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Dark matter or correlated errors: Systematics of the AMS-02 antiproton excess
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Several studies have pointed out an excess in the AMS-02 antiproton spectrum at rigidities of 10–20 GV. Its
spectral properties were found to be consistent with a dark-matter particle of mass 50–100 GeV which annihilates
hadronically at roughly the thermal rate. In this paper, we reinvestigate the antiproton excess, including all
relevant sources of systematic errors. Most importantly, we perform a realistic estimate of the correlations in the
AMS-02 systematic error which could potentially “fake” a dark-matter signal. The dominant systematics in the
relevant rigidity range originate from uncertainties in the cross sections for absorption of cosmic rays within
the detector material. We calculate their correlations within the Glauber-Gribov theory of inelastic scattering.
The AMS-02 correlations enter our spectral search for dark matter in the form of covariance matrices, which
we make publicly available for the cosmic-ray community. We find that the global significance of the antiproton
excess is reduced to below 1 σ once all systematics, including the derived AMS-02 error correlations, are taken
into account. No significant preference for a dark-matter signal in the AMS-02 antiproton data is found in the
mass range 10–10 000 GeV.
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I. INTRODUCTION

Since their discovery about 40 years ago [1,2] cosmic-ray
antiprotons have been used as a sensitive probe of exotic
cosmic-ray sources in our galaxy, such as dark-matter anni-
hilation. As a matter of fact, their first measurement already
exhibited an excess over the expected astrophysical back-
ground and has stimulated speculations about a dark-matter
contribution [3,4]. While significant theoretical and exper-
imental progress has been made since, today the situation
appears similar, although on an entirely different level of pre-
cision. By now several tens of thousands of antiproton events
have been reported by the AMS-02 experiment on-board the
International Space Station, rendering statistical uncertainties
subdominant over a large range of rigidities [5]. In this range,
systematic errors are at the level of a few percent and con-
stitute the limiting factor in data analyses, which nonetheless
allows us to search for a dark-matter contribution potentially
as low as ∼10% of the total antiproton flux.
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Recently, several groups have reported an excess over the
expected antiproton background in the rigidity range 10–
20 GV in the AMS-02 data which is compatible with a
dark-matter annihilation signal [6–13]. While the significance
of the excess is highly controversial (ranging from 1−5 σ

in the aforementioned studies), a common picture of the
preferred dark-matter properties has emerged. It hints at a
particle of mass mχ = 50−100 GeV which annihilates into
hadronic final states with roughly a thermal cross section,
〈σv〉 ∼ 10−26 cm2 s−1. Intriguingly, dark matter with similar
properties has been considered in the context of the galactic
center gamma-ray excess [14].

The key ingredient to test the dark-matter interpretation of
the antiproton excess is a careful modeling of those systematic
effects which could, alternatively, have caused the observed
spectral feature. To this end, strong efforts have been made
to improve the prediction and to quantify the uncertainties of
antiproton production by cosmic-ray scattering [15–19]. The
updated cross-section modeling entering the antiproton back-
ground was, indeed, found to somewhat reduce the antiproton
excess [9–11]. However, one major piece was missing in all
previous studies: the correlations of systematic errors in the
AMS-02 data which have so far not been reported by the
collaboration. Not surprisingly, these are of paramount impor-
tance given that correlated systematics can induce unwanted
features in the data. A proof of principle that correlation
can have a potentially dramatic effect on the significance of
the antiproton excess has been provided in Ref. [11]. In this
case, correlations have been modeled by simple covariance
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functions characterized by a correlation length. A refined
prescription in terms of covariance functions—splitting the
systematic uncertainty into several components—has been in-
troduced in Ref. [20] for the boron-to-carbon ratio and applied
to cosmic-ray antiprotons in Ref. [21].

In this paper, we carefully derive estimates for the most
relevant correlations in the AMS-02 (antiproton) data and
investigate their implications for the tentative dark-matter
signal. For this purpose, similar to Ref. [21], we collect
all publicly available information to split the systematic er-
ror into its components which we then address individually.
In the rigidity range 10–20 GV, the dominant systematics
in the antiproton flux and p̄/p ratio arise from uncertain-
ties in the cross sections for (anti)proton absorption in
the AMS-02 detector for which the measured fluxes are
corrected.

