
αβ

U k
mαHband

αβ (k)
(
U k

nβ

)∗
. (A5)

When there are off-diagonal hoppings between different or-
bitals, the level repulsion occurs and εkα does not coincide
with εkn in general. To correctly describe the spectral weight
in multi-orbital systems, we use the retarded Green’s function,

GR
kmn(ω) = (ω + iε − HWannier (k))−1

mn

= (ω + iε − U kHband(k)U k†)−1
mn

=
∑

α

U k
mα

1

ω + iε − εkα

(
U k

nα

)∗
. (A6)

The spectral function in multiorbital systems is given by the
imaginary part of the retarded Green’s function,

Ann(k, ω) = − 1

π
Im GR

knn(ω) =
∑

α

∣∣U k
nα

∣∣2
δ(ω − εkα ). (A7)

Then, the spectral weight of orbital n at the Fermi energy is
given by

wkn = Ann(k, εF ) =
∑

α

∣∣U k
nα

∣∣2
δ(εkα − εF ). (A8)

If the off-diagonal components in the Wannier basis are ab-
sent, and if one chooses the ordering of band indices to match
the orbital indices, the unitary matrix becomes identity, U k

nα =
δnα , and the weight becomes wkn = δ(εkn − εF ). The density
of states at the Fermi energy for orbital n is given by

D(εF ) = 1

Nk

∑
k

wkn = 1

Nk

∑
k

Ann(k, εF )

= 1

Nk

∑
kα

∣∣U k
nα

∣∣2
δ(εkα − εF ). (A9)

In the case of NbN, the density of states does not depend on n
due to the reason stated above.

Using the general expression of the spectral weight wkn

(A8), the Fermi surface average of the effective interaction is
defined by

〈Vmn〉FS =
∑

k,q wk+qmwknVmn(k, q)∑
k,q wk+qmwkn

. (A10)

This definition can be obtained by simply replacing the delta
functions in Eq. (A1) with wkn. By using the density of states
(A9) and assuming that the density of states does not depend
on orbitals, we arrive at

〈Vmn〉FS = 1

NkNq

∑
k,q

wk+qmwkn

D2(εF )
Vmn(k, q). (A11)

This is the general expression for the Fermi-surface-averaged
effective interaction that we showed as Eq. (6) in the main
text. In our calculations, we find that NbN has very small
off-diagonal hoppings, where Eqs. (A11) and (A1) are al-
most equivalent. Even in this case, however, it is safe to use
Eq. (A11) since the ordering of the orbital indices may be
shuffled at various k points (so that it becomes tiresome to
track the label ordering) and in the vicinity of degenerate
points (εkm ≈ εkn for m �= n) off-diagonal components may
not be neglected.

APPENDIX B: THG SUSCEPTIBILITIES FOR DISORDERED MULTIBAND SUPERCONDUCTORS

In this Appendix, we present the detailed formulation of THG susceptibilities for disordered multiband superconductors
within the BCS mean-field and self-consistent Born approximations. The basic idea of the derivation has been given in Sec. III
in the main text. We differentiate the Green’s function, the self-energy, and the superconducting gap with respect to the external
field, and determine the second-order derivatives, ¨̂Gkn(ω) (17), ¨̂�n(ω) (18), and �̈n (19), in the self-consistent manner.

To this end, we first determine the τ1 vertex function �̂τ1
mn(ω; �), which is the τ1 vertex dressed by the impurity-ladder

corrections, satisfying the Bethe-Salpeter equation,

�̂τ1
mn(ω; �) = τ̂1δmn +

∑
l

γ 2
ml

1

Nk

∑
k

τ̂3Ĝkl (ω + 2�)�̂τ1
ln(ω; �)Ĝkl (ω)τ̂3, (B1)

where we omit the superscript α = R, A,<. We also have the Bethe-Salpeter equations for the diamagnetic and paramagnetic
vertex functions �̂dia

n (k, ω; �) and �̂
para
n (k, ω; �),

�̂dia
n (k, ω; �) = ε̈knτ̂3 +

∑
m

γ 2
nm

1

Nk

∑
k

τ̂3Ĝkm(ω + 2�)�̂dia
m (k, ω; �)Ĝkm(ω)τ̂3, (B2)

�̂para
n (k, ω; �) = 2ε̇knĜkn(ω + �)ε̇kn +

∑
m

γ 2
nm

1

Nk

∑
k

τ̂3Ĝkm(ω + 2�)�̂para
m (k, ω; �)Ĝkm(ω)τ̂3. (B3)
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One can decouple the momentum dependence of the diamagnetic and paramagnetic vertex functions as

�̂dia
n (k, ω; �) = ε̈knτ̂3 + �̂dia

n (ω; �), (B4)

�̂para
n (k, ω; �) = 2ε̇knĜkn(ω + �)ε̇kn + �̂para

n (ω; �). (B5)

We solve the self-consistent equations (B1), (B2), and (B3) for �̂τ1
mn(ω; �), �̂dia

n (ω; �), and �̂
para
n (ω; �) numerically by matrix

inversion. After that, we substitute them to the following self-consistent equations for the second-order derivatives of the
superconducting gap function in the diamagnetic and paramagnetic channels,

�̈dia
n (�) = i

2

∑
m

Vnm

∫
dω

2π

1

Nk

∑
k

Tr

[
τ̂1Ĝkm(ω + 2�)

