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Half-magnetization plateau and the origin of threefold symmetry breaking in an electrically
switchable triangular antiferromagnet
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We perform high-field magnetization measurements on the triangular lattice antiferromagnet Fe1/3NbS2. We
observe a plateau in the magnetization centered at approximately half the saturation magnetization over a wide
range of temperature and magnetic field. From density functional theory calculations, we determine a likely
set of magnetic exchange constants. Incorporating these constants into a minimal Hamiltonian model of our
material, we find that the plateau and the Z3 symmetry-breaking ground state both arise from the competition of
interplane and intraplane exchange interactions. These findings are pertinent to the magnetoelectric properties of
Fe1/3NbS2, which allow electrical switching of antiferromagnetic textures at relatively low current densities.
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I. INTRODUCTION

The electrical manipulation of antiferromagnetic (AFM)
spin textures has the potential to effect transformative techno-
logical change [1]. Exotic magnets with complex interactions
are of special interest in this field, because they are likely to
leverage novel mechanisms for their manipulation, possibly
allowing ultralow power or ultrafast functionality. Diagnosing
the relative magnitude of these interactions gives direct in-
sight into these mechanisms. The existence of magnetization
plateaus at fractions of saturation, when a material is subjected
to large external magnetic fields, is a powerful tool to this
end [2].

In this work, we study magnetization plateaus in the anti-
ferromagnet Fe1/3NbS2, a magnetically intercalated transition
metal dichalcogenide which has recently been found to exhibit
reversible, electrically stimulated switching between stable
magnetic states [3]. This behavior has been seen with consid-
erably lower energy requirements in Fe1/3NbS2 as compared
to the other systems [3], raising the question of whether the
mechanism differs significantly [4,5]. At the center of this
question is the nature of the magnetic ground state, which
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has been challenging to determine because collinear and non-
collinear order are energetically close and the true ground
state depends strongly on the magnetocrystalline anisotropy
[6]. The nature of the underlying ordering in Fe1/3NbS2 has
been studied by both neutron scattering [7,8] of magnetic
order and optical linear birefringence microscopy [9], which
probes nematic structure in the electrical conductivity. Both
measurements—electric and magnetic—find indications of
threefold symmetry breaking in the ground state, whose origin
is unclear.

We report here a hitherto unobserved plateau in the field-
induced magnetization at half of the saturation value. Such
a plateau has been discussed theoretically [10,11] in trian-
gular lattice antiferromagnets, appearing whenever there is
a significant next nearest neighbor magnetic coupling [12].
As compared to plateaus occurring at one-third saturation
magnetization [13–19], experimental realizations of a half-
magnetization plateau on a triangular lattice are relatively
rare [15,20]. The implication from theory is that the same
interactions that generate the plateau are also responsible for
a threefold symmetry-breaking stripe phase in the ground
state, for both quantum and classical models. The half-
magnetization plateau found in Fe1/3NbS2 thus gives a clear
clue regarding the microscopic mechanism for the electrically
switchable antiferromagnetic ground state.

Fe1/3NbS2 is a layered material with space group P6322
no. 182 whose magnetism arises from the iron which sits be-
tween layers of NbS2 [Fig. 1(a)]. These magnetic atoms form
triangular lattices in each layer, with adjacent layers staggered
with respect to one another [Fig. 1(b)]. Charge from the iron
atoms is transferred to the NbS2 conduction band, leaving
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FIG. 1. (a) The crystal structure of Fe1/3NbS2. Iron atoms sit
between layers of NbS2, aligned with the niobium atoms above and
below. (b) Along the c axis, the iron atoms in a given layer form
a triangular lattice. These triangular lattices are shifted from layer
to layer. Arrows indicate in-plane and out-of-plane first and second
nearest neighbors, labeled by their relevant exchange constants.

them in a 2+ ionized state, with four unpaired localized
electrons per atom [21,22]. The macroscopic behavior of the
material in low field is antiferromagnetic (AFM). The samples
discussed in this study were grown via chemical vapor trans-
port, as described in Ref. [23]. Using energy-dispersive x-ray
spectroscopy (EDX) and inductively coupled plasma spec-
troscopy (ICP), the ratio of Fe:Nb was found to be 0.330:1.

II. MEASUREMENTS

Measurements of the magnetic susceptibility as a function
of temperature in low applied fields show AFM behavior
below a transition near 45 K [Fig. 2(a)]. Fitting to the
paramagnetic regime, the Curie-Weiss law yields an esti-
mate of 5 μB/Fe for the effective moment of the material, a
quantity which is slightly higher than the expected moment
at saturation. This is in agreement with the values found
in the literature, which predominantly range from 4.3 to
5 μB/Fe [7,21,24–26], although there is one report as high as
6.3 μB/Fe [27]. Heat capacity measurements resolve two clear
transitions at zero field [Fig. 2(b)]. With the application of
field, these transitions move apart from each other in temper-
ature. The lower temperature transition has a further splitting
at higher fields, indicating the presence of an additional inter-
mediate phase.

High-field measurements further elucidate the nature of
the phase transitions. Measurements at 0.6 and 20 K of the
magnetization as a function of applied field are shown in
Fig. 3(a). The full set of measurements, taken at temperatures
ranging from 0.6 to 50 K, is given in Appendix B, and the
phase boundaries determined in part from these measurements
are shown in Fig. 4. These measurements were performed on
a stack of about 30 coaligned crystals, which were roughly
1 mm in diameter and had an average thickness of 0.1 mm.