In the first part of this paper, we undertake a detailed
re-evaluation of the uncertainties of the involved nucleon-
carbon absorption cross sections (the AMS-02 detector is
dominantly composed of carbon). To this end, we perform
a global fit of the absorption cross sections within the full
Glauber-Gribov theory of inelastic scattering [22–26]. It links
the nuclear absorption cross section to the nucleon-nucleon
scattering cross sections and nuclear density functions which
are as well subject to experimental measurements. We use
this fit to reliably extract the correlations in the cross-section
uncertainties which we then map to the systematic error in
the antiproton flux. The second largest contribution to the
correlated error stems from the effective acceptance, which
the AMS-02 collaboration obtains from a comparison of their
detector response between data and Monte Carlo simulation.
We estimate the corresponding correlations from the shape
(i.e., the “wiggliness”) of the correction function employed in
an AMS-02 analysis. Finally, for the subleading contributions,
we adopt the correlations estimated in Ref. [21]. The full
covariance matrix of errors in the AMS-02 antiproton and p̄/p
data, which we derive in this paper, is made available in the
ancillary files [109].

In the second part of this paper, we perform a spec-
tral search for dark matter in the AMS-02 antiproton data,
where we fully include the systematic error correlation.
The cosmic-ray fits are performed independently in two
complementary cosmic-ray propagation setups (following
Refs. [9,11], respectively). This allows us to draw solid con-
clusions eliminating further controversies in the assessment of
the significance of the antiproton excess.

The remainder of this paper is organized as follows. In
Sec. II, we investigate the nucleon-carbon absorption cross
sections and derive the corresponding correlation matrix. In
Sec. III, we collect the various sources of systematic errors to
build the overall covariance matrix for the AMS-02 antiproton
flux and p̄/p flux ratio. Finally, in Sec. IV we derive the im-
plications for the antiproton excess following the two setups
mentioned above before drawing our conclusions in Sec. V.
Appendices A and B, respectively, provide additional details
on the input cross sections of the Glauber-Gribov model and
the derivation of error correlations for further cosmic-ray
species used in the analyses. Appendix C summarizes the
best-fit values of all involved cosmic-ray propagation param-
eters in the two setups considered.

II. NUCLEON-NUCLEUS ABSORPTION CROSS SECTIONS

In this section, we describe the computation of the nucleon-
nucleus absorption cross section for p̄C and pC which is the
key ingredient in the assessment of the AMS-02 systematic
error. We perform the computation in the framework of the
Glauber model [22–24]. The theory is formulated based on the
eikonal approximation and provides a successful theoretical
description for the scattering of moderately relativistic parti-
cles off nuclei.

In the following, we first introduce the nuclear density
function used in Sec. II A. We then detail the computation
within the Glauber model in Sec. II B while shadowing ef-
fects due to inelastic screening are discussed in Sec. II C.
Parametrizations of the elementary nucleon-nucleon cross
section serving as the input for the Glauber-model computa-
tions are presented in Sec. II D. Finally, we perform a global
fit of all input parameters (from the nucleon-nucleon cross
sections, the nuclear density function, and the inelastic screen-
ing) to the respective data in Sec. II E and derive a correlation
matrix from the fit as detailed in Sec. II F.

A. PARAMETRIZATION OF NUCLEAR DENSITIES

In this paper, we employ the harmonic oscillator shell
model density [27–29], which provides a good description for
the light nuclei, 3 � A � 16 [30]. It reads

ρ(r) = 4

π4/3C3

[
1 + A − 4

6

( r

C

)2]
e−r2/C2

, (1)

with

C =
√〈

r2
ch

〉
A − 〈

r2
ch

〉
p

5/2 − 4/A
, (2)

where 〈r2
ch〉p and 〈r2

ch〉A are the mean square charge radii of the
proton and nucleus, respectively. We take 〈r2

ch〉p = 0.7714 fm2

and 〈r2
ch〉 12C = 6.1 fm2 (for carbon) as nominal values [30,31].

We estimate the uncertainty on 〈r2
ch〉 12C to be 0.44 fm2 by com-

paring the above value to the one obtained when taking into
account nucleon-nucleon repulsion with an expulsion radius
of d = 0.9 fm (see Ref. [30]).