(
�̂dia

m (k, ω; �) +
∑

l

�̂
τ1
ml (ω; �)�̈dia

l (�)

)
Ĝkm(ω)

]<

, (B6)

�̈para
n (�) = i

2

∑
m

Vnm

∫
dω

2π

1

Nk

∑
k

Tr

[
τ̂1Ĝkm(ω + 2�)

(
�̂para

m (k, ω; �) +
∑

l

�̂
τ1
ml (ω; �)�̈para

l (�)

)
Ĝkm(ω)

]<

, (B7)

which are again solved numerically by matrix inversion.
Finally, the THG susceptibility is determined from the vertex functions. The classification of the THG susceptibility in terms

of the diagrammatic topology has been given in Table II. The explicit expressions for the quasiparticle contributions to the THG
in each channel are given by

χ (1)
qp (�) = i

6

∫
dω

2π

1

Nk

∑
kn

Tr[˙̇ ˙̇ε knτ̂3Ĝkn(ω)]<, (B8)

χ (2)
qp (�) = i

2

∫
dω

2π

1

Nk

∑
kn

Tr[˙̇ ˙ε knĜkn(ω + �)ε̇knĜkn(ω)]< + i

6

∫
dω

2π

1

Nk

∑
kn

Tr[ε̇knĜkn(ω + 3�)˙̇ ˙ε knĜkn(ω)]<, (B9)

χ (3)
qp (�) = i

2

∫
dω

2π

1

Nk

∑
kn

Tr[ε̈knτ̂3Ĝkn(ω + 2�)ε̈knτ̂3Ĝkn(ω)]<

+ i

2

∫
dω

2π

1

Nk

∑
kn

Tr
[
ε̈knτ̂3Ĝkn(ω + 2�)�̂dia

n (ω; �)Ĝkn(ω)
]<

, (B10)

χ (4)
qp (�) = i

∫
dω

2π

1

Nk

∑
kn

Tr[ε̈knτ̂3Ĝkn(ω + 2�)ε̇knĜkn(ω + �)ε̇knĜkn(ω)]<

+ i

2

∫
dω

2π

1

Nk

∑
kn

Tr[ε̇knĜkn(ω + 3�)ε̇knĜkn(ω + 2�)ε̈knτ̂3Ĝkn(ω)]<

+ i

2

∫
dω

2π

1

Nk

∑
kn

Tr[ε̇knĜkn(ω + 3�)ε̈knτ̂3Ĝkn(ω + �)ε̇knĜkn(ω)]<

+ i
∫

dω

2π

1

Nk

∑
kn

Tr[ε̈knτ̂3Ĝkn(ω + 2�)�̂para
n (ω; �)Ĝkn(ω)]<

+ i

2

∫
dω

2π

1

Nk

∑
kn

Tr[ε̇knĜkn(ω + 3�)ε̇knĜkn(ω + 2�)�̂dia
n (ω; �)Ĝkn(ω)]<

+ i

2

∫
dω

2π

1

Nk

∑
kn

Tr[ε̇knĜkn(ω + 3�)�̂dia
n (ω + �; �)Ĝkn(ω + �)ε̇knĜkn(ω)]<, (B11)

χ (5)
qp (�) = i

∫
dω

2π

1

Nk

∑
kn

Tr[ε̇knĜkn(ω + 3�)ε̇knĜkn(ω + 2�)ε̇knĜkn(ω + �)ε̇knĜkn(ω)]<

+ i
∫

dω

2π

1

Nk

∑
kn

Tr[ε̇knĜkn(ω + 3�)ε̇knĜkn(ω + 2�)�̂para
n (ω; �)Ĝkn(ω)]<

+ i
∫

dω

2π

1

Nk

∑
kn

Tr[ε̇knĜkn(ω + 3�)�̂para
n (ω + �; �)Ĝkn(ω + �)ε̇knĜkn(ω)]<. (B12)

The expressions for the Higgs-mode contributions are given by

χ
(1)
H (�) = i

2

∫
dω

2π

1

Nk

∑
kn

Tr
[
ε̈knτ̂3Ĝkn(ω + 2�)�̈dia

n (�)τ̂1Ĝkn(ω)
]<

, (B13)
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χ
(2)
H (�) = i

2

∫
dω

2π

1

Nk

∑
kn

Tr
[
ε̈knτ̂3Ĝkn(ω + 2�)�̈para

n (�)τ̂1Ĝkn(ω)
]<

+ i

2

∫
dω

2π

1

Nk

∑
kn

Tr
[
ε̇knĜkn(ω + 3�)ε̇knĜkn(ω + 2�)�̈dia

n (�)τ̂1Ĝkn(ω)
]<

+ i

2

∫
dω

2π

1

Nk

∑
kn

Tr
[
ε̇knĜkn(ω + 3�)�̈dia

n (�)τ̂1Ĝkn(ω + �)ε̇knĜkn(ω)
]<

, (B14)

χ
(3)
H (�) = i

2

∫
dω

2π

1

Nk

∑
kn

Tr
[
ε̇knĜkn(ω + 3�)ε̇knĜkn(ω + 2�)�̈para

n (�)τ̂1Ĝkn(ω)
]<

+ i

2

∫
dω

2π

1

Nk

∑
kn

Tr
[
ε̇knĜkn(ω + 3�)�̈para

n (�)τ̂1Ĝkn(ω + �)ε̇knĜkn(ω)
]<

. (B15)
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