There are three dominant phases at low temperature evi-
dent in the data: (I) the zero-field phase characterized by a
small magnetic moment, (II) the “plateau” phase character-
ized by a nearly constant magnetic moment centered around
half the estimated saturation moment, and (III) a high-field
phase which approaches the fully saturated moment. The final
phase gets pushed above 60 T at the lowest temperatures.
An intermediate phase bridging the zero-field and plateau

FIG. 2. (a) Curie-Weiss fits of both out-of-plane (H ‖ c) and in-
plane (H ⊥ c) susceptibility. (b) Heat capacity measurements show
two transitions, which split with the application of field parallel to
the c axis. Curves are offset to enhance visibility.

phase has only a weak feature in the magnetization (see
Appendix B).

The experimental phase diagram, Fig. 4, shows a non-
monotonic dependence of the ordering temperature on applied
field. This can be explained by the impact of an applied
field on a reduced dimensional system [28]; as the field in-
creases, both the order parameter and these fluctuations are
suppressed. The latter effect increases in the transition temper-
ature in low field, and the former brings down the transition
temperature at higher fields. We also observe a second ordered
phase, which is destroyed in that low-field regime.

These measurements were confirmed in stacks and indi-
vidual single crystals in pulsed and DC magnetic fields; see
Appendix B. The latter was used to scale the former, because
only relative changes could be recorded in our pulsed-field
measurements. In addition, data on other compositions with
x = 0.339 suggest changes in stoichiometry do not affect the
field-dependent ground state, though they can shift the phase
boundaries; see Appendix B.

III. MODEL

To understand the physical mechanism responsible for the
magnetization plateaus [Fig. 3(a)], we study a minimal model
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FIG. 3. (a) Magnetization response of Fe1/3NbS2 to an out-of-
plane pulsed field. (Data from a 25-T pulse is used below 15 T for
the 0.6-K curve). At 0.6 K, the magnetization shows two flat plateaus
at 0 and 1/2 of the saturated magnetization (dashed line). At 20 K,
a further transition, likely to a fully saturated state, is observed near
60 T. (b) Magnetization response of the model, Eq. (1), computed
classically. Three plateaus are clearly visible: a stripy AFM phase,
a UUUD phase, and a saturated PM phase. Calculational details are
given in Appendix A. (c) Cartoons of the spin configurations in the
eight-site unit cell.

motivated by our density functional theory (DFT) calcula-
tions, discussed below. In addition to the single-ion anisotropy
D, we find that a model with nearest neighbor (NN) and next
nearest neighbor (NNN) exchange couplings within a single
Fe plane, as well as NN and NNN couplings between adjacent
planes, is sufficient to accurately reproduce the ab initio ener-
gies of various magnetic states. We restrict our attention to the
Fe atoms and their localized d states, which form a lattice of
S = 2 spins, and consider a short-range Hamiltonian

Ĥ = E0 + 2J1

∑
〈i, j〉

Ŝi · Ŝ j + 2J2

∑
〈〈i, j〉〉

Ŝi · Ŝ j

+ 2J1c

∑
〈ic, jc〉

Ŝi · Ŝ j + 2J2c

∑
〈〈ic, jc〉〉

Ŝi · Ŝ j −
∑

i

D
(
Ŝz

i

)2
,

(1)

FIG. 4. Experimental phase diagram of Fe1/3NbS2, as a function
of temperature and field applied along the c axis. Calculations sug-
gest that region I is a stripe phase while region II (the plateau) is
UUUD. The origin of the intermediate phase bridging the stripe and
UUUD phase is not known. Phase boundaries were determined by
torque magnetometry, heat capacity, and pulsed field magnetization
measurements; see Appendix B for details. Phase boundary lines are
a guide to the eye.

where J1 and J2 are the NN and NNN exchange couplings
within a single Fe plane, J1c and J2c are the NN and NNN
couplings between adjacent planes, and D is the magne-
toanisotropy of Fe spins. E0 encompasses any nonmagnetic
contributions to the total energy. The exchange coupling sums
are over all unique bonds. In a large neighborhood of relevant
exchange coupling values, this model has three distinct phases
at zero temperature as the magnetic field is varied. (1) An
“AFM stripe” phase at low field with a magnetic unit cell
of four Fe spins, with two pointing up along +c and two
along −c in a stripe configuration. (2) A half-magnetization
plateau at intermediate field with a magnetic unit cell of eight
Fe spins, with three up spins and one down spin per layer
(denoted UUUD). (3) A saturated phase at high field with a
magnetic unit cell of two Fe spins which are all pinned to point
up, parallel to H . These configurations are shown in Fig. 3(c).
The phases are consistent with two close antecedents of this
Hamiltonian, discussed in Refs. [10,11].

Because of the spins being large (S = 2), we perform
a classical analysis of Eq. (1). We search for the ground
state of Eq. (1) using many different-sized trial unit cells.
While fully three-dimensional (3D) classical Monte Carlo
simulations would be more exhaustive, the present analysis
is sufficient because high-field measurements of the nuclear
magnetic resonance suggest that the plateau has a relatively
simple spin texture; see Appendix B. We find that the mag-
netic unit cell for the ground state is always small over a very
broad range of parameters J , D, and h, with no more than eight
Fe atoms. Intuitively, this small unit cell is consistent with the
short-ranged nature of the dominant interactions.
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TABLE I. PBE + U (U = 0.3 eV) values of magnetocrystalline
anisotropy D and NN and NNN interplanar and intraplanar couplings
in Eq. (1). Units are meV per Fe atom. With the conventions used
in Eq. (1), positive values for J represent AFM couplings, negative
values are FM, and a positive value of D implies an easy axis along
c for the anisotropy.

