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Genome heterogeneity drives the evolution of species
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Most of the DNA that composes a complex organism is noncoding and defined as junk. Even the coding
part is composed of genes that affect the phenotype differently. Therefore a random mutation has an effect
on the specimen fitness that strongly depends on the DNA region where it occurs. Understanding how this
heterogeneous composition influences the fitness evolution of individuals is hampered by the complexity of the
problem and a clear picture is missing. Here we study a minimal model for the evolution of an ecosystem where
two antagonist species struggle for survival on a lattice. Each specimen has a unique toy genome that codes for
its phenotype. The gene pool of populations changes in time due to the effect of random mutations on genes
(entropic force) and of interactions with the environment and between individuals (natural selection). We prove
that the relevance of each gene in the manifestation of the phenotype is a key feature for evolution. In the presence
of a uniform gene relevance, a mutational meltdown is observed. Natural selection acts to quench the ecosystem
in a nonequilibrium state that slowly drifts, decreasing the fitness and leading to the extinction of the species.
Conversely, if a specimen is provided with a heterogeneous gene relevance, natural selection wins against
entropic forces and the species evolves, increasing its fitness. We finally show that heterogeneity together with
spatial correlations are responsible for spontaneous sympatric speciation.
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I. INTRODUCTION

Evolution by natural selection shaped the marvelous biodi-
versity we presently observe in nature. Starting with one (or
few) living organisms, the tree of life progressively branched
as living beings managed to survive in different environments
through adaptations and speciations [1].

Both processes arise by a complex interplay between in-
trinsic forces (e.g., mutations) and extrinsic ones, provided
by the interactions between the different components of the
ecosystem [2]. This results in changes in behavior, mor-
phology, and physiology (or combinations thereof) in the
organisms.

Since its first formulation, the theory of evolution regarded
natural selection, i.e., the effect of environment and interac-
tion between inter- and intraspecies in selecting the organisms
with maximum fitness, as the pivotal mechanism of evolu-
tion. Several more years were required to clearly define the
“microscopic” role of genome mutations (alongside genetic
drift, hitchhiking, etc.) as the other main component of the
evolutionary process [3–6].

Quantifying the simultaneous effects of natural selection
and genomic mutations is far from being an easy task [6–9].
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Its understanding is, however, not only a fascinating theo-
retical challenge but carries important practical implications.
In fact, a continuously increasing literature highlights the
connection between the rules governing ecology to the one
regarding cell populations [10–12]. Preeminent is the case
of cancer cells, that are subject to both high entropic forces
(fast mutation rates) and a strong natural selection, due to
the selective pressure given by both competition with the
immune system and the effect of anticancer therapies. Bac-
teria drug resistance is under much scrutiny, too, since the
selection done by antibiotics influences the evolution of re-
silient traits. Experimentally, the evolution of genomes during
speciation has been studied only recently with the availabil-
ity of next-generation sequencing technologies [13–15]. In
particular, recent findings highlighted how mutations on cer-
tain genes considerably enhance the speciation process [13].
Also, the increase of the genome length due to duplication
errors (e.g., the presence of redundant genes/chromosomes)
has been pointed as one mechanism for evolution/

speciation [16].
Parallel to experiments, several theoretical models were

developed to study ecosystem dynamics [17,18] and evolu-
tion, both at the molecular level [7,19] and at the population
level, such as population-environment interaction [20–23] and
species-species interactions [24–31].

In particular, agent-based models proved to be very ef-
ficient to include spatial information and features [32–36].
Here evolution is accounted for either at phenotype level, i.e.,
the phenotype of a species is randomly modified generation
by generation according to a particular law [21,23,31], or at
genotype level, i.e., an evolution law is assumed for a genome
upon which the phenotype is computed [37–40]. More refined
models have been considered accounting for dominant and
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recessive alleles, sex recombination (crossover), or spatially
resolved ecosystem dynamics [37,41,42].

This work aims to study how heterogeneity in gene rel-
evance affects the evolution of an ecosystem. Heterogeneity
in genome expression is known to play an important role in
evolution: the expression level of the encoding gene strongly
affects the evolution rate of proteins [43]. Here we focus on
the effect of this heterogeneity on the overall fitness, and
how this affects the dynamics of the whole ecosystem. In
particular, we study the evolution of a minimal ecosystem on a
lattice initially composed by one species of predators and one
of preys. Each specimen possesses a toy genome composed
of 3N genes that encode for three essential macrophenotypic
features of the animal: (i) its capability of moving/hunting,
(ii) its fertility, and (iii) the mean lifetime of the specimen
(mortality).