B. COMPUTATIONS WITHIN THE GLAUBER MODEL

The absorption cross section of a nucleon N on a nucleus A
is obtained by subtracting the respective elastic and quasielas-
tic (pA → pA∗) part from the total cross section (see, e.g.,
Ref. [32]):

σabs = σtot − σel − σqel . (3)

Within the Glauber model [22–24], neglecting Coulomb ef-
fects and spin-orbit interactions [33,34], it is described by
(see, e.g., Ref. [35] for a recent account on the subject)

σ GM
abs =

∫
d2b

[
1 −

(
1 − 2 ImχN (b)

A

)A ]

�
∫

d2b(1 − e−2 ImχN (b) ) , (4)

where b is the impact parameter and χN (b) the nuclear phase-
shift function. The last expression in Eq. (4) corresponds to
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the optical approximation valid in the limit of large A (see,
e.g., the discussion in Ref. [36]) which is, however, not used
in the numerical analysis.1 The phase-shift function reads

χN (b) = i

2

A∑
j=1

σNNj (1 − iαNNj )

×
∫

d2q

(2π )2
eib·q e−βNNj q2/2

∫
d3r ρ j (r) e−iq·rT , (5)

where σNNj is the total nucleon-nucleon cross section, αNNj is
the ratio of the real-to-imaginary part of the forward scattering
amplitude, and βNNj is the slope of the differential inelastic
cross section in the forward direction, β = d

dt [ln dσel
dt (s, t )]

t=0,
with t being the four-momentum transfer squared. In general,
these three quantities depend on the momentum of the incom-
ing nucleon, plab, in the laboratory-frame. Furthermore, rT is
the transverse part of r.

For a spherical symmetric nuclear density function, ρ(r),
the integrals in Eq. (5) can be rewritten to

χN (b) = i

2

A∑
j=1

σNNj (1 − iαNNj )

×
∫ ∞

0
dq q J0(bq) e−βNNj q2/2

∫ ∞

0
dr r2J0(rq) ρ j (r) ,

(6)

where Jn denotes the Bessel function of the first kind. Note
that the two integrals in Eq. (6) are real such that the term
proportional to αNNj does not contribute to ImχN .

For the harmonic oscillator shell model density, introduced
in Sec. II A, the integrals in Eq. (6) can be solved analytically,
leading to

ImχN (b) =
A∑

j=1

2

A
σNNj exp

(
− b2

2βNNj + C2

)

×
4b2C2 + 36β2

NNj
+ 5C4 + 28βNNjC

2

3π (2βNNj + C2)3
, (7)

which we use to solve Eq. (4) numerically.

C. SHADOWING CORRECTIONS

The Glauber model as described above accounts for elastic
screening, i.e., multiple nucleon scattering where the inter-
mediate particle is the nucleon. While providing a good
description to the experimental data at low momenta, plab �
10 GeV [35], for larger beam momenta it is expected to
gradually lose its applicability. This is due to the increasing
importance of inelastic screening effects, i.e., rescatterings
with excited intermediate states [25,26,37–39] (see also
Refs. [40,41] and references therein for more recent accounts
on the subject). These effects increase the shadowing correc-
tion leading to a reduction of the total cross section.

1The relative difference between the exponential and nonexponen-
tial form is found to be up to a few percent for the case under
consideration.

Here we follow Ref. [42] where inelastic screening has
been considered for the case of neutron projectiles using the
expression [39]

�σinel = − 4π

∫
d2b e− 1

2

∑A
j=1 σNNj

∫
dz ρ(b,z)

×
∫ ∞

M2
0

dM2 d2σ (t = 0)

dM2dt
|F (qL, b)|2 ,

(8)

where d2σ/(dM2dt )(t =0) is the differential diffraction cross
section for the process N + Nj → Nj + X evaluated at t = 0,
qL = (M2 − m2

N )mN/s is the longitudinal momentum transfer
in the production of the (exited intermediate) state X with
mass M, M2

0 = (mN + mπ )2 � 1.17 GeV2, and F is the form
factor:

F (qL, b) =
∫

dz ρ(
√

b2 + z2)eiqLz. (9)

For the purpose of solving Eq. (8), we parametrize the differ-
ential diffraction cross section by

d2σ (t = 0)

dM2dt
=

[
a1 δ(M2 − 2.54 GeV2) + a2

M2 − m2
N

× 
(M2 − 5 GeV2)