D J1 J2 J1c J2c

1.09 0.76 −0.006 0.39 −0.22

The classical analysis shows there is a large range of
couplings (J1, J2, J1c, J2c) which produce the three phases ob-
served as a function of magnetic field when D > 0 is large.
The key observation is that, for J1 > 0 and J2/J1 � 1, there is
a large region in the (J1c, J2c) parameter space that approx-
imately reproduces the magnetization curves—the “stripy”
AFM, UUUD, and UUUU are the only three ground states
for a wide range of J1c/J1 > −1 and J2c/J1 < 0. In fact, the
only 1/2-magnetization plateau without a UUUD structure
between the two layers occurs for only a small region of
parameter space. Phase diagrams are given in Appendix A.
We may conclude that Eq. (1) qualitatively reproduces the
observed transitions in the magnetization even without precise
estimates for the coupling parameters.

We now quantitatively predict the critical magnetic fields
for the transitions from the model Eq. (1). For large D > 0,
the transition from the stripe phase to the plateau phase occurs
when h = 4(J1 + J1c + J2) and the transition from the plateau
phase to the saturated phase occurs when h = 12(J1 + J1c +
J2). Quantitative analysis requires estimates of the parame-
ters (J1, J2, J1c, J2c, D), which we now ascertain through a
combination of experimental and numerical means. Following
Ref. [29], we can relate the magnetocrystalline anisotropy D
to the in- and out-of-plane Curie-Weiss temperatures, which
are found from the fits in Fig. 2(a) to be −110 and −26 K,
respectively; this analysis yields D ≈ 1 meV. While Ref. [21]
gives slightly lower Curie-Weiss temperatures (−135 and
−40 K), these values give a virtually unchanged estimate of
D, which is proportional to their difference.

Our DFT calculations, performed with the Perdew-Burke-
Ernzerhof (PBE) functional [30] and Hubbard U corrections
[31], corroborate this picture. We note that the calculated D,
being a highly local property, is sensitive to the Hubbard
U used to approximately treat the localized Fe d electrons.
This sensitivity has been documented for several Fe-based
compounds in previous literature [32,33]. However, the ex-
perimental estimate of D allows us to choose a U value that
yields a similar anisotropy and with which to compute the
exchange constants in the minimal model. Using a Hubbard
U of 0.3 eV in our PBE + U calculations at experimental
lattice parameters (see Appendix C for details), we obtain
D = 1.09 meV, with the easy axis along c, in very good
agreement with experiment. Using six inequivalent magnetic
collinear configurations with Fe spins along the c axis, we
solve an overdetermined system of equations to determine the
unknown couplings J . The values of all J as well as D are
given in Table I.

As an experimental check, the Curie-Weiss temperatures
can be related to the sum of the coupling constants corre-
sponding to all of a given Fe atom’s interactions, giving an
estimate

∑
i Ji = 6(J1 + J2 + J1c + J2c) ≈ 1.1 meV (assum-

ing all couplings beyond nearest and next nearest neighbors
are negligible), where the factor of 6 arises because each
atom has six nearest and next nearest neighbors. This is
somewhat in tension with our PBE + U results, which from
Table I give 6(J1 + J2 + J1c + J2c) ≈ 5.4 meV. Despite the
fairly large overestimate, our PBE + U calculations, with
U = 0.3 eV so that D ≈ 1 meV, notably yield reliable relative
values of exchange constants consistent with the estimates
based on our experiments. Our choice of U also predicts an
AFM stripy phase to have the lowest energy of all collinear
magnetic configurations examined, in line with the results
of our classical model and neutron data [8]. Moreover, the
tendency for DFT + U to overestimate exchange constants at
small or near-zero values of U is well documented [34–36],
while capturing their relative values well. Following previ-
ous work [37], we uniformly scale J1, J2, J1c, and J2c so
that 6(J1 + J2 + · · · ) = 1.1 meV, in line with our Curie-Weiss
data, and closely agreeing with the data in Ref. [21], whose
fitted temperatures predict a slightly higher

∑
i Ji ≈ 1.3 meV.

Taking the scaled parameters (J1, J2, J1c, J2c, D) = (0.15,

−0.0012, 0.077,−0.044, 1.09) meV, we can semiquantita-
tively reproduce the magnetization curve. We estimate the g
factor as g = 2.09 = gFe [38]. This yields estimated critical
fields of 15 and 45 T, as shown in Fig. 3. With no fitting to
the experimental magnetization in Fig. 3, we already have
found remarkable agreement between theory and experiment.
Fine-tuning the J values within the range of error of the Curie-
Weiss data (see Appendix A) moves the transition fields into
even better agreement.

