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Slave-boson description of pseudogap metals in t-J models
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We present a simple modification of the standard U(1) slave boson construction for the single band t-J model
which accounts for two-particle bound states of spinons and holons. This construction naturally gives rise to
fractionalized Fermi-liquid ground states, featuring small, hole-like pocket Fermi surfaces with an anisotropic
quasiparticle weight in the absence of broken symmetries. In a specific parameter regime our approach maps the
square lattice t-J model to a generalized quantum dimer model, which was introduced as a toy model for the
metallic pseudogap phase in hole-doped cuprates in [Proc. Natl. Acad. Sci. USA 112, 9552 (2015)]. Our slave
boson construction captures essential features of the nodal-antinodal dichotomy and straightforwardly describes
sharp, Fermi arc-like features in the electron spectral function. Moreover, it allows us to study quantum phase
transitions between fractionalized Fermi-liquid phases and superconductors or ordinary Fermi liquids.
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I. INTRODUCTION

Even though the single band Hubbard model and its strong
coupling descendant, the t-J model, are among the most ba-
sic lattice models for interacting electrons, relatively little is
known about their ground-state properties at electron den-
sities slightly away from the Mott-insulator at half filling.
In the strongly interacting regime an intricate interplay be-
tween spin and charge degrees of freedom can give rise to a
plethora of different possible ground states, including various
symmetry-broken states with or without spin and/or charge
order, depending on the lattice geometry as well microscopic
details of the electron hopping parameters. The relevance
of these models for the description of real materials mainly
derives from the cuprate high-temperature superconductors,
where the t-J model on the square lattice is believed to cap-
ture essential correlation properties of electrons in the CuO2

planes [1,2].
While large-scale numerical simulations for these models

are challenging due to the fermion sign problem, progress
has been made in particular by using dynamical mean-field
theory and its cluster extensions [3,4], as well as diagram-
matic Monte Carlo methods [5]. Applied to the single-band
square-lattice Hubbard model in two dimensions, both meth-
ods showed that a pseudogap develops below half filling for
sufficiently strong interactions, i.e., the electronic density of
states is suppressed in the antinodal regions of the Brillouin
zone close to k = (0, π )/a and symmetry-related momenta
[6–10].

To study some of the proposed phases and their properties,
the slave boson approach has proven to be a very valuable
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analytical tool [11–16]. In this parton construction the elec-
tron operator is represented in terms of a fermionic operator
carrying the electron spin, as well as a bosonic operator which
keeps track of the missing electron charge relative to the
half-filled case. The t-J model then takes the form of a gauge
theory describing fermionic spinon as well as bosonic holon
degrees of freedom and their mutual, gauge-field-mediated
interaction [16]. One problem with this approach is that ex-
perimental signs of spin-charge separation in the underdoped
cuprates are inconclusive. Transport and spectroscopic exper-
iments suggest that at least some of the low-energy excitations
in the metallic pseudogap phase are electron-like, carrying
both spin and charge [17–19]. In particular, within a sim-
ple mean-field picture of spin-charge separation, the electron
spectral function is a convolution of the spinon and holon
spectral functions, which cannot give rise to the sharp Fermi
arcs observed in angle-resolved photoemission experiments
(ARPES) [20–22].

A possible solution to this problem is that spinons and
holons form two-particle bound states which carry both spin
and charge [23]. While gauge-field fluctuations do mediate
an attractive interaction, simple electron hopping can lead
to bound-state formation as well. Different approaches have
been developed to account for spinon-holon bound states in
parton constructions for the t-J model, such as Ribeiro and
Wen’s spinon-dopon approach [24,25], or the phenomenolog-
ical description of such bound states by Ng [26]. While the
former introduces new auxiliary degrees of freedom leading
to a more complex representation of the electron operator, the
latter studies consequences of a phenomenological attractive
spinon-holon interaction within the standard U(1) slave boson
framework. In both cases the results are in better agreement
with experimental observations.

In this work we show that spinon-holon bound states can
be straightforwardly incorporated in the standard U(1) slave
particle approach. The main difference with respect to Ribeiro
and Wen’s approach is that these bound states live on the
links between two lattice sites rather than individual lattice
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sites. This has important consequences for the electronic
quasiparticle weight and is the reason for the appearance of
Fermi arc-like features in the electron spectral function, as
we discuss in detail below. In the absence of broken sym-
metries, one ground state of our model is a fractionalized
Fermi liquid (FL*) [27], where these hole-like bound states
form a small Fermi surface. This exotic metallic phase obeys
a modified Luttinger count with a Fermi volume proportional
to the density of doped holes, p, away from the Mott insulator
at half filling [28–31], rather than the total density of holes,
1 + p, measured from the filled band as in ordinary Fermi
liquids. Such a small Fermi volume is consistent with the
Drude spectral weight and Hall resistivity measurements in
the pseudogap phase of the cuprates [32–36].