The genome pool of the two prey-predator species can
change in time due to random mutations at the level of the
single genes (entropic force) and to predation/death events
(selection force). Aiming at limiting the number of parameters
and developing an as minimal as possible evolutionary model,
we do not insert mating in the model, i.e., we have an asexual
reproduction. Since mating is not taken into consideration,
we will not look for speciation according to Mayr’s biology
speciation concept, where different species are separated if
mating does not produce fertile offsprings [5]. Instead, we
speak of speciation in terms of differences in phenotype dis-
tributions [44], where well-separated peaks can be interpreted
as different species while the width of each peak accounts for
the intraspecies differentiation.

Two different kinds of genomes are considered: (i) a uni-
form genome, where all the genes have the same impact on
the phenotype, and (ii) a heterogeneous genome, where each
gene has a different weight on the overall phenotype. We show
that while in the first case entropy dominates, fostering the
mutational meltdown [45–47], in the latter case natural se-
lection allows the ecosystem to increase predator fitness. For
each genome we also look for the emergence of spontaneous
speciation.

II. MODEL

We consider a variant of the ECOLAT (ecosystem on lattice)
model [35], where each site of a L × L square lattice can
be occupied exclusively either by the environment or a prey
or a predator. To use the same notation adopted in [35], we
identify preys as fishes ( f ) and predators as sharks (s). At
every discrete time step, fishes can move, breed, or remain
still with probability pm

f , pf
f and 1 − pm

f − pf
f . Sharks can

move (pm
s ) or remain still (1 − pm

s ). Furthermore, predators eat
preys whenever they step into a cell occupied by a prey. In this
case, sharks can reproduce with probability pf

s . If a shark does
not eat a fish during its round, it can die for starvation with
probability pd

s . We assumed that fishes may only die murdered
by a predator (i.e., pd

f = 0). See Appendix A for more details
on the simulation steps.

The set of three probabilities, {pm
(s, f ), pf

(s, f ), pd
(s, f )}, con-

stitutes the macrophenotype of each individual, dictating the
rates with which the specimen carries out three essential tasks

of life. Each specimen has a genome that codes the macrophe-
notype of the individual. The macrophenotype is obtained as
a weighted average over all the N genes (gi) that codes for a
particular feature:

py =
N∑

i=1

gyiWi, y = (m, f ,d )
(s, f ) , (1)

where Wi expresses the weight of the ith gene in the manifes-
tation of the phenotype [see Fig. 1(a)].

The genome is subject to point mutations, i.e., Poisson-
distributed random events in time occurring with a constant
rate for each gene every time a new individual is born (repro-
duction is asexual). If a mutation event occurs on a gene, its
value is reset to a random number between 0 and 1.

In our framework the outcome of a mutation does not
depend on the value the gene possesses before the mutation, as
is often the case in real mutation of a nucleic basis. However,
since we are modeling effective genes directly related to the
phenotype, this is a necessary requirement to simulate the
effect of silent mutations. In fact, changes in the phenotypes
are often due to the accumulation of mutations, which by
themselves do not influence the phenotype.

Moreover, in order to tune the average value of the new
mutated gene, we choose the new value gi = x according to
the following probability distribution:

q(x) =
(

1

〈x〉 − 1

)
(1 − x)

1
〈x〉 −2, (2)

where 〈x〉 is a tunable parameter that determines the average
value of the gene after the mutation [see Fig. 1(b)]. Such kinds
of asymmetric distributions are widely used for phenotype
modeling, e.g., in the contest of bacterial growth rates, where
slow rates dominate over fast ones [21,22,48]. In this way
deleterious mutations can be enforced to be more common
than favorable ones. This is quite reasonable, as a random
mutation in the coding DNA produces a random change in
the amino acid chain of a protein, which is far more likely
to produce an unfolded structure than a more functional one
[49,50].