IV. DISCUSSION

The UUUD phase responsible for the half-magnetization
plateau is stable at the classical level over a wide range of
applied fields. The model Eq. (1) qualitatively reproduces the
critical field strengths and quantitatively captures the mag-
nitude of the magnetization. However, it fails to describe
some of the fine features of the measurements, such as the
small, positive slope of the magnetization within plateaus
and the intermediate phase detected by measurements be-
tween the plateau and stripy order. The symmetry constraints
of the switching reported in Ref. [3] also indicate an in-plane
component to the moment at zero field which is not accounted
for in this model. To capture the remaining fine features of
Fe1/3NbS2 would require a more sophisticated 3D model with
vastly more parameters and temperature effects, similar to
those in Refs. [6,10]. Nevertheless, as a minimal model that
only includes a subset of the degrees of freedom, the model
is highly consistent with measurements and seems to have
identified the dominant interactions responsible for the mag-
netization response of Fe1/3NbS2.

The applicability of the lattice model suggests that
Fe1/3NbS2 is proximate to many other phases, some of which
are possibly similar to supersolid phases discussed by Seabra
and Shannon [10]. One of these may describe the boundary
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phase dividing stripy and plateau orders in Fig. 4. Prelimi-
nary data appears to be consistent with an UUD phase (see
Appendix B), though more data are required to confirm this.

The agreement of the experimentally observed magne-
tization with a classical model suggests that the magnetic
behavior, while originating from many competing interac-
tions, involves conventional magnetic phases. This model
could be further confirmed by inelastic neutron scattering. The
existence of an UUUD half-magnetization plateau had previ-
ously been studied as a result of strong next nearest neighbor
interactions within the triangular-lattice plane; we have deter-
mined that it is not limited to that case, as we see its emergence
from strong interplanar interactions. The determination of
these interactions and of the abnormally strong single-ion
anisotropy has a large impact on the zero-field ground state of
this material; the threefold symmetry breaking seen in optical
measurements [9], for example, originates from a magnetic
order driven by a large ratio of J1c/J1 ≈ 1/2, likely stripy in
nature with a significant c-axis component. It is interesting to
consider the implications for the electrical switching of the
spin texture of this material. In the typical mechanism, an
in-plane Néel vector can be naturally rotated by the angular
momentum imparted by an in-plane spin polarized current. In
contrast, Fe1/3NbS2 has a Néel vector that is predominantly
pointed out-of-plane, so that a different kind of mechanism
to transfer angular momentum is likely to be active. The
present work suggests that this leverages both strong inter-
and intraplanar exchange interactions.
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APPENDIX A: CLASSICAL ANALYSIS
OF THE SPIN MODEL

This Appendix will analyze the proposed minimal spin
model at the classical level. We will show the following:

(1) A magnetic unit cell with six or eight spins is favored
for all reasonable parameter values.

(2) There is a wide range of parameters where the
three dominant phases of the model are, as a function of
applied field,

(a) AFM stripy,
(b) 1/2-plateau, and
(c) saturated.
(3) However, there are a number of “nearby” phases in

parameter space—particularly a 1/3-plateau—which could
appear for small parameter ranges.

For reference, let us recall the model from the main text.
We consider a minimal model for the magnetic degrees of
freedom that are relevant at low temperature: the two iron
atoms per unit cell, which are known to be in the Fe2+

state, which has S = 2. DFT calculations indicated that the
most important couplings are the single-ion anisotropy D,
the in-plane nearest neighbor (NN) and next nearest neighbor
couplings (NNN) J1 and J2 respectively, and their out-of-plane
counterparts J1c and J2c. As one can see from Fig. 1 of the
main text, each Fe atom has six neighbors of each of the four
types. In a magnetic field, the minimal model Hamiltonian is

Ĥ = E0 + 2J1

∑
〈i, j〉

Ŝi · Ŝ j + 2J2

∑
〈〈i, j〉〉

Ŝi · Ŝ j + 2J1c

∑
〈ic, jc〉

Ŝic · Ŝ jc + 2J2c

∑
〈〈ic, jc〉〉

Ŝic · Ŝ jc

−
∑

i

D
(
Ŝz

i

)2 − Sh ·
∑

i

Ŝi, (A1)

where h = HμBg/S is the external field and the sums are
over all unique pairs i, j that are NN, NNN, and NN between
layers, and NNN between layers, respectively. Finally, E0

stands for the energy of all nonmagnetic degrees of freedom
(essentially the electronic ground-state energy).

We now proceed to analyze this model. In principle, this
is a quantum model. However, since the spin is quite large
(S = 2), the first terms in the 1/S expansion should be almost
exact. Therefore, we will work entirely at the classical level.

1. The magnetic unit cell is small

To begin the analysis, we first find the magnetic unit cell.
Ordinarily one would do this by classical Monte Carlo meth-
ods and measuring the size of the unit cell. However, the

model is straightforward enough that this is unnecessary. As
all the interactions are short ranged, we expect the unit cell to
be quite small.

To verify this, we perform an extensive search of possi-
ble magnetic unit cells up to 16 atoms. For each candidate
magnetic unit cell, we find the classical ground state via
global optimization using the basin-hopping algorithm. Since
the phase spaces in question are relatively low-dimensional
(2 × 16 at most), this is a fast and reliable way to find the true
ground state. We also tried several other global minimization
algorithms, which yielded identical results, showing that basin
hopping is robust.

By sampling parameter space (J1, J2, J1c, J2c) at a broad
range of points and D ≈ 1 meV, we may conclude the follow-
ing. First, all classical ground states have a magnetic unit cell
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with either six or eight atoms: three or four atoms in a planar
layer and two layers. There are actually two relevant unit cells
of size 8, one tiling the plane in a rectangular lattice and the
other as a triangular lattice. Second, we find all ground-state
spin textures have spins along the c axis. This is expected
because the anisotropy is quite large; we are in the Ising limit
of Eq. (A1). Third, we identify a total of 14 classical ground
states for this model across parameter space, which we refer to
as states A through M. Their spin textures are shown in Fig. 9.
We will examine the phase diagram below and see there is a
large region of parameter space in which one has AFM stripy,
1/2-plateau, and saturated phases in order as one increases the
magnetic field. For now, we may conclude that the magnetic

unit cell has six or eight atoms and examine its energetics and
transitions more carefully.