FL* ground states of the t-J model have been discussed
previously using the spinon-dopon approach [37,38] and in
terms of a generalized quantum dimer model [39–42]. While
the former does give rise to a Fermi surface with small hole
pockets close to momenta k = (±π/2,±π/2)/a, the elec-
tronic quasiparticle weight is relatively uniform around the
Fermi surface. By contrast, the dimer model has spinon-holon
bound states living on nearest-neighbor links. This leads to
similar hole pockets as the spinon-dopon approach, but with
a strongly anisotropic quasiparticle weight around the Fermi
pockets, which would appear as Fermi arcs in photoemission
experiments.

In this work we show that our modified slave boson
construction maps to the above-mentioned dimer model in
a specific parameter regime, where the ground state is a
U(1)-FL* with a propagating, emergent photon-like mode.
Moreover, our approach allows for an exceptionally simple
description of Z2-FL* phases, where the U(1) gauge field is
gapped due to the presence of a spinon pair condensate. This
phase features an electron spectral function with the same
qualitative features as the U(1)-FL*. The main advantage
of our slave boson construction compared with the above-
mentioned previous approaches is that it allows us to study
quantum phase transitions between the FL* pseudogap phases
and a superconductor or an ordinary Fermi liquid. We mention
here that a different parton construction has been developed
recently, where this is possible as well [43].

The remaining article is structured as follows: In Sec. II we
present the simple modification of the U(1) slave boson ap-
proach which accounts for spinon-holon bound states. Starting
from this theory we derive an effective model for U(1)- and
Z2-FL* ground states in Sec. III and discuss their properties
within a simple saddle-point approximation. In Sec. IV we
study important gauge fluctuations and derive low-energy the-
ories for these phases. Finally, in Sec. V we propose theories
for the quantum phase transition between the Z2-FL* and a
superconductor, as well as for the transition from a U(1)-FL*
to an ordinary Fermi liquid and point out potential problems
with the latter.

II. U(1) SLAVE BOSON CONSTRUCTION

Our starting point is the Hamiltonian of the t-J model,

H = −
∑
i, j,σ

ti jc
†
iσ c jσ + J

∑
〈i, j〉

(
Si · Sj − 1

4
nin j

)
, (1)

where c jσ is a Gutzwiller projected electron operator on lattice
site j (i.e., doubly occupied sites are projected out), σ =↑,↓
denotes the electron spin, ti j are the electron hopping ampli-
tudes, S j is the electron-spin operator, and n j is the density of
electrons on lattice site j.

In the standard U(1) slave boson construction the
Gutzwiller projected electron creation operator is represented
as [16]

c†
iσ = f †

iσ bi. (2)

Here f †
iσ is a fermionic spinon creation operator, whereas

the bosonic operator bi destroys a holon on lattice site i and
accounts for missing charge below half filling. In order for
Eq. (2) to hold, the particle number constraint

n f
i↑ + n f

i↓ + nb
i = 1 (3)

has to be imposed on each lattice site i, where n f and nb denote
the fermion and boson density operators, respectively. Also
note that the slave boson representation has a local U(1) gauge
redundancy and the electron creation operator in Eq. (2) is
invariant under the gauge transformation

f j → f je
iφ j , b j → b je

iφ j , (4)

where φ j is an arbitrary, lattice-site-dependent phase. After
decoupling the Heisenberg interaction term in the hopping and
pairing channel, the Lagrangian of the t-J model in imaginary
time τ takes the form (see, e.g., Ref. [16])

L =
∑
i,σ

f̄iσ (∂τ − iλi ) fiσ +
∑

i

b̄i(∂τ − iλi + μB)bi

− J̃
∑
〈i, j〉

[χ̄i j f̄iσ f jσ + H.c. − |χi j |2]

+ J̃
∑
〈i, j〉

[	̄i j ( fi↑ f j↓ − fi↓ f j↑) + H.c. + |	i j |2]

−
∑
i, j

ti j f̄iσ bib̄ j f jσ , (5)

where λi is a Lagrange multiplier that enforces the constraint
Eq. (3) and χi j (	i j) are spinon hopping (pairing) bond
fields which have been used to decouple the four fermion
spin-spin interaction term [44]. The overbar denotes complex
conjugation for bosonic fields and J̃ = 3J/8 is a renormal-
ized exchange coupling [45]. Moreover, the ∼nin j in Eq. (1),
which can be written as a nearest-neighbor holon-holon inter-
action, was neglected as usual, because it is not expected to
play an important role at small hole doping. Usually the term
in the last line of Eq. (5), which derives from the electron hop-
ping term in Eq. (1), is decoupled using the spinon hopping
field χi j as well. The resulting theory is a common starting
point for the construction of mean-field phase diagrams and
different phases can be straightforwardly obtained by con-
densing combinations of the bosonic fields b, 	, and χ . The
pseudogap phase in underdoped cuprates is then identified
with the phase where 〈χ〉 �= 0 and 〈	〉 �= 0, but the holons
are not condensed (〈b〉 = 0) [16,46].