Finally, in this work we will consider two weight distribu-
tions [see Fig. 1(c)]:

(1) A uniform distribution, where all genes equally con-
tribute to manifest the phenotype (discussed in Sec. III A),

Wi = 1

N
. (3)

(2) A power-law distribution allowing for the presence of
preeminent genes, as discussed in Sec. III B,

Wi ∝ i−α. (4)

To assess the outcome of evolution, we define the fitness
measured as the average size of the population. Such a defini-
tion, profoundly linked with the usual fitness measurements
(growth rate or the number of nephews per individual), is
enforced by the finite carrying capacity dictated by the lattice.
Additional details on the simulations and the link to the source
code to reproduce our results are provided in Appendixes A
and B.
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FIG. 1. (a) Snapshot of an EVOLAT configuration in the metastable steady-state regime. Fishes are colored in yellow, sharks in blue, while
purple cells represent the environment. Each animal on the lattice possesses a toy genome composed of 3N genes. Each gene is represented by
a real number between 0 and 1 that concurs in manifesting three macrophenotypes associated with the animals. Animal mobility is represented
by the probability of moving (pm), their fertility by the breeding probability (pf ), and their lifetime by the death probability (pd ). (b) Mutation
events can happen with a rate μ with equal probability on each gene. If one gene is subject to a mutation, a new value between 0 and 1 is
extracted from the underline phenotype distribution q(x), whose asymmetry accounts for the fact that mutations tend to be deleterious for
the organisms. (c) The phenotype of the individual is obtained as the weighted average over all the N independent genes encoding for it. In
the present work we assume two possible kinds of weights with a uniform mean (all genes equally concur to the phenotype) or a power-law
weighted mean (some genes influence the phenotype more than others).

III. RESULTS

A. Uniform genome

To begin with, we investigated the model behavior in the
presence of a uniform genome where each phenotype is de-
termined as the uniform average over all the genes associated
with that phenotype [as given by (1) with (3)]. After preparing
the ecosystem in a nonequilibrium steady state (NESS) with
fixed initial phenotypes, we turned on mutations and followed
the evolution of prey’s and predator’s traits over long periods.
To prevent predators to acquire infinite lifetimes, we strongly
favored deleterious mutations in the shark death rate (entropic
force). This is achieved by tuning the 〈x〉 parameter in (2). In
fact, if the average phenotype is above (or below) 〈x〉, random
mutations will try to restore it around 〈x〉.

Figure 2(a) shows the dynamic of the predator mortality
distribution for various initial conditions (marked by different

colors). In all simulations, sharks have a well-defined phe-
notype at each time step, so no speciation is observed. All
distributions converge toward a unique final distribution with
a mean close to the average value chosen for the entropic force
(dashed line in the figure), even with different timescales.
Note that the final state is metastable since the presence of
a finite death rate for sharks introduces a non-null probability
of fluctuation in the shark number, leading to either prey of
predator extinction.

All the observed metastable states are indistinguishable,
so no memory on the starting parameters is preserved. The
time required to reach the final state diverges following quite
remarkably a power law:

τ
(
pd

s 0

) = Apd
s
−γ

0 , lim
N→∞

γ = 2.57, (5)

where τ is the transient time before the metastable steady
state is reached, pd

s 0 is the initial value of the predator death
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FIG. 2. (a) Time evolution of shark mortality distribution. The dashed vertical line is the stationary state for predator growing in a breeding
farm (no natural selection). The simulations were performed starting from all values of psd with a spacing of 0.05. For presentation reason,
only a subset of the simulation are reported with different colors. (b) Relaxation time as a function of the initial phenotype. The relaxation
times below psd = 0.25 are not shown, as those simulations did not reach the final metastable state in the time of 106 steps. As seen, a power
law perfectly fits the relaxation time. The predator relaxation time diverges as a power law in a way that resembles the dynamic of glassy
systems. (c) Exponent of the power law as a function of the genome length. It converges to a value of about 2.57. Simulation in panels (a) and
(b) are performed with N = 90.

rate, and N is the number of genes that determine the features
of each individual [see Fig. 2(b)]. We repeated the simula-
tions by varying the genome size N from 50 to 90. All the
simulations show the same divergence of the relaxation time,
perfectly fitted by the power law of Eq. (4) with a γ exponent
that depends on the genome size, but converges quickly after
N = 80, as shown in Fig. 2(c). The divergence of the transient
time as pd

s becomes smaller is similar to a system close to a
glassy phase [51] where the distance between the initial and
final phenotypes plays the role of the difference between the
quenched and equilibrium temperatures in a typical quench-
ing experiment. Such behavior provides great insight into the
evolutionary dynamics. This quenching is a result of natural
selection that freezes the system in a nonequilibrium state
for long times. In fact, phenotypes subject to the sole effect
of entropic forces would converge to the final metastable
steady state exponentially; the dynamics of the average pd

s of
individuals subject only to random mutation without natural
selection converges to the entropic value [the dashed red line
in Fig. 2(a)] as

pd
s (t ) = [

pd
s (0) − 〈sd〉 ]

e−pmutt + 〈sd〉 , (6)

where pmut is the mutation rate and 〈sd〉 is the average en-
tropic value for the shark death rate (see Appendix C for
the derivation). So, in the absence of natural selection, the
typical time to reach 〈sd〉 is always the mutation rate 1/pmut,
independent of the initial value. This analysis unveils the role
played by natural selection, which acts stronger the more the
individuals are fitted, quenching the dynamics.