2. Candidate phases and transitions

The small magnetic unit cells identified above are relatively
simple and we can write analytic expressions for the energies
of many phases and some of the phase boundaries. When the
Hamiltonian is restricted to one of the three small magnetic
unit cells (the six-atom unit cell, the eight-atom unit cell with
triangular tiling, and the eight-atom unit cell with rectangular
tiling), the energy may be written as

E

Nu
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4(J1c + J2c)(S�1 · S�2) + 2J1
(

3
2 [(S�1)2 + (S�2)2 − 6S2]

) + 36J2S2 six-spin unit cell

2(J1 + J2)((S�1)2 + (S�2)2 − 8S2) + 4J1c(S�1 · S�2)

+(12J2c − 4J1c)(S1 · S4̃ + S2 · S1̃ + S3 · S2̃ + S4 · S3̃ )
eight-spin unit cell with triangular tiling

2(J1 + J2)((S�1)2 + (S�2)2) − 16J1S2 + 4J1c(S�1 · S�2)

−8J2(S1 · S3 + S2 · S4 + S1̃ · S3̃ + S2̃ · S4̃ )

+(8J2c − 4J1c)(S1 · S4̃ + S2 · S3̃ + S3 · S2̃ + S4 · S1̃ )

+4J2c(S1 · S2̃ + S2 · S1̃ + S3 · S4̃ + S4 · S3̃ )

eight-spin unit cell with rectangular tiling

− D
∑
j=i,ĩ

(
Ŝz

j

)2 − h ·
∑
j=i,ĩ

S j,

S�1/�2 =
∑
j=i/ĩ

S j, (A2)

where ĩ is in one layer and i is in a different layer, the sums are
over the unit cell, and S�1/�2 are the sums of the spins within
layers 1 and 2 respectively. Nu stands for the number of unit
cells, so the energy per atom would require dividing by six
or eight depending on the case. The tiling refers to whether
to shift the unit cell along the cardinal directions or along the
directions of the bases of the triangular lattice, as discussed in
the caption of Fig. 5.

When D is taken large enough for the spins to align along
the c axis, we can use (A2) to find explicit expressions
for the energies of various spin configurations. Focusing on
the four phases seen in the experiment—an AFM “stripy”
ground state, a possible 1/3-magnetization phase, a 1/2-
magnetization plateau phase, and a paramagnetic phase—in
a magnetic field h = hĉ, we find

E

NS2
+D=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6J2c − 2(J1 + J2 + J1c) AFM stripy
2
3 (J1c + J2c) − 2J1 + 6J2 − 1

3 h 1/3-plateau

6J2c − 1
2 h 1/2-plateau

6(J1 + J2 + J1c + J2c) − h paramagnetic

,

(A3)

where N is the number of atoms in the system, and the exact
way the spins are arranged is seen in Fig. 9.

The most clear transitions seen in the material are from
AFM stripy to 1/2-plateau at hc1 and from 1/2-plateau to
paramagnetic at hc2. We can solve for the critical fields of the

transition and see
1
3 hc2 = hc1 = 4(J1 + J1c + J2). (A4)

To compare directly to experiment, we use the experi-
mentally supported value g = gFe = 2.09 [38]. This yields a

FIG. 5. A figure showing the lattice convention used in Eq. (A2).
The eight-spin unit cell is seen on the left and the six-spin unit cell is
seen on the right. Triangular tiling refers to shifting the blue unit cell
to the orange unit cell (as well as to the right) to generate the lattice.
Rectangular tiling refers to shifting the blue unit cell to the green unit
cell (as well as to the right). The ĩ’s refer to the second layer as seen
in Fig. 1 in the main text.
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FIG. 6. The phase diagram of Eq. (A1) as a function of applied
field when the ratios between the J’s are given from DFT but the
overall sum

∑
i Ji is allowed to vary. The phases from left to right

are AFM stripy, 1/2-plateau, and saturated. The dashed red line
corresponds to the magnetization profile shown in Fig. 3 of the main
text. One can see that changing

∑
i Ji changes the location of the

phase boundaries but does not qualitatively change the magnetization
response.

critical field of
1

3
Hc2 = Hc1 = S

gμB
hc1 ≈ (66 T/meV)(J1 + J1c + J2).

(A5)
Using the raw values from DFT given in Table I of the main
text, this would give transitions at Hc1 = 77 T and Hc2 =
226 T. However, as discussed in the main text, there is strong
evidence that DFT overestimates the absolute values of the J’s
dramatically but has the correct relative values. If we rescale
the DFT parameters to match the experimental Curie-Weiss
results, as discussed in the main text, then we find

Hc1 ≈ 15 T, (A6)

Hc2 ≈ 45 T, (A7)

which are fairly comparable with the experimental results
(shown in Fig. 3 of the main text). It is worth noting that
shifting the phase boundaries by 5 T requires a change in the
coupling constants of <0.1 meV, as shown in Fig. 6, so it is
likely that weak longer range couplings we have neglected in
this minimal model, or a relatively small amount of error in
the Curie-Weiss estimate, could shift the transition to more
closely match the experiment.