As mentioned in the introduction, a major problem with
this description of the pseudogap phase is that deconfined
spinons and holons are the low-energy degrees of freedom,
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whereas transport and spectroscopic measurements in under-
doped cuprates indicate that some excitations are electron-
or hole-like. For this reason we want to introduce hole-like
bound states of spinons and holons in Eq. (5), which carry
both electric charge and spin. It is important to emphasize
here that the attraction between spinons and holons which
gives rise to this bound state is assumed to be due to elec-
tron hopping and the theory remains deconfined, i.e., spinon
excitations are still allowed to propagate.

The main idea of our work is that such bound states can
be introduced straightforwardly via a decoupling of the elec-
tron hopping term in the last line of Eq. (5) using fermionic
Hubbard-Stratonovich bond fields Fi jσ , F̄i jσ which carry both
spin and electric charge, as well as a U(1) gauge charge of
two:

F̄i jσ ≡ ( f̄iσ b̄ j + f̄ jσ b̄i )/
√

2. (6)

The field Fi jσ represents such a fermionic hole-like bound
state and naturally lives on the lattice bonds between sites i
and j. Note that fermionic excitations carrying both spin and
electric charge cannot exist on a single lattice site due to the
constraint in Eq. (3). After decoupling the electron hopping
term, the Lagrangian Eq. (5) takes the form

L =
∑
i,σ

f̄iσ (∂τ − iλi) fiσ +
∑

i

b̄i(∂τ − iλi + μB)bi

− J̃
∑
〈i, j〉

[χ̄i j f̄iσ f jσ + H.c. − |χi j |2]

+ J̃
∑
〈i, j〉

[	̄i j ( fi↑ f j↓ − fi↓ f j↑) + H.c. + |	i j |2]

+
∑
i, j

ti j F̄i jσ Fi jσ

+
∑
i, j

ti j√
2

[F̄i jσ ( fiσ b j + f jσ bi ) + H.c.]. (7)

Note that, upon integrating out the fermions Fi jσ , one recovers
Eq. (5) with an additional interaction term ∼n f

i nb
j , which can

be expressed as a holon-holon interaction using the constraint
Eq. (3). This interaction will be neglected in the following, in
analogy to the ∼nin j term in the derivation of Eq. (5) from the
t − J model.

The model in Eq. (7) has a very similar structure as the the-
ory for Kondo-Heisenberg models studied in Ref. [28], where
the conduction electrons take the role of our F fermions. The
main difference is that our F fermions carry a U(1) gauge
charge of two, whereas the conduction electrons in Ref. [28]
are gauge neutral. Nevertheless, in our case, the Fermi surface
of F fermions coincides with the physical electron Fermi
surface in the FL* phases, despite the fact that our F fermions
are gauge charged.

In the following we are interested in symmetric phases of
Eq. (7), in particular in the regime where 〈χ〉 �= 0, correspond-
ing to resonating valence bond (RVB) states in the undoped
(i.e., half filled) case [44]. The structure of the phase diagram
is then determined by the holon condensate 〈b〉 as well as the
spinon pair condensate 〈	〉 and is sketched in Fig. 1. If the
holons are condensed, 〈b〉 �= 0, the situation is analogous to

FIG. 1. Schematic phase diagram of the model in Eq. (7) at
a finite holon density and for 〈χ〉 �= 0. FL and SC denote ordi-
nary Fermi-liquid and superconducting phases, respectively, whereas
both phases with 〈b〉 = 0 correspond to fractionalized Fermi liquids
(FL*), discussed in detail in Sec. III.

the standard U(1) slave boson construction: We have c†
iσ ∼ f †

iσ
from Eq. (2) and the ground state is either an ordinary Fermi
liquid for 〈	〉 = 0, or a superconductor for 〈	〉 �= 0. For
this reason we focus on interesting fractionalized phases with
〈b〉 = 0 in the following, where we get different ground states
compared with the standard slave boson approach.

III. DOPED RESONATING VALENCE BOND PHASES:
U(1) AND Z2-FL*

The Lagrangian in Eq. (7) allows for a simple description
of doped RVB phases with well-defined electronic quasi-
particle excitations. These phases appear for 〈b〉 = 0 and
are distinguished by the presence or absence of a spinon
pair-condensate 〈	〉. As we argue below, both phases are
fractionalized Fermi liquids (FL*) with small pocket Fermi
surfaces and an anisotropic quasiparticle weight in the ab-
sence of broken symmetries. These states differ in the nature
of their gauge excitations, discussed in Sec. IV. Whereas the
U(1)-FL* phase features photon-like degrees of freedom, a
nonzero spinon pair condensate 	 gaps out this photon mode
via the Higgs mechanism and we obtain a Z2-FL* phase. In
the following we derive effective theories for both phases and
discuss them in detail.