The death rate of predators is strongly related to their
fitness. In particular, we define the fitness of a species at a
given time as the average number of individuals in the lattice.
This accounts for the finite carrying capacity of the system.
We cannot use the growth rate, as is usually done, since we
are studying a system with a finite carrying capacity. On suf-
ficiently long timescales with respect to the typical oscillation
of the system [35] but small with respect to the typical muta-
tion rates, the mean number of individuals is constant and the
mean growth rate is zero. In Fig. 3 we report the correlation
between the fitness and the death rate, computed from all the
configurations extracted in Fig. 2.

Furthermore, we see how the ecosystem and predators,
in particular, react to negative mutations. In fact, at long
times, shark fitness decreases due to the entropic force of the
mutations that increases the death rate. If a population has
a phenotype distribution whose mean is far from the mean
entropy value [〈x〉 in (2)], a mutation of the genome will tend
to produce an individual with lower fitness than the rest of the
population. The lower the fitness the faster this individual will
be suppressed by natural selection.

If the fitness worsens only slightly (the mutation is very
soft), the specimen will reproduce and that deleterious muta-
tion will remain inside the genome pool. On long timescales,
the accumulations of these very soft negative mutations slowly
drive the whole population toward the entropic limit. This
phenomenon is observed in real ecosystems and is known as
mutational meltdown [45–47], which may cause the extinction
of the population. The meltdown we observe originates by
the even impact genes have on the phenotype. In general, to
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FIG. 3. Correlation between the fitness of predators and their
death rate for the simulations in Fig. 2. Colors distinguish different
starting values for the shark death rate. The Pearson correlation is
–0.98. The residual quadratic error on the fitness from the linear fit is
0.01. Therefore the shark death rate is a very good estimator for the
fitness of the predators.

prevent the mutational meltdown, a huge population is re-
quired. With a huge population, the genome variability
improves the effect of natural selection, preventing the melt-
down. We discuss how it scales with the system-carrying
capacity in Appendix D. In particular, we show that in our
model the timescale τ increases sublogarithmically with the
number of individuals (i.e., the dimension of the lattice).

Figure 2 clearly shows how evolution is not able to improve
the fitness of predators. In fact, although natural selection is
freezing the dynamics (strongly reducing the effect of genetic
drift), if we wait a sufficient time, sharks will finally increase
their death rate, therefore reducing their fitness. This behavior
is opposite to what is commonly observed in nature, where the
combined effect of mutations and natural selection leads to an
overall improvement of the fitness on long times.

This finding highlights the deleterious role of entropy in
the evolution of the species. We will show in the next section
that the capability to improve the fitness can be recovered
even in the presence of a strong entropic force if genome
variability is considered. This feature alone will be able both
to allow predators to evolve and to provide a mechanism for
spontaneous speciation.

B. Heterogeneous genome

To include the effect of genome heterogeneity in the simu-
lation, i.e., the uneven impact that different genes have on the
phenotype, we inserted a gene-dependent weight [Eq. (4)] in
Eq. (1). Figure 4 depicts the time evolution of the distribution
of the shark’s mortality starting from different initial values
for two different exponents of (4), namely, α = 1 and α = 2.
The evolution is observed with both choices of exponents.
Predators improve their expected lifetime and fitness (see the
correlation in Fig. 3) much above the final metastable state
obtained in Fig. 2. The improvement of the shark lifetime is a
general feature, as discussed in Appendix B, where we report

FIG. 4. (a) Evolution of the shark death-probability distribution
as a function of time in the presence of a heterogeneous genome. The
power-law exponent α [see (4)] is equal to 1. Heterogeneity allows
the species to evolve to higher average lifetime, while this does
not occur in the presence of a uniform genome (Fig. 2). Different
colors correspond to different starting values. (b) Same as in (a) but
with α = 2. Both simulations exhibit a qualitative different behavior
if compared to a uniform genome. The less fitted individual can
improve their fitness far above the entropic value.

several simulations performed with the same parameters and
all showing the same qualitative behavior. Such behavior is in
strong contrast to what happens with the uniform genome, as
we show in Fig. 2.