3. J1 − J1c − J2c phase diagrams

We now examine the phase diagram of the spin Hamilto-
nian (A1). We shall see that there is a large neighborhood of
parameter values which reproduces the phases found in the
experiment.

We take D large to ensure the spins are aligned with the
field. To start, we set J1 = 1, J2 = 0 and allow J1c and J2c

to vary. The phase diagram in (J1c, J2c) space is shown in
Fig. 7 for zero magnetic field. One can see that there is a
large neighborhood around the DFT values where the classical

FIG. 7. The phase diagram of Eq. (A1) for h = 0 when |J2/J1| �
1, J1 > 0, and D large enough to ensure the spins are aligned to the
c axis. The exchange parameters from DFT are shown as a red dot.
The spin configurations for each color are seen in Fig. 9. Since the
experiment finds AFM order, the ground state cannot be phase A (a
ferromagnetic ordering). When we look at field dependence in Fig. 8,
in order for there to only be three phases with an intermediate 1/2-
magnetization plateau phase, the ground state must either be phase E
or phase B, which are both AFM stripe phases differing only in how
the layers are stacked.

ground state is AFM stripy, consonant with experiment. We
now allow the magnetization to vary. Figure 8 shows phase di-
agrams for (h, J1c) for a variety of J2c values. Many magnetic

FIG. 8. The phase diagram of Eq. (A1) when |J2/J1| � 1, J1 >

0, and D large enough to ensure the spins are aligned to the c axis.
The spin configurations for each color are seen in Fig. 9. It is clear
for a wide range of J1c/J1 > −1 and J2c < 0 the three phases as field
increases—AFM stripy, UUUD in each layer, and paramagnet—are
always seen. Phases H, K, and M (that are colored purple) are six-
spin unit cells, whereas the other phases have eight-spin unit cells.
The DFT estimates of the parameters yield J2c/J1 ≈ −0.29.
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FIG. 9. The arrangements of the spins for all the phases in Fig. 7. A � next to the phase name indicates that it has a rectangular tiling
whereas the absence of a � indicates a triangular tiling. A hexagon indicates a six-spin configuration. The DFT parameters, as shown in Fig. 7,
have phase E as the ground state and phase C as the intermediate plateau phase. Phase A is always the saturated phase.

phases emerge, as indicated by the color, and the different
configurations are shown in Fig. 9.

It is clear in a large neighborhood of the DFT parameters
that the basic phase diagram is the same: There is a stripy
phase (phase E) which transitions to the UUUD phase (phase
C) at higher field and there is a transition to a PM phase

(phase A) at the largest fields. The relative DFT values for the
couplings, scaled down to match the experimental estimate,
are therefore quite reasonable.

We should mention that there is some debate in the litera-
ture about whether the ground state is a stripe or zigzag phase
(B, E and D, F respectively) [7,8]. From our DFT calculations,

FIG. 10. High-field measurements of the out-of-plane magnetization (left) and susceptibilities (right), taken at a variety of temperatures.
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FIG. 11. A side-by-side comparison of the pulsed field magnetization of Fe0.33NbS2, left, and Fe0.339NbS2, right.

by comparing total energies of all four phases we find that,
consistent with Ref. [8], the AFM stripe (E) is lower in energy
than both zigzag phases and the FM stripe (B) (FM stripe B
differs from E only in the stacking of the Fe planes). This is
also consistent with the prediction of the ground state found
by plugging in the DFT values of Heisenberg couplings into
our model Hamiltonian. Moreover, the zigzag phases D and F
do not reproduce the simple three-phase structure as a function
of magnetic field that we observe experimentally.

In the experiment, the potential appearance of a state with a
1/3-plateau suggests that the exact parameter choice lies near
the boundary of the 1/3-plateau phase and the 1/2-plateau
phase, which can be achieved by lowering |J1c|, |J2c|, or both
from their current estimate from DFT.

These phase diagrams show that our minimal model
Eq. (A1) qualitatively reproduces the magnetization response
for a wide range of parameter values and is therefore consis-
tent with experiment. So, even though we do not have highly
accurate estimates for the J’s, this is evidence that Eq. (A1) is
a good minimal model for the magnetic degrees of freedom in
Fe1/3NbS2. To improve this model, one would have to include
longer range couplings and perhaps include other types of
spin interactions, such as a biquadratic term. Furthermore, one
could include postclassical corrections, which would likely
modify the magnetization response slightly, shift the phase
boundaries, and possibly stabilize addition phases.

APPENDIX B: ADDITIONAL MEASUREMENTS

This section provides a number of additional and
unabridged measurements.

1. High-field magnetization

The magnetization as a function of applied field was
measured in pulsed magnetic field, with several 60- and
25-T measurements, shown in Fig. 10. The susceptibility, as
determined by taking the field derivative of the magnetization
data, is shown as well for ease of identifying phase transitions.
The phase boundaries in the experimental phase diagram
(Fig. 4 in the main text) are the centers of the hysteresis
loops, calculated as the midpoint between the peaks in
susceptibility on the way up (0 to 60 T) and on the way down
(60 to 0 T). The 60-T measurements taken at 0.6 and 4 K
have a discontinuity where the gain was saturated due to the
magnetization changing too quickly during the 0- to 60-T leg
of the pulsed measurement. Additional measurements up to
25 T were taken at those temperatures, which did not have the
same saturation issue. The 0.6-K measurement found in the
text is predominantly from the 60-T pulse, with the saturated
portion of the measurement replaced with the data from the
25-T pulse. The 0- to 60-T leg of the measurement is entirely
from the 60-T pulse.