For 〈bi〉 = 0 the f fermions and the b bosons in Eq. (7)
can be integrated out. The resulting effective action for the
bond fields χi j , 	i j , and Fi jσ is strongly constrained by
electric charge conservation as well as invariance under the
gauge transformation in Eq. (4), under which these fields
transform as

	i j → 	i je
i(φi+φ j ), (8)

Fi jσ → Fi jσ ei(φi+φ j ), (9)

χi j → χi je
i(−φi+φ j ). (10)

Consequently both the spinon pairing field 	i j as well as the
fermionic field Fi jσ carry a gauge charge of two, while χi j has
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no net gauge charge. The effective Lagrangian takes the form

Leff[χi j,	i j, Fi jσ ] =
∑
i, j

{
χ̄i j[∂τ − i(−λi + λ j )]χi j + aχ

1 |χi j |2 + aχ

2 |χi j |4
} + aχ

3

∑
i, j,k,l

χi jχ jkχklχli

+
∑
i, j

{	̄i j[∂τ − i(λi + λ j )]	i j + a	
1 |	i j |2 + a	

2 |	i j |4} + a	
3

∑
i, j,k,l

	̄i j	 jk	̄kl	li

+
∑
i, j

{
F̄i jσ [∂τ − i(λi + λ j )]Fi jσ + aF

1 F̄i jσ Fi jσ
}

+
∑

i, j,k,l

{
aFχ

1 F̄i jσ Fjkσ χklχli + aFχ

2 F̄i jσ χ̄ jkFklσ χli + a	χ

1 	̄i j	 jkχklχli + a	χ

2 	̄i j χ̄ jk	klχli
}

+
∑

i, j,k,l

{
aF	

1 F̄i jσ Fjkσ 	̄kl	li + aF	
2 F̄i jσ 	i j	̄klFklσ

} + · · ·, (11)

where a·
i are real coefficients and a summation over repeated

spin indices σ is implied. The interesting terms in this La-
grangian involve products of the fields around closed loops
and the dots represent allowed higher-order terms, in particu-
lar products of fields around larger loops which obey charge
conservation. Note that loop terms involving only 	i j and
Fi jσ always have to contain an even number of fields due
to gauge invariance. By contrast, loop terms involving the
field χi j may depend on an odd number of fields as well,
but we are going to limit our remaining discussion to the
square lattice case with the fields χi j , 	i j , and Fi jσ restricted
to nearest-neighbor bonds, where odd terms cannot appear. In
this case all explicitly shown loop terms in Eq. (11) are defined
on elementary plaquettes of the square lattice. Also note that
the density of F fermions is fixed by the density of holons,
i.e., by the density of holes away from half filling.

The action in Eq. (11) admits several saddle-point solutions
and in the following we are only interested in translation-
ally and rotationally invariant phases with 〈χ〉 �= 0 (i.e., RVB
phases). For the square lattice case several different saddle
points for χi j have been discussed in the literature and we
limit our analysis in this work to the simple uniform RVB
state where 〈χi j〉 = χ ∈ R on all nearest-neighbor bonds. We
note here that we do not expect qualitative differences in
electronic properties for the widely discussed π -flux state
[47,48], where 〈χi j〉 = χ exp[i(−1)ix+ jyπ/4]. This is because,
as shown below, electronic observables are tied to properties
of the F fermions, which carry a gauge charge of two. In
the π -flux phase, the F fermions thus pick up an Aharonov-
Bohm phase of 2π when encircling an elementary plaquette,
which leaves their low-energy properties unchanged. Fluctu-
ations of χi j beyond the mean-field solution are discussed in
Sec. IV.

Ultimately we are interested in the electronic properties
of the model in Eq. (11). In the saddle-point approximation
for χi j , the gauge-invariant electron field ciσ can be uniquely
expressed in terms of the bond fields 	i j and Fi jσ as (see
Fig. 2)

ciσ ∼
∑

j

F̄i jσ̄ 	i j, (12)

where σ̄ denotes the opposite spin of σ . This important rela-
tion will be used later to compute electron spectral functions.

Within the manifold of saddle points with fixed χ , two
simple symmetric phases can be realized in the model (11) on
the square lattice. For 〈	i j〉 �= 0 we obtain a Z2-FL* phase.
In this case Eq. (12) implies that ciσ ∼ ∑

j F̄i jσ̄ and thus the
electronic Fermi surface coincides with the small Fermi sur-
face of F fermions. This implies a modified Luttinger count
of the Fermi volume, which is proportional to the density
of F fermions, i.e., the density of doped holes away from
half filling. On the other hand, for 〈	i j〉 = 0 we realize a
U(1)-FL*, which also features a sharp electronic Fermi sur-
face, despite the fact that Eq. (12) seemingly implies that
the electron spectral function is a convolution of the Fi jσ and
	i j spectral functions. This state also features a small Fermi
surface.

A. U(1)-FL* on the square lattice

Let us study the theory in Eq. (11) on the square lattice
at the above-mentioned uniform RVB saddle point 〈χi j〉 = χ .
We restrict the fields 	i j and Fi jσ to nearest-neighbor bonds
and set the lattice constant to unity throughout the rest of this
work. On the square lattice it is convenient to relabel the fields
as 	 j,η and Fj,η,σ , where the index η ∈ {x, y} determines if the
field lives on the bond emanating in the positive x or y direc-
tion from lattice site j. In this case the important loop terms
from Eq. (11) take the form of an interaction Hamiltonian

a	
3

∑
j

	
†
j,x	

†
j+ŷ,x	 j+x̂,y	 j,y + H.c.