Positive evolution occurs thanks to the combination of two
effects: (i) the phenotype population is normally quenched
(see Sec. III A) and (ii) genes exert a different role on the phe-
notype manifestation. The quenching allows the quasispecies
to survive in an out-of-equilibrium situation where common
random negative mutations usually kill the individuals. The
species can survive long enough that a very rare, positive
mutation occurs in an important gene (with a big Wi), causing
a discontinuity in the phenotype distribution and a sudden
evolution of the population. This speciation creates two kinds
of predators with a quantitative different phenotype. The qua-
sispecies which is more fitted to the environment very quickly
gets fixed while the less fitted alleles vanish from the gene
pool of the population.

Such a rare, discontinuous event is not possible in a uni-
form genome, where each gene has only a moderate impact on
the overall phenotype and a massive number of positive muta-
tions would be required to obtain the same shift (that is so rare
an event that it never occurs in practice). Conversely, hetero-
geneity allows the positive discontinuity in the phenotype to
depend on the mutation of a relatively small number of genes,
which is much more likely to occur. The resulting dynamics
is something that never reaches a metastable state, as the

043026-5



MATTIA MIOTTO AND LORENZO MONACELLI PHYSICAL REVIEW RESEARCH 2, 043026 (2020)

FIG. 5. Root square of the variance of the shark death probability
as a function of the genome heterogeneity, measured thought the α

exponent.

more fitted the population becomes, the more quenched is the
dynamics. This reflects the intrinsic nonequilibrium character
of evolving ecosystems. Notably, increasing the heterogeneity
reduces the differentiation between individuals, which can
be measured by the width of the phenotype distributions (as
shown in Fig. 5).

Heterogeneity has another important effect on preys phe-
notype distribution. In Fig. 6 we show the prey breeding rate
as it evolves as a function of time. After a while, the prey
population splits into two well-separated traits. In particular,
the two species have a different reproduction rate (pf

f ) of 0.78

TABLE I. Pearson spatial correlations of intra- and interspecies
and conditional probabilities. f1 refers to fishes with pf

f lower than

0.83, while f2 refers to those with pf
f higher than 0.83.

Corr[s, s] 0.418 ± 0.001 P(s|s) 0.590 ± 0.001
Corr[ f1, f1] 0.575 ± 0.002 P( f1| f1) 0.641 ± 0.002
Corr[ f2, f2] 0.594 ± 0.003 P( f2| f2) 0.632 ± 0.002
Corr[ f1, f2] −0.113 ± 0.002 P( f1| f2) 0.024 ± 0.001
Corr[s, f1] −0.142 ± 0.003 P(s| f1) 0.144 ± 0.001
Corr[s, f2] −0.105 ± 0.003 P(s| f2) 0.144 ± 0.001

and 0.90, respectively. To assess whether the two populations
could be considered as different species, apart from their dif-
ferent fertility, we computed the spatial Pearson coefficient:

Corr[i, j] = P(i ∩ j) − P(i)P( j)√
P(i ∩ i) − P2(i)

√
P( j ∩ j) − P2( j)

, (7)

where P(i) is the probability of finding species i in any site
of the lattice, and P(i ∩ j) is the probability of finding i and j
in near-neighbor sites. We further evaluate the probability of
finding a species a in a near-neighbor site given that species b
occupies a certain site, P(a|b):

P(a|b) = P(a ∩ b)

P(b)
. (8)

As one can see from Table I, intraspecies correlation co-
efficients are positive while different species show a negative
correlation. Indeed, the anticorrelation exhibited by the two
different species of preys is comparable to the anticorrelation
found between preys and predators.

(a)

(b)
time [chronons]

p f
f

FIG. 6. (a) Time evolution of the distribution of fish filiation probability. At time zero, the population of fishes is prepared with a filiation
rate of 0.8. After about 1500 chronons, the population splits into two species with a well-separated trait. (b) Snapshots of two EVOLAT

configurations during the evolution. In the left snapshot, only a species of fish is observed. In the right-side one, two fish species have formed.
The spatial distribution of sharks differs in the proximity of the two species, showing that sharks are adopting different hunting strategies.
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Predators do not see any difference between the two kinds
of preys, as we can see from the conditional probabilities of
finding a shark next to a prey [P(s| f1) = P(s| f2)]. On the
other hand, a small but significant difference is present be-
tween the near-neighbor correlations (C[ f1, f1] �= C[ f2, f2]),
measuring the spatial organization of the two prey species.

Note that the presence of the spatial organization of the
animals is a very important feature for sympatric speciation
[52], since no physical barriers are present in the system.