]
mb

GeV2 , (10)

where the first and second terms provide an effective descrip-
tion of the resonant and continuum contribution, respectively.
Note that the structure of the resonant part is in general more
complex [42–44].2 However, F is a slowly varying function of
M2 for M2 < 5 GeV2, in particular for plab � 10 GeV where
inelastic screening effects are relevant. Hence, the exact shape
of the resonant part is not relevant for the computation of
the integral in Eq. (8). We treat a1 and a2 as effective free
parameters choosing a1 = 10.6, a2 = 4.05 as nominal values
and assigning a relative uncertainty of 20%. These values are
consistent with the results of [42] obtained from a fit to the
Fermilab data [43] on p + p → p + X and p + d → d + X ,
where the latter was corrected for binding of the deuteron in
an approximate way.3

The final absorption cross section is obtained from

σabs = σ GM
abs + �σinel . (11)

D. NUCLEON-NUCLEON CROSS-SECTIONS
PARAMETRIZATIONS

For the nucleon-nucleon cross sections used in the
computations within the Glauber model, we consider the

2In Ref. [42], the resonant part is fitted by a fifth-order polynomial.
3Note that we choose the continuum part to be proportional to

1/(M2 − m2
N ) (instead of 1/M2 [39,42]) for M2 � 5 GeV2. While

the numerical differences are irrelevant considering the involved
uncertainties, our choice allows for an analytical calculation of the
M2 integral in Eq. (8) and hence significantly improves the numerical
performance of the computation.
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parametrizations

σp̄p = σasymp

(
1 + c1

�
1/4
s

+ c2

�
1/2
s

+ c3

�s
+ c4

�2
s

+ c5

�3
s

)
,

(12)

σp̄n = σasymp

(
1 + c6

�
1/4
s

+ c7

�
1/2
s

+ c8

�s
+ c9

�2
s

)
, (13)

σpp = σasymp

(
1+ c10

�
1/4
s

+ c11

�
1/2
s

+ c12

�s
+ c13

�
3/2
s

+ c14

�2
s

+ c15

�3
s

)
,

(14)

σpn = σasymp

(
1 + c16

�
1/4
s

+ c17

�
1/2
s

+ c18

�s
+ c19

�
3/2
s

+ c20

�2
s

)
,

(15)

where �s(plab) = (s(plab) − s(0))/GeV2 with

s = 2mN
(√

m2
N + p2

lab + mN
)
, (16)

and σasymp taken from Ref. [45]:

σasymp =
[
36.04 + 0.304 ln2

( s

33.1 GeV2

)]
mb . (17)

The expressions in Eqs. (12)–(15) are valid at plab � 1 GeV.
Furthermore, we parametrize the slope of the differential in-
elastic cross section in the forward direction by

βp̄p =
[

d1 + d2

plab/GeV
+ d3 ln

( plab

GeV

)]
GeV−2 , (18)

βpp =
[

d4 + d5

plab/GeV
+ d6 ln

( plab

GeV

)]
GeV−2 , (19)

and assume βp̄n = βp̄p and βpn = βpp. We determine the
best-fit values and covariance matrices for the involved pa-
rameters c1, . . . , c20, d1, . . . , d6 by performing fits to the
cross-section data collected in Ref. [46]4 and the data on the
slope parameter [47]5. The best-fit values and the covariance
matrices are given in Appendix A. The corresponding uncer-
tainty band for the nucleon-nucleon cross sections and slopes
(minimal and maximal uncertainty over the full momentum
range) are provided in Table III in the Appendix.

4We observe that the cross-section data [46] contain underestimated
systematic errors. This becomes obvious from the fact that, with
errors taken at face value, the cross-section data are poorly fitted
by any smooth function. We, therefore, introduce an additional sys-
tematic error of 5% for each data point, which we assumed to be
fully correlated within one experiment. In the case of p̄p-scattering,
where inconsistencies are larger, we furthermore had to multiply the
errors by a factor of 2. With the described procedure, we arrived at a
realistic goodness of fit of ∼1/dof.