+ aF	
1

∑
j,σ

F †
j,x,σ 	

†
j+ŷ,x	 j,yFj+x̂,y,σ + · · ·

FIG. 2. Electron field ciσ in terms of 	i j and F̄i jσ̄ .
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FIG. 3. Graphic illustration of the dimer resonance terms on an
elementary square plaquette in the effective model for the U(1)-FL*
phase, Eq. (13). Empty blue ellipses denote spin-singlets, full red
ellipses represent spinon-holon bound states with charge q = +e and
spin 1

2 . Symmetry-related terms are not shown.

+ aF	
2

∑
j,σ

F †
j,x,σ 	

†
j+ŷ,x	 j,xFj+ŷ,x,σ + · · ·, (13)

where x̂ (ŷ) denotes the unit lattice vector in x (y) direc-
tion and the dots indicate symmetry-related and Hermitian
conjugate terms. Interestingly, these interaction terms are
precisely equivalent to the bosonic and fermionic dimer res-
onance terms introduced in the generalized quantum dimer
model of Ref. [39]. These terms are depicted graphically
in Fig. 3. Here 	

†
j,η = ( f †

j↑ f †
j+η̂↓ − f †

j↓ f †
j+η̂↑)/

√
2 is the cre-

ation operator of a bosonic spin singlet dimer and F †
j,η,σ =

( f †
jσ b†

j+η̂ + f †
j+η̂σ b†

j )/
√

2 creates a fermionic dimer represent-
ing a spinon-holon bound state. The term ∼a	

3 in the first line
then corresponds to the Rokhsar-Kivelson singlet resonance
[49], whereas the other two are resonances between fermionic
and bosonic dimers. Note that the dimer model has a hard-
core constraint where each lattice site is part of precisely one
dimer. In our case this hard-core dimer constraint directly
follows from the particle number constraint in Eq. (3) and
the dynamics generated by the resonance terms in Eq. (13)
obey it. Another consequence of this constraint is that no
quadratic hopping terms for Fi jσ or 	i j are allowed, even
though such terms would appear within a naive mean-field
decoupling of the aFχ

1,2 and a	χ

1,2 terms in Eq. (11). Lastly, we
note that the same relation between the electron operator and
the dimer operators shown in Eq. (12) was derived in Ref. [39]
by computing matrix elements of the electron operator in the
dimer Hilbert space.

A detailed numerical study of this dimer model in
Refs. [39,41] as well as the exact analytic solution found in
Ref. [42] show that the symmetric ground state is indeed a
U(1)-FL* with a sharp, small electronic Fermi surface. In
a parameter regime relevant for the cuprates small Fermi

pockets appear in the vicinity of momenta k =
(±π/2,±π/2) with a Fermi volume proportional to the
density of doped holes. Moreover, the electronic quasiparticle
weight is finite and this theory exhibits well-defined electronic
quasiparticle excitations, even though Eq. (12) naively
suggests that the electron spectral function is a convolution
of the 	 and F spectral functions, which should not exhibit
a sharp quasiparticle peak. The reason is that the propagators
of the 	i j and Fi jσ fields remain local and do not acquire a
dispersion due to the hard-core constraint. Interestingly the
electronic quasiparticle weight is anisotropically distributed
around the Fermi surface, giving rise to the appearance of
Fermi arc-like features in the electron spectral function. We
will find that the electron spectral function in the Z2-FL*
phase discussed in the next section has very similar properties.

B. Z2-FL* on the square lattice

Here we study properties of the theory in Eq. (11) on the
square lattice at the uniform RVB saddle point 〈χ j,η〉 = χ and
for 〈	 j,η〉 �= 0. The action for the spinon pairing field 	 j,η

permits different nontrivial, translationally invariant saddle-
point solutions. Here we focus on the extended s-wave case,
where 〈	 j,x〉 = 〈	 j,y〉 = 	. We comment on differences for
a d-wave paired state with 〈	 j,x〉 = −〈	 j,y〉 = 	 at the end
of this section.

For 〈χ j,η〉 = χ and 〈	 j,η〉 = 	 the theory in Eq. (11)
takes the form of a simple hopping Hamiltonian for the F
fermions. We keep three hopping terms within a tight-binding-
like expansion (following the reasoning in Ref. [39]) and the
effective mean-field Hamiltonian for the Z2-FL* is given by

HZ2−FL* = −t1
∑
j,σ

F †
j+ŷ,x,σ Fj,x,σ − t2

∑
j,σ

F †
j,y,σ Fj,x,σ

− t3
∑
j,σ

F †
j+ŷ,y,σ Fj,x,σ + · · ·, (14)

where dots again denote Hermitian conjugate, symmetry-
related, as well as possible longer-range hopping terms.
The corresponding hopping amplitudes are given by t1 =
−aF	

2 |	|2 − aFχ

2 |χ |2, t2 = −aF	
1 |	|2 − aFχ

1 χ2 and t3 fol-
lows from a higher-order loop term involving two elementary
plaquettes.