In a mean-field scenario, this coexistence between preys
with different reproduction rates would be impossible, as it
would lead to the supremacy of the prey with the higher
reproduction rate.

IV. DISCUSSION

We simulate the evolution of a minimal prey-predator
system. Each species is characterized by a toy genome
through which three macrophenotypes manifest. Providing
each specimen with N genes for each phenotype, we showed
that the gene relevance [i.e., the weight of each gene
according to Eq. (1) in coding for phenotypes is a key feature
for evolution].

To survive, an organism must be robust to deleterious
mutations. A convenient choice, the organism can opt for
could be to rely on many genes for the manifestation on one
phenotype. If the information for the phenotype is evenly
distributed in several genes, then a damage to some gene
has the minimum impact on the resulting phenotype. As a
counterpart, we showed that this condition favors the accu-
mulation of detrimental mutations that lead to the mutational
meltdown. Conversely, packing all the phenotype information
in few genes enables abrupt variations of phenotype. This
prevents the mutational meltdown, at the cost of reducing
the differentiation between individuals and consequently the
adaptability of the species (as shown in Fig. 5). In this case
a drastic change in the environment would provoke a sudden
extinction of the species.

Relying on a heterogeneous distribution of information
in many genes assures both broad differentiation of a huge
genome and the possibility to have astonishing positive mu-
tations that drive the evolution and prevent the mutational
meltdown. EVOLAT, albeit representing a minimal model of
an ecosystem, reproduces a rich variety of scenarios upon
varying a single parameter. In fact, by tuning the α exponent
in Eq. (4), i.e., assigning different weights to genes associated
with the same phenotype, the system exhibits different behav-
iors. Indeed, a uniform distribution of weights (α = 0) leads
to a progressive reduction of the fitness due to the accumu-
lation of detrimental mutations (see Fig. 2). On the opposite
side, if only one gene encodes for all the traits (α = ∞),
the mutational meltdown is prevented as species can improve
their fitness. However, in this regime there is no differentia-
tion inside the same population, exposing the species to the
threat of sudden environmental changes. Life lies in between,
where the high impact of a few genes prevents the mutational
meltdown, while the bulk of the remaining genes guarantees
differentiation (see Fig. 5).

Notably, fishes provided with a heterogeneous genome re-
spond to the fluctuation of the environment and to the natural

selection operated by sharks by a sympatric speciation. Spon-
taneous speciation, and particularly a sympatric one, is rarely
reproduced [37] by models that manage to observe differen-
tiation due to Mendelian inheritance [53]. According to our
simulations, two key ingredients are important to observe the
emergence of sympatric speciations: the heterogeneity in gene
relevance and the explicit spatial extension of the simulation.
Moreover, our minimal model provides a theoretical frame-
work to deal with the everlasting debate about the physical
feasibility of evolution.

The idea that life had evolved by the combined action of
mutations in the genome and natural selection of the most
fitted individuals is accepted by a vast majority of scientists.
The skeptics argue that random mutations on the genome
should progressively increase the disorder (entropy) and con-
sequently be incompatible with life. Indeed, this happens
only in the case of a uniform genome, where mutations lead
the phenotypes toward the entropic values. This argument is
therefore based on the wrong assumption that all the genes
equally contribute to the phenotype.

In our simple model, each part of the genetic sequence
influences the phenotype with different weights. This is
a coarse-grain representation of the underlying biological
mechanism through which the phenotype is manifested. In
nature, only 2%–3% of DNA is “coding” (it can be translated
into mRNA and then into proteins). Several studies [54,55]
have shown that also the noncoding DNA (often referred to
as junk) can affect the phenotype. This is a mechanism for
strong heterogeneity in how the phenotype manifests from the
underlying genetic sequence.

Overall, in our opinion the most limiting choices we made
were not to include sexual reproduction, correlations in gene
expression, and modifications in the food chain (a prey cannot
become a predator). This limits the sources of variation be-
tween individuals only to the effect of mutations. On the other
hand, the reduced number of parameters allows one to look
for general features of evolution.

In conclusion, we proved that heterogeneity in gene rel-
evance is a key feature to prevent a mutational meltdown
in a species. Moreover, we showed evidence that spatial
correlations are fundamental to account for sympatric specia-
tion. These findings contribute to disentangling how genomes
change to create new species and provide a step forward in
understanding the mechanisms of evolution.