5While the slope parameter is defined at momentum-transfer t = 0,
the experimental data [47] were taken at small but nonvanishing t .
This causes small systematic differences in the normalization of data
taken at the same laboratory momentum. To evade a degradation
of the fit, we therefore bin the data with a bin size of 0.2 in units
of log10 plab (plab in GeV). For each bin, we furthermore add a
systematic uncertainty of 5% to account for the error caused by the
nonvanishing t extraction.

E. GLOBAL FIT

To compute the correlations in the cross-section uncer-
tainties, we perform global fits of the p̄C and pC absorption
cross section within the Glauber model (including inelas-
tic screening) varying the input parameters ci, di as well as
〈r2

ch〉 12C, a1, a2, according to their nominal values and (cor-
related) uncertainties (using covariance matrices shown in
Appendix A). Note that the parameters 〈r2

ch〉 12C, a1, a2 are
varied independently for p̄C and pC, considering the respec-
tive parametrization to be an effective description that might
account for additional effects not explicitly considered in the
calculation.

For the experimental measurements of the p̄C and pC ab-
sorption cross sections, we use data from Refs. [48–52]6 and
[50,51,53–74], respectively. Since we observe (mild) incon-
sistencies in the data, in addition to the reported experimental
errors, we included an additional normalization error of 10%
for each data point which we took to be fully correlated within
the same experiment (but uncorrelated between different ex-
periments). This normalization error also accounts for the fact
that information on the inclusion of the quasi-inelastic part of
the cross section is not available for a large fraction of the data
(see e.g., the discussion in Refs. [51,74]).

We sample the 15- (17-)dimensional input parameter space
for p̄C (pC) with the multimodal nested sampling algorithm
MULTINEST [75].7 The corresponding best fits are shown in
Fig. 1 as the solid (dark green) curves. The green band denotes
the 1σ uncertainty band. For comparison, we display the
respective results used in the AMS-02 analyses taken from
Ref. [76] (gray dashed curve and gray shaded error band).
The best-fit values for the input parameters in the global fits
are displayed in Table I. It is interesting to note that they are
very close to their nominal values (not involving p̄C and pC
data). A similar observation is made by performing the fit
without the χ2 contribution from p̄C and pC data (not shown
here) which provides very similar results for the p̄C and pC
absorption cross section as in Fig. 1. We, hence, observe that
our computation within the Glauber model including inelas-
tic screening effects provides an excellent description of the
measured p̄C and pC cross section over the whole considered
range of momenta.8

6The data set [49] originally contains a large number of bins in the
momentum range 1.6−3.25 GeV. Since systematic errors of 2−5%
dominate over statistical errors, their correlations would be impor-
tant. Due to their unavailability, we combine the data set into three
bins, and conservatively take the error to be 5% in each bin (statistical
errors are negligible after the combination). By reducing the number
of bins, we minimize the impact of the (unknown) error correlations.

7We use 5000 live points, a sampling efficiency of 0.65, and an
evidence tolerance of 10−18.

8This holds strictly for p̄C. However, in the case of pC we observe a
significant deviation of a2 from its nominal value towards a reduction
of inelastic screening effects, i.e., a slightly larger cross section
for plab � 100 GeV as compared to a fit without pC data. While
such a reduction can arise from multinucleon correlations (see, e.g.,
Ref. [77]) we notice that it is mainly driven by the cosmic-ray data
reported in Ref. [63] (open circles in Fig. 1) which are subject to
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FIG. 1. Absorption cross section for p̄C (left panel) and pC (right panel) as a function of the projectile momentum plab. The solid dark
green curve and green shaded band denote our best-fit cross section and its 1σ uncertainty, respectively. The data points (containing 1σ error
bars) of different experiments are denoted by individual symbols except for the star, which represents a collection of 15 experiments, each
of which, however, only provides one data point. Note that the 10% normalization error of each experiment is not included in the error bars.
For comparison, we also show the corresponding cross sections used in the AMS-02 analyses stemming from an implementation in Geant 4
(dashed curve and gray shaded band).

F. CORRELATION MATRICES FOR AMS-02
CROSS SECTIONS

From the global fit described above, we can infer a co-
variance matrix for σabs evaluated at the values of plab that
correspond to the rigidity bins chosen by AMS-02. In this
way, we can incorporate correlations in the AMS-02 flux
measurements arising from σabs uncertainties.