Even though the F fermions are not gauge neutral, their
Fermi surface is directly imprinted on the electronic Fermi
surface. Indeed, for 〈	〉 �= 0 we can use Eq. (12) to write the
electron annihilation operator in momentum space as

ckσ ∼ 	
∑
η=x,y

F †
−kησ̄ (1 + eikη ). (15)

It is straightforward to see that the single-electron spectral
function then takes the form

Aelectron(k, ω) = Zk,−δ(ω + E−(−k) − μF )

+ Zk,+δ(ω + E+(−k) − μF ), (16)

where μF is the chemical potential for F fermions and

E±(k) = −t1sk ±
√

t2
1 d2

k + 16 f 2
k [t2 + 2t3(sk − 1)]2 (17)
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FIG. 4. Contour plots of (a) dispersion E−(k) and (b) electronic quasiparticle weight Zk,− in the Z2-FL* phase as a function of momenta
in one quadrant of the Brillouin zone. (c) Density plot of the electron spectral function from Eq. (16) at the Fermi energy ω = 0 as a function
of momenta, with the δ function replaced by a Lorentzian with finite width. Parameters: t1 = −1, t2 = 2, t3 = −0.6, and μF = −5.6.

denotes the tight-binding dispersions of the two bands
obtained after diagonalizing Eq. (14), where we de-
fined sk = cos kx + cos ky, dk = cos kx − cos ky, and fk =
cos kx/2 cos ky/2. Note that there are two bands because the F
fermions reside on the links of the square lattice. The factors
Zk,± determine the weight of the electronic quasiparticle peak
and can be written as

Zk,± ∼
∑
η,η′

(1 + eikη )(1 + e−ikη′ )v∗
±,η(−k)v±,η′ (−k), (18)

where the v are coefficients of the 2 × 2 matrix which diago-
nalizes (14) in momentum space:

(Fk,x,σ

Fk,y,σ

)
=

(
v+,x(k) v−,x(k)
v+,y(k) v−,y(k)

)(Fk,+,σ

Fk,−,σ

)
. (19)

At low hole doping only the lower band will be occupied
and in Fig. 4 we show contour plots of the corresponding
dispersion E−(k) and quasiparticle weight Zk,−. Here we have
chosen values for the hopping matrix elements t1 = −1, t2 =

2, t3 = −0.6, which have been estimated in Ref. [39]. Note
that the dispersion has minima around k � (±π/2,±π/2),
leading to small hole pockets centered around these momenta.
Moreover, the quasiparticle weight is anisotropic and falls off
towards the Brillouin-zone corners, leading to the appearance
of Fermi arc-like structures in the electron spectral function,
shown in Fig. 4, where the outer side of the Fermi pocket has
much lower spectral weight than the inner side. Note that this
anisotropy is mainly due to the eikη factors in Eq. (18), which
are responsible for a vanishing of the quasiparticle weight at
the Brillouin-zone corners. These factors originate from the
fact that the F fermions live on the links of the lattice, see
Eq. (15).

In Fig. 5 we show cuts of the electron spectral function as
a function of momentum kx and frequency ω for three values
of ky from the antinodal towards the nodal region. Note that
the pseudogap at the antinodes closes from below the Fermi
surface, in accordance with ARPES measurements [50].

Lastly we briefly mention differences for a d-wave paired
Z2-FL* with 〈	 j,x〉 = −〈	 j,y〉 = 	. In this case the t2 and t3
amplitudes in Eq. (14) are modified. While the t1 amplitude
is identical for the two mean-field solutions for 	, the sign of
the t2 amplitude arising from the aF	

1 term in Eq. (11), as well
as the sign of the t3 amplitude arising from the aF	

2 term is
opposite. Note that the dispersion in Eq. (17) is invariant under
a combined sign change of t2 and t3. Moreover, the expression
for the electron operator in Eq. (15) has an opposite sign for
the η = y component and the quasiparticle weight is modified
accordingly. Combined with a sign change of t2 and t3, the

FIG. 5. Density plots of the electron spectral function Aelectron(k, ω) in the Z2-FL* phase from Eq. (16) as a function of momentum kx and
frequency ω, for three different values of ky. Panel (a) ky = π − 0.6, (b) ky = π − 0.8, (c) ky = π − 1.1. The antinodal gap closes from below
the Fermi energy (ω = 0) as ky decreases, leading to the formation of Fermi arc-like features close to k = (±π/2,±π/2). Parameters are the
same as in Fig. 4 and the δ function in Eq. (16) was again replaced by a Lorentzian.
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quasiparticle weight is identical to the extended s-wave paired
case.