2. DC field and single-crystal measurements

The primary results presented in this paper are based on
60-T pulsed field measurements of a stack of 30 coaligned
crystals all from the same growth batch. The nature of these
results, including the sharpness and location of the transition,
was confirmed via 30-T DC field measurements of the stack
[Fig. 13(a)] and 60-T pulsed field measurements of a single
crystal [Fig. 13(b)]. The center of the phase transition does
not move with the slower sweep rate of a DC measurement,
although it does broaden slightly. There is strong agreement
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FIG. 12. (a) Torque-vs-angle curves at temperatures from 35 to 50 K and fields from 2 to 6T. The curves shown are normalized to the field
squared, but this is not important for the analysis, which compares measurements taken at the same field. (b) Schematic of the experiment,
establishing the relevant directions and meaning of the angle θ . (c) An example of a response curve shown with its fit. This measurement was
taken at 38.2 K and 6 T. [(d), (e)] The amplitudes of the sin 2θ and sin 4θ components, respectively, of the response curves as a function of
temperature. A solid red vertical line indicates the identification of a transition from the given plot. A dotted red vertical line indicates the
location of a transition which was identified from the other plot.

between the pulsed field single and stacked crystal curves.
This shows that the location of the transition is not sample de-
pendent and that the primary observed effect is not an artifact
of a multisample measurement. The single-crystal measure-
ment has a flatter character than the stack measurement; this
could be due to slight misalignments in the stack, a smaller
number of domains in one crystal as opposed to a stack of 30,
or a stronger influence of the background on a smaller signal,
to name a few possibilities. The single crystal was a part of
the measured stack; it was chosen from the stack because it
was the thickest, at about 0.2 mm.

3. High-field magnetization with more iron

Pulsed field measurements of FexNbS2 with x = 0.339
(slightly higher iron content than the perfect x = 1/3) are sim-

ilar to those of the main sample studied in the text, x = 0.330,
with plateaus in the magnetization appearing at low tempera-
ture (Fig. 11). The exact locations of the transitions differ from
the locations found in the main x = 0.330 sample, indicating
a sensitive dependence of the phase boundary location on the
exact iron content. It should be noted that this pulsed field
data on the x = 0.339 sample is not background corrected (a
procedure which requires a second magnet pulse to go along
with each measurement), and so its precise shape may differ
slightly from what is presented.

4. Torque magnetometry

The anisotropy of the magnetic response of FexNbS2 was
further studied via torque magnetometry. The full data set is
given in Fig. 12(a). The measurement was performed with
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FIG. 13. (a) Comparison of the magnetization measured in 30-T DC field to the magnetization measured in 60-T pulsed field (PF). The
DC measurement was taken at 1.6 K, and the PF measurement shown was taken at 4 K. (b) Comparison of PF measurement of a single crystal
to PF measurement of the stack of crystals used for the primary results of this paper. Both measurements were taken at 4 K. (c) Heat capacity
with an in-plane applied magnetic field. (d) Susceptibility as a function of temperature measured in fields ranging from 1 to 35 T.

a magnetic field applied at various angles θ with respect to
the sample’s c axis, as shown in Fig. 12(b). For each tem-
perature and field, the torque as a function of angle θ was
fit to an equation of the form τ = Q1 sin(2θ ) + Q2 sin(4θ ),
as illustrated in Fig. 12(c). These components were then an-
alyzed as a function of temperature at each field in order
to identify phase transitions [Figs. 12(d) and 12(e)]. The
two strongest features correspond to the lower temperature
and intermediate-temperature phase boundaries shown in the
phase diagram in the main text. Notably, these features are
identified using different components of the torque response.

5. In-plane heat capacity

While the transitions move dramatically with the appli-
cation of field along the c axis [Fig. 2(b) in the main text],
magnetic field applied perpendicular to the c axis has no effect
on the heat capacity or on the transitions that it probes, as seen
in Fig. 13(c).

6. Susceptibility vs temperature

The phase transitions discussed in the main text are also
visible in DC field measurements taken as a function of tem-
perature, shown in Fig. 13(d).

7. Additional intermediate phase

The main text focuses on the dominant features seen in
the heat capacity and magnetization. However, there is also

a minor peak visible in both measurements, shown in magne-
tization in Fig. 14. We ascribe this feature to an intermediate
phase between the stripy and plateau phases. However, since
the corresponding peaks are small, it is not possible to track
the transitions with the same level of certainly as the dominant
phases. Nevertheless, the intermediate phase seems to have
magnetization of around 1.6 μB/Fe, which is almost exactly
1/3 of the saturation magnetization. This is suggestive of a
connection to UUD spin configurations in a three-spin unit
cell, which are responsible for 1/3 magnetization plateaus.

8. High field transport

Transport measurements taken in 60-T pulsed field are
shown in Fig. 15. These measurements show increased scat-
tering at the primary phase boundaries, as seen in the
magnetoresistance, as well as a change in slope of the Hall
resistance over the transition.

9. Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) measurements were
used to study the magnetic state at fields below and near
the plateau phase. The iron exchange field is studied via
its effect on the 93Nb lattice (with nuclear spin I = 9/2,
γ = 10.405 MHz/T). NMR measurements are shown in
Figs. 16(a) and 16(b), centered close at 7.16 and 15.38 T,
respectively. In both field ranges, the nine peaks expected
from niobium in the paramagnetic regime are seen at 100 K,
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FIG. 14. (a) Susceptibility measured at 4, 1.5, and 0.6 K, offset for discernibility. Small features corresponding to intermediate phase
boundary are indicated with black arrows. (b) Magnetization at these temperatures, with dotted line indicating 1.6μB/Fe, which is approxi-
mately 1/3 of the saturation magentization.

and at low temperatures, two broad peaks indicative of a
long-range AFM order with only two predominant spin ori-
entations. It is important to note that the 4.2-K measurement
was performed moving from high field to low, corresponding

FIG. 15. Magnetoresistance and Hall resistance measured in
high pulsed field.

to the upper branch of the hysteresis seen in the magnetization,
Fig. 16(c). While the system moves partially through a transi-
tion in the high-field measurement, Fig. 16(b), the shape of the
NMR signal remains comparable to that in the low-field stripe
phase in that there continue to be two predominant local field
strengths, and therefore only two spin orientations. While the

(a)

(c)

(b)

FIG. 16. Field-swept NMR spectra for several temperatures from
100 to 4.2 K, with the magnetic field applied along the c axis of
the samples. (a) Spectra measured at 74.5 MHz, centered close to
7 T. (b) Spectra measured at 160 MHz, centered slightly above 15 T.
(c) The magnetization as a function of field at 4 K, with the regions
probed by NMR indicated explicitly. The branches of the hysteresis
do not match up perfectly due to a gain saturation issue during the
pulsed field measurement.
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plateau state could hypothetically be quite complicated, the
findings from NMR suggest that the plateau phase retains only
two spin orientations. This is consistent with our treatment,
which has considered a range of magnetic until cell sizes
and determined that a relatively simple spin structure is best
suited to explain our other measurements. Notably the peak
in Fig. 16(a) are symmetric, whereas the peaks in Fig. 16(b)
are slightly asymmetric, consonant with a higher occupation
of one spin orientation as expected of an UUUD phase.

APPENDIX C: DETAILS OF OUR DFT CALCULATIONS

For our first-principles density functional theory (DFT)
calculations, we employ the Vienna ab intitio simulation
package (VASP) [39] and use the generalized gradient ap-
proximation (GGA) of Perdew-Burke-Ernzerhof (PBE) [30]
and the projector augmented-wave (PAW) method [40]. All
calculations are spin polarized and fully relativistic, includ-
ing self-consistent spin-orbit interactions. To approximately
account for the localized nature of the d electrons on the
Fe atoms, we add a Hubbard U correction (GGA + U) [31].
We use the rotationally invariant version of GGA + U by
Dudarev et al. [41] and select Ueff = U − J = 0.3 eV for the
Fe d states. Our calculations are performed using the exper-
imental lattice constants a = 5.76 Å and c = 12.20 Å with
experimental atomic coordinates [7]. As mentioned in the
main text, this U value is chosen so that the PBE + U value
of the magnetocrystalline anisotropy D, at the experimental
lattice parameters, matches with our Curie-Weiss estimate of
D ≈ 1 meV. As an aside, we calculate D by comparing self-
consistent total energies in the case of all Fe2+ spins aligned
along the a ([100]) axis and along the c ([001]) axis:

D = E[100] − E[001]

2S2
, (C1)

where we use S = 2 for the Fe spins. (Our PBE + U value
for the effective Fe moment is 3.1μB with U = 0.3 eV for
the AFM stripe ground state, somewhat smaller than but con-
sistent with the ideal pure-spin 4μB limit corresponding to
S = 2). The factor of 2 accounts for the two Fe atoms in the
primitive unit cell. We use a 650-eV cutoff for our plane-wave
basis set, with a �-centered k-point mesh of 12 × 12 × 6 for
the primitive two-Fe spin unit cell of Fe1/3NbS2. For the
1 × √

3 × 1 and 2 × √
3 × 1 supercells used to generate four

out of the six inequivalent magnetic configurations needed to
calculate the exchange couplings, we use reduced meshes of
12 × 7 × 6 and 6 × 7 × 6 respectively. All above parameters
lead to total energies converged to less than 1 meV per Fe
atom.

Finally, we elaborate on the apparent overestimation by
PBE + U, for our choice of U, of the Heisenberg exchange
constants (J1, J2, J1c, J2c), as discussed in the main text. To
test whether we might get smaller exchange constants by
increasing U while still obtaining a reasonable anisotropy,
we calculated D for a range of U values, and additionally
examined the effect of including a separate Hund’s on-site ex-
change J as in the method of Lichtenstein et al. [42]. We find
that with J = 0, U > 2 eV yields the incorrect sign of D (i.e.,
the preferred orientation of spins is incorrectly predicted to be
in the ab plane rather than along c); thus, more typical, larger
values of U yield a a qualitatively incorrect anisotropy as
compared to experiment for Fe1/3NbS2. Including the Hund’s
exchange and for the set of parameters U = 3, J = 1.2 eV
we also obtain a reasonable D = 1.2 eV. However, with these
values of U and J the relative couplings change qualitatively
and the calculated ground state becomes FM within a single
Fe plane, as opposed the the stripy AFM state predicted ex-
perimentally. For these reasons, we settled on Ueff = 0.3 eV
in this work.
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