Generally, the covariance matrix of a quantity θ can be
computed using

Vi j =
∑

k

wk
(
θ k

i − θ̄i
)(

θ k
j − θ̄ j

)
, (20)

where wk is the statistical weight (as given by MULTINEST)
of the kth point in the statistical ensemble (the MULTINEST

chain) and θ̄i = ∑
k wkθ k

i . For the absorption cross section
uncertainties θ k

i = σ k
abs(plab,i ), where the plab,i correspond to

the bins of AMS-02. The corresponding correlation matrices
read

ρi j = Vi j√
ViiV j j

. (21)

We expect the obtained correlations to exhibit a depen-
dence on the theoretical framework (Glauber-Gribov) and our
parametrizations of input functions. While our choices are
thoroughly motivated, quantifying this dependence goes be-
yond the scope of this paper. The correlation matrices of the
antiproton-carbon and proton-carbon absorption cross-section
uncertainties are provided in the ancillary files [109]. Note

further systematics, as discussed in Ref. [78]. In fact, omitting this
data fully reconciles the discrepancy resembling the same situation
as for p̄C. However, the inclusion or omission of this data set does
not have a significant effect on the correlation matrix extracted from
our fit.

that in the following, we make use of these correlation matri-
ces only. The absolute cross section uncertainties are taken as
reported by the AMS-02 Collaboration (corresponding to the
gray bands in Fig. 1). This is a conservative approach since

TABLE I. Best-fit values of the input parameters and the respec-
tive χ 2 contributions for the global fits of the absorption cross section
for p̄C and pC.

p̄C pC

c1 0.0712 c10 −0.404
c2 1.42 c11 2.43

σN p c3 1.96 c12 −9.31
c4 −2.23 c13 20.5
c5 0.814 c14 −16.4

c15 3.06

c6 −0.0194 c16 0.102
c7 1.69 c17 0.261

σNn c8 1.42 c18 −0.120
c9 −0.998 c19 −0.805

c20 0.497

d1 10.7 d4 7.65
βN p d2 5.77 d5 −5.14

d3 0.307 d6 0.827

a1 11.2 10.6
a2 4.40 1.44
〈r2

ch〉 12C / fm2 6.17 6.06

χ 2
σN p

0.033 0.086
χ 2

σNn
0.12 0.22

χ 2
βN p

0.009 0.13
χ 2

a1
0.040 0.0005

χ 2
a2

0.080 4.62
χ 2

〈r2
ch〉 12C

0.028 0.0077

χ 2
σabs

/ndof 14.0/13 56.8/72

χ 2
tot 14.3 61.9
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the uncertainties employed by AMS-02 are larger compared
to those in our fit. Details of our approach will be described in
Sec. III B.

III. ERROR CORRELATIONS IN THE AMS-02
ANTIPROTON DATA

To determine the error correlations in the AMS-02 p̄ and
p̄/p data, we follow a two-step procedure: We first split the
systematic errors into individual contributions (as described
below). Then, in Sec. III B, we derive the correlations for each
suberror and build up the full AMS-02 covariance matrices.
Our cosmic-ray fits will also require the AMS-02 covariance
matrices for the proton and helium fluxes as well as the B/C
ratio as an input. Their calculation (which proceeds analogous
to the antiproton case) is described in Appendix B.

A. SYSTEMATIC ERRORS

In the following, we will denote relative systematic errors
in the antiproton flux by �p̄ and in the p̄/p ratio by �p̄/p.

1. Unfolding error

Detector resolution effects cause the migration of events
into neighboring rigidity bins. This must be corrected for
through the unfolding procedure. The choice of the migra-
tion matrices (characterizing the migration probabilities) is
associated with a systematic error. This unfolding error is
�

p̄
unf = 1% at R < 200 GV and 1.5% at R = 450 GV for the

antiproton flux. The error partially cancels in the p̄/p ratio
for which it becomes �

p̄/p
unf = 1% at R = 1 GV and 0.5%

at R > 2 GV [5]. Between the stated rigidity intervals, we
interpolate logarithmically.