The source code to run the simulations to reproduce the
calculations can be found in the GitHub repository under the
name of EvoLat [56].
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APPENDIX A: DETAILS ON THE COMPUTATIONAL
METHODS

In the following, we report the details on how the simula-
tion is performed.
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The starting parameters are
(i) The initial phenotype for preys and predators.
(ii) The average phenotype without natural selection (〈x〉).
(iii) The size of the lattice.
(iv) The mutation rate for each gene.
(v) The number of genes for each phenotypic feature.
(vi) The initial number of preys and predators in the

lattice.
All the specimens are then prepared with a genome in

which all genes are equal to the target phenotypic feature as
provided in the input. Then we present the workflow of each
chronon in the simulation:

(i) A random cell in the lattice is extracted.
(ii) If the cell is empty, the step is over
(iii) We compute the phenotype of the selected individual

from its genome.
(iv) We extract and perform the move for the selected

individual.
This cycle is repeated a number of times equal to the num-

ber of sites in the lattice to compose a single unit of time. The
move of each individual depends if it is a prey or a predator.
For preys,

(i) We extract if the prey moves, breeds, or dies with
probability pm

f , pf
f , or pd

f .
(ii) If the prey moves or breeds, we extract randomly a

near-neighbor lattice site. If it is empty we move the prey in
that site; otherwise the step is over.

(iii) If the prey dies, it is removed from the lattice.
For the predator,
(i) We extract if the predator moves with probability pm

s .
(ii) If the predator moves, we extract randomly a near-

neighbor lattice site. If it does not contain another predator,
it is moved in that cell.

(iii) If the predator is moved in a cell contained by a prey,
it can breed with probability pf

s .
(iv) If the predator breeds, two offspring are located in the

new position and the old position of the prey.
(v) If the predator did not eat any pray in this step, it can

die with probability pd
s .

The breeding process is common for both preys and preda-
tors.

(i) Two offspring are located in the current position of the
individual and in the empty cell from which the last move is
performed.

(ii) Each new individual has a genome that is copied from
the parent.

(iii) For each gene of the new individual, a random muta-
tion can occur with probability chosen in the input.

(iv) If the gene mutates, its value is replaced with the one
extracted from the distribution qx(x), as discussed in the main
text.

In all the performed simulations, an initial thermalization
time of 1000 chronons is used to allow the ecosystem to
reach its nonequilibrium, quasisteady state in the absence
of mutations [35], which occurs in a timescale much higher
than the typical evolution of species (usually in three or four
generations). Then we study the out-of-equilibrium dynamics
induced by the evolution of the phenotype.

FIG. 7. Evolution of the shark death-probability distribution as
a function of time in the presence of a heterogeneous genome. Het-
erogeneity allows the species to evolve to a higher average lifetime,
while this does not occur in the presence of a uniform genome.
Different colors correspond to different starting values. The less fitted
individual can improve their fitness far above the entropic value. The
dashed vertical red line represents the entropic force value of 0.9 [〈x〉
in Eq. (C2)]. The inset show dynamics obtained by a different value
(0.75) of the entropic force.

APPENDIX B: SIMULATION PARAMETERS

All the simulations were started with the following parame-
ters (if not differently specified): pf

f = 0.2, pm
f = 0.8, pd

f = 0,

pm
s = 0.7, pf

s = 1, pd
s = 0.6. The entropic forces [Eq. (2)]

were 〈x〉 = 0.5 for all the parameters, except for the predator
death rate, which we set to 〈pd

s 〉 = 0.9. We used a lattice size
of L = 256 × 256 with a mutation rate of 0.016 per gene per
chronon. Each simulation is initialized by a random config-
uration fully occupied by preys and predators in equal ratio.
Then we wait for 1000 chronons to reach the nonequilibrium
metastable steady state of the prey-predator dynamics. Then
the simulation consists of 106 chronons, saving snapshots, and
the state of the system once every 1000 chronons. For the data
in Fig. 4 and Table I of the main paper, we extracted snap-
shots every 40 chronons, while we computed the correlation
coefficients averaging every 400 chronons to avoid sampling
correlated configurations.

To test the consistency of our results, we also performed
the simulation by changing the initial phenotype, genome
length, and entropic forces, but no significant difference has
been observed. As an example, in Fig. 7 we reported the
shark death-probability distribution as a function of time in
the presence of a heterogeneous genome for different values
of the initial phenotype and of the entropic force. In all cases
the distributions tend to drift away from the entropic force
values (dotted lines). The observed behaviors were robust to
statistical fluctuations. In fact, different simulations, starting
with the same set of parameters, exhibit the same trend (see
Fig. 8).
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FIG. 8. (a) Evolution of the average shark death rate. Simulations performed with an heterogeneous genome α = 2, all with the same initial
values of pd

s . (b) Same as in (a) but showing other independent realizations of the system evolution.