IV. GAUGE FLUCTUATIONS

In this section we study the model in Eq. (11) beyond the
saddle-point approximation for the bond field χi j . We focus
on important phase fluctuations of χi j restricted to nearest-
neighbor bonds for square lattice systems. For the following
argument it is important to note that the fields χi j have a
direction, i.e., χ ji = χ̄i j . We can straightforwardly derive an
effective theory for the F fermions and the spinon pair field
	 coupled to a U(1) gauge field by considering how phase
fluctuations of χi j couple to the F fermions and 	. For the
uniform RVB phase on the square lattice we write χ j,η =
χeiAη

j , where Aη
j parametrizes the phase fluctuations of χ j,η on

the lattice bond emanating in η = x, y directions from lattice
site j. The terms ∼aχ

3 in the first line of Eq. (11) then take the
form

aχ

3 χ4
∑

j

exp i
(
Ax

j + Ay
j+x̂ − Ax

j+ŷ − Ay
j

) + H.c., (20)

which corresponds to the elementary Wilson loop of a U(1)
lattice gauge theory. In the continuum limit we immediately
obtain

2aχ

3 χ4
∫

d2x cos (∂xAy − ∂yAx ), (21)

i.e., the usual the Maxwell term for a compact U(1) gauge
theory in 2 + 1 dimensions. The role of the time component
Aτ

j of the gauge field is taken by the Lagrange multiplier terms
Aτ

j ≡ λ j in Eq. (11).
The interaction between the F fermions and 	 with

the U(1) gauge field follows from the terms ∼aFχ

1,2 , a	χ

1,2 in
Eq. (11):

aFχ

1 χ2
∑
i,σ

F̄i,y,σ Fi,x,σ ei
(

Ay
i+x−Ax

i+y

)
+ · · ·

+ a	χ

1 χ2
∑

i

	̄i,y	i,xei
(

Ay
i+x−Ax

i+y

)
+ · · ·, (22)

where the dots again denote symmetry-related terms. Care-
fully taking the continuum limit by expanding in gradients of
the fermionic field and powers of the gauge field, the low-
energy theory of the FL* indeed describes charge-2 fermions
F as well as a charge-2 spinon pair field 	, which plays the
role of a Higgs field, minimally coupled to a U(1) gauge field.
The Lagrangian density takes the form

LFL* = F̄ [(∂τ − i2Aτ ) − (∇ − i2A)2 − μF ]F

+ 	̄[(∂τ − i2Aτ ) − (∇ − i2A)2 + a	
1 ]	

+ a	
2 |	|4 + SMaxwell[A

μ], (23)

where A = (Ax, Ay) denotes the spatial components of the
vector potential. For 〈	〉 = 0 we thus obtain a U(1)-FL*,
where a finite density of F fermions is coupled to a U(1)
gauge field. Condensing the spinon pair field by setting a	

1 <

0 gaps out the U(1) gauge field via the Higgs mechanism and
the resulting phase is a Z2-FL*, where the F fermions are
coupled to an Ising gauge field.

Due to the compactness of Aμ the U(1) gauge theory allows
for monopole excitations, which lead to confinement in the ab-
sence of matter fields. The presence of a Fermi surface, in our
case of F fermions, has been argued to suppress monopoles,
however, and the theory in Eq. (23) is expected to be decon-
fined [51].

V. QUANTUM PHASE TRANSITIONS

Quantum phase transitions between fractionalized Fermi
liquids and an ordinary Fermi liquid (FL) or a superconductor
(SC) are driven by the condensation of holons b, as indi-
cated in the schematic phase diagram in Fig. 1. For 〈b〉 = 0
the electron Fermi surface coincides with the small F Fermi
surface of spinon-holon bound states and we are in a FL*
phase, as discussed in Sec. III. By contrast, if the holons are
condensed, 〈b〉 �= 0, we are either in an ordinary Fermi-liquid
phase, where the electron Fermi surface coincides with the
large Fermi surface of spinons f , or the spinons are paired and
the ground state is a superconductor. Here we propose theories
for both transitions and briefly discuss their properties as well
as potential problems. Similar quantum phase transitions in
the context of Kondo-Heisenberg models have been discussed
in Refs. [27,28].

A. Z2-FL*-to-superconductor transition

The fermionic spinons do not play an important role at
the Z2-FL*-to-superconductor transition. For the extended s-
wave paired state the spinons remain fully gapped throughout
the transition. Even though the d-wave paired state has gap-
less spinon excitations at four nodal points in the Brillouin
zone, we do not expect them to play a prominent role at the
transition. The important low-energy degrees of freedom are
the bosonic holons b, as well as the fermionic spinon-holon
bound states F . Integrating out the spinons from the theory
in Eq. (7) generates interaction terms between holons and
the F fermions of the form ∼	̄ik b̄ j b̄Fi jσ Fkσ̄ + H.c. as well
as ∼χikF̄kσ b̄ jbFi jσ . Upon holon condensation the former
interaction term induces pairing of the F fermions, whereas
the latter corresponds to a hopping term. This is expected from
Eq. (7), since the term in the last line hybridizes the f and F
fermions in the presence of a holon condensate.