2. Cross-section error

The (rigidity-dependent) AMS-02 acceptance is sensitive
to the fraction of cosmic rays which are absorbed in the
detector. The survival probability PN of the incoming particle
N (N = p̄, p) with momentum p is estimated as

PN = exp

(
−

∑
A

nA(p) σ NA
abs (p)

)
, (22)

where nA(p) accounts for the amount of detector material with
mass number A which has to be traversed by the incoming
cosmic ray, while σ NA

abs is the corresponding absorption cross
section. We note that the material thickness acquires an ef-
fective momentum-dependence due to cuts on track length
performed in the AMS-02 analysis. For simplicity, we will
neglect subdominant material admixtures and assume that
the AMS-02 detector is entirely comprised of carbon, as the
corresponding cross section error correlations are expected to
be very similar.

We can extract the cross-section error �
p̄/p
xs in the p̄/p data

by (quadratically) subtracting the unfolding error (as derived
above) from the acceptance error as given in Ref. [79]. Notice
that �

p̄/p
xs is the quadratic sum of the proton and antiproton

contribution to the cross-section uncertainties, i.e.,

�p̄/p
xs =

√(
�

p
xs

)2 + (
�

p̄
xs

)2
. (23)

From Eq. (22), it, furthermore follows that

�
p̄
xs

�
p
xs

= �σ
p̄C

abs

�σ
pC

abs

, (24)

at linear order. Here, �σ
p̄C

abs and �σ
pC

abs denote the (abso-
lute) uncertainties in the antiproton and proton absorption
cross sections on carbon, respectively, which we extract from
Ref. [76]. By combining Eqs. (23) and (24), we then extract
�

p
xs and �

p̄
xs. Of course, only �

p̄
xs contributes to the systematic

error in the antiproton flux.

3. Scale error

The absolute rigidity scale of measured events can be
affected by misalignment of the tracker planes and small un-
certainties in the magnetic field map of the inner tracker. The
AMS-02 collaboration estimated the corresponding system-
atic uncertainty by comparing electron and positron rigidity
measurements in tracker and electromagnetic calorimeter. The
scale error �

p̄/p
scale is directly given in Ref. [79]. Since the rigid-

ity scale error affects protons and antiprotons in the opposite
way, one finds �

p̄
scale = 0.5 �

p̄/p
scale.

4. Effective acceptance error

A residual systematic error in the effective folded ac-
ceptance is estimated by comparing efficiencies in several
detector parts as extracted from Monte Carlo simulation with
direct measurements. The effective acceptance error amounts
to �

p̄
eff. acc. = 5% at R = 1 GV and 2% at R > 20 GV [5]. Be-

tween 1 and 20 GV, we perform a logarithmic interpolation.
The effective acceptance error affects antiprotons and protons
in the same way, it cancels in the p̄/p ratio.

5. Geomagnetic error

To reject indirect cosmic rays produced in the earth’s atmo-
sphere, AMS-02 applies a rigidity cut above the geomagnetic
cutoff. The measured cosmic-ray fluxes (at low rigidity) ex-
hibit a small residual dependence on the exact numerical
choice of the cutoff factor. The corresponding systematic
error is estimated by varying the cutoff factor in the event
selection. The geomagnetic error is �

p̄
geo = 1% at R = 1 GV

and vanishes at R > 2 GV [5]; in between, we interpolate
logarithmically. Since the geomagnetic error is significantly
smaller for protons [5], we assume �

p̄/p
geo = �

p̄
geo.

6. Template shape and selection error

AMS-02 uses templates to separate signal from back-
ground events. Systematic uncertainties arise from the choice
of the template shape. The template error mostly affects
antiprotons. It is dominated by the contribution related to
the charge confusion of incoming protons. In addition, the
event selection is affected by a systematic error related to
the cuts on the track shape which are used to identify a
certain cosmic-ray species. The selection error again mostly
affects antiprotons. From Ref. [79], we can extract the sys-
tematic error on the event number which corresponds to the

quadratic sum
√

(�p̄/p
geo )

2 + (�p̄/p
template)

2 + (�p̄/p
selection)

2
. To de-

rive the individual errors, we use the geomagnetic error from
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FIG. 2. Reconstructed relative systematic errors in the AMS-02 antiproton (left) and p̄/p data (right). The contributions in the legend are
ordered according to their size at 10 GV as indicated by the arrow.

above and assume the following relative size of template and
selection errors: �

p̄/p
selection/�

p̄/p
template = 0.48 + 6.5/R0.78. This

function was chosen to reproduce the ratio of the two errors
at several rigidities as given in Ref. [5]. Since both errors are
mainly relevant for antiprotons, we take �

p̄
selection = �

p̄/p
selection

and �
p̄
template = �

p̄/p
template.