APPENDIX C: ENTROPIC FORCES IN FARMS

Here we compute the dynamical evolution of a predator
population in a “farm,” i.e., supplying the predator with an
infinite source of food, allowing them to reproduce without
the effect of natural selection. In this case each gene of the
new generation will have a probability of a mutation given
by the mutation rate. Therefore the master equation for the
genome of the phenotype x is

gxi (t + δ) = pmut

∫ 1

0
dy y fx(y) + (1 − pmut)gxi (t ), (C1)

where fx(y) is the probability distribution of the entropic
forces that set the average mutations. We can define the av-
erage value of the entropic force as

〈x〉 =
∫ 1

0
dy y fx(y). (C2)

So if we start with

gxi (0) = px, (C3)

in the limit δ → 0 we get

d

dt
gxi = pmut

( 〈x〉 − gxi

)
. (C4)

That is a standard first-order differential equation, whose so-
lution is

gxi (t ) = (px − 〈x〉)e−pmutt + 〈x〉 . (C5)

The phenotype is the generic weighted average of the
genome:

px(t ) =
N∑

i=1

wigxi (t ). (C6)

Since each gene evolves independently in the absence of nat-
ural selection, we have

〈px〉 (t ) = (px − 〈x〉)e−pmutt + 〈x〉 . (C7)

Therefore the phenotype converges to the expected value of
the entropic forces after a typical time of 1/pmut independent
of the particular initial state px.

APPENDIX D: MUTATIONAL MELTDOWN

The mutational meltdown is an evolutionary process where
deleterious mutations accumulate in time progressively de-
creasing the fitness of the population until extinction. We
observe an analogous process in Fig. 2. This process is known
to be affected by the carrying capacity. To assess this we sim-
ulated two lattices with different L2 number of sites (L1 = 256
and L2 = 512).

Looking at the relaxation times, we can spot a (small)
dependence with the size (Fig. 9). The higher the carrying ca-
pacity, the slower the genomic meltdown. This is in complete
accord to what we found in the literature [45–47].

To get an intuitive idea of how such an effect should
scale with the size, let us consider a population of N + 1
individuals and suppose that each animal possesses a cer-
tain fitness extracted from a distribution. To simplify, let us
identify the fitness with the growth rate λ of the individual
so that the distribution of the fitness is the distribution of
growth rate p(λ). Let us make a further simplification that
higher fitness corresponds to higher growth rates. In this situ-
ation, the population evolves under the effect of mutations and
natural selection. Mutations tend to lower the fitness of each
individual (i.e., reduce its growth rates). In particular, an ac-
cumulation of deleterious mutations must result in a decrease
of the population fitness, so the growth rate distribution will
drift toward smaller values of growth rate. On the other hand,
natural selection favors animals with a high growth rate. In
particular, the higher the growth rate of an individual from
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FIG. 9. (a) Time evolution of predator death-rate phenotype after
quenching. Different colors correspond to different simulations per-
formed starting from different values of psd , while the lattice size is
set to L = 512. The predator relaxation time diverges as a power law
in a way that resembles the dynamic of glassy systems. The dashed
vertical line is the stationary state for predator growing in a breeding
farm (no natural selection). (b) Same as in (a) but with L = 256.

the population mean growth rate, the more the progeny of this
animal must be selected: the animal with the highest growth
rate rapidly dominates, pushing the distribution toward high
values of growth rates.

To quantity the robustness of the population to the melt-
down, we can ask how the distance between the best-fitted

FIG. 10. Average difference between the most fitted and the
mean individual as a function of the population size.

individual with respect to the mean varies with the size of the
population, i.e., 〈λM〉N − 〈λ〉. If the population is composed
by N + 1 individuals and one of them has fitness λM , the
probability that λM is the highest fitness is given by

P(λ < λM, N ) =
(∫ λM

−∞
p(λ)

)N

. (D1)

In turn, the probability of λM is obtained as

P̃(λM ) = d

dλM
P(λ < λM, N ) = NP(λ < λM, N − 1)p(λM ).

(D2)
In Fig. 10 we show that the distance between the best-fitted

individual with respect to the mean varies with the size of
the population, i.e., 〈λM〉N − 〈λ〉, for a normal growth rate
distribution. Indeed, as the number of samplings increases, so
does the probability of sampling extreme values.
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