Since the spinon pairing field 	 gaps out the U(1) gauge
field, as described in the previous section, the low-energy
action for the Z2-FL*-to-SC transition takes the form S =
Sb + SF + Sint with

Sb =
∫

τ,x
b̄(∂τ − c∇2 + s)b + u|b|4, (24)

SF =
∫

τ,x
F̄σ (∂τ − ∇2 − μF )Fσ , (25)

Sint = λ

∫
τ,x

(b2F̄σ F̄σ̄ + H.c.). (26)

The phase transition can be tuned via the boson mass term s.
This theory has been discussed in detail in Ref. [52], where
it was shown that the transition can be continuous, if the
microscopic interaction between F fermions is repulsive.
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B. U(1)-FL*-to-FL transition

Here we discuss the quantum phase transition between
the U(1)-FL* phase and an ordinary Fermi-liquid and high-
light important differences to Ref. [28] as well as potential
problems with the low-energy description of the U(1)-FL*
phase. For this transition the important low-energy degrees of
freedom are the spinons f , holons b, and their bound states
F . These three degrees of freedom interact via the three-point
interaction from the last line of Eq. (7), as well as via the U(1)
gauge field described in Sec. IV. In the Fermi liquid phase,
where 〈b〉 �= 0, the three-point interaction term hybridizes the
F and the f electrons and the electron Fermi surface coincides
with the large-spinon Fermi surface. Note that these argu-
ments are only relevant for the uniform RVB state, where a
large-spinon Fermi surface is indeed present.

Assuming holon condensation at momentum k = 0, the
holons scatter off fermions via the three-point interaction
with a small momentum transfer. The f and F fermions
thus interact strongly at hot spots in momentum space, where
their Fermi surfaces intersect. In contrast with Ref. [28], this
appears to be a generic situation in the case of cuprates,
where the small Fermi surface of F fermions in the vicin-
ity of k = (±π/2,±π/2) intersects with the large-spinon
Fermi surface, as indicated in Fig. 6. A seemingly possible
low-energy action for a single hot spot would take the form
S = Sb + S f + SF + Sint with

Sb =
∫

τ,x
b̄[∂τ − iAτ − c(∇ − iA)2 + s]b + u|b|4, (27)

S f =
∫

τ,x
f̄σ [∂τ − iAτ − iv f · (∇ − iA)] fσ , (28)

SF =
∫

τ,x
F̄σ [∂τ − i2Aτ − ivF · (∇ − i2A)]Fσ , (29)

Sint = λ

∫
τ,x

(F̄σ fσ b + b̄ f̄σ Fσ ). (30)

FIG. 6. Hot spots in the theory for the U(1)-FL*-to-FL quantum
phase transition. The solid line indicates the small Fermi surface
of fermionic spinon-holon bound states F , whereas the dashed line
represents the large Fermi surface of spinons f .

Here we have chosen a local coordinate system where v f and
vF denote the local Fermi velocities of f and F fermions
at the hot spot. Even though this theory has a very similar
structure as the one discussed in Ref. [28] for the U(1)-FL*-
to-FL transition, the main difference is that our F fermions,
which play the role of the conduction electrons in Ref. [28],
are gauge charged. For this reason the dispersion term in the
action SF for the F fermions appears to be highly problematic:
As pointed out in Sec. III A, the F fermions do not acquire
a dispersion in the lattice-scale description of the U(1)-FL*
due to the hard-core dimer constraint. Indeed, F fermions
with a dispersion cannot give rise to a FL* phase, because
Eq. (12) would preclude the existence of a sharp electronic
Fermi surface. The continuum limit taken in the low-energy
theory above thus does not properly describe the U(1)-FL*
phase.

Finding a valid low-energy theory for the U(1)-FL*-to-FL
transition based on our U(1) slave boson approach thus re-
mains an open problem. Interestingly, a possible theory for
this transition has been developed recently in Ref. [43] by
using a different parton construction. It would be interesting
to see if a connection can be established between the two
approaches, potentially via a generalized SU(2) slave boson
construction [53].

VI. DISCUSSION AND CONCLUSIONS

We modified the standard U(1) slave boson theory of the
t-J model to account for spinon-holon bound states. This
theory has fractionalized Fermi-liquid ground states which
capture essential features of the nodal-antinodal dichotomy in
the metallic pseudogap phase of underdoped cuprates. In par-
ticular, the pseudogap in the antinodal region of the Brillouin
zone at momenta k = (0,±π ) and (±π, 0) closes from below
the Fermi surface when moving towards the nodal region
close to momenta k = (±π/2,±π/2), in accordance with ex-
perimental observations. Moreover, the anisotropic electronic
quasiparticle weight around the Fermi pockets in the vicinity
of the nodal points makes these pockets appear as Fermi arcs
in photoemission experiments.

Our theory can be used as starting point to investigate
possible symmetry-broken phases and to compute further
observables that can be compared with experimental data.
Generalizations to the SU(2) slave boson construction of Wen
and Lee [53] are possible as well and might provide interest-
ing connections to recent work on SU(2) gauge theories for
cuprates [54,55].
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