When (quadratically) summing the individual systematic
errors in the antiproton flux, a tiny mismatch with the pub-
lished overall systematic error is observed. We eliminate the
mismatch by rescaling all individual errors with a correction
factor which varies at most by a few percent from unity over
the full rigidity range. Figure 2 summarizes the resulting
systematic errors in the antiproton flux and the p̄/p ratio as
a function of rigidity.9

B. COVARIANCE MATRICES FOR AMS-02 ERRORS

After splitting the AMS-02 systematic error into its vari-
ous components, we will now assign correlation matrices ρ

p̄
a ,

ρ
p̄/p
a (a = unf, xs, scale, . . . ) to each of the suberrors. The

leading uncertainty (in the regime where the systematic error
dominates over the statistical error) derives from the absorp-
tion cross sections. The reported, i.e., absorption-corrected
(anti)proton flux scales inversely with the (anti)proton sur-
vival probability which was defined in Eq. (22). Therefore,
at linear order in the cross-section error, the correlation ma-
trices ρ

p̄
xs and ρ

p
xs are identical to the correlation matrices of

uncertainties in the absorption cross sections σ
p̄C

abs and σ
pC

abs ,
respectively, (assuming that the same rigidity bins are chosen)
which were derived in Sec. II F. Note that the correlation ma-
trix ρ

p̄/p
xs contains the contributions from ρ

p̄
xs and ρ

p
xs (weighted

9The reconstructed systematic errors obtained here differ slightly
from those in Ref. [21] as we choose to include additional informa-
tion provided in Ref. [79].

by the relative magnitude of the antiproton and proton cross-
section uncertainties).

For the remaining uncertainties, we follow the approach of
Refs. [20,21] and define the following correlation matrix10:

(
ρ p̄

a

)
i j = exp

[
−1

2

( log10(Ri/R j )

�a

)2]
, (25)

for each systematic uncertainty in the antiproton flux. Here,
Ri denotes the (mean) rigidity of the ith bin. The correlation
lengths (in units of energy decade) depend on the error under
consideration. The correlation matrices (ρ p̄/p

a )i j of uncertain-
ties in the p̄/p ratio are defined analogously.

Apart from the cross-section error, the effective acceptance
error plays a significant role. It is derived from a data ver-
sus Monte Carlo comparison and may receive contributions
from mismodeling of efficiencies in various detector parts or
from small errors in the detector composition model. Since
it amounts to a collection of different residual errors, it is
difficult to gain any intuitive insights into the corresponding
error correlations. However, a realistic estimate of the correla-
tion length can be obtained by analyzing the wiggliness of the
data/MC correction function employed by AMS-02. In the
AMS-02 analysis, the latter is determined from proton data
and then assumed to be identical for antiprotons (this is why
the effective acceptance correction and the corresponding er-
ror cancel in the p̄/p ratio). We extract the data/MC correction

10In Ref. [21], the covariance function approach has also been em-
ployed to model antiproton absorption cross section uncertainties and
a correlation length �xs = 1 was chosen. In contrast, the correlations
we employ in this paper—derived from our fit within the Glauber-
Gribov theory—do not reduce to simple correlation function. If we,
e.g., separate our antiproton correlation matrix into five sub-blocks
of equal size and fit each subblock to the form Eq. (25), we find
that the correlation length varies in the range �xs ∼ 0.5−3 (with �xs

increasing toward high rigidity).
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FIG. 3. Effective acceptance correction function extracted from
Ref. [80]. The wiggliness of the function provides a measure for
correlation length of the effective acceptance error in the AMS-02
antiproton data.

function from the proton flux analysis in the Ph.D. thesis [80]
by taking the ratio of effective and geometric efficiency.11 In
Fig. 3, we fit a polynomial of 12th degree in log10 R to the
error function which well reproduces its overall shape.12

From this fit, we can directly extract the correlations in the
effective acceptance error. By a subsequent fit of the correla-
tions to the form Eq. (25), we finally obtain13

�eff. acc. = 0.15 . (26)

As an alternative approach to derive the correlation length
of the effective acceptance, we have considered the correction
function shown in Fig. 3 to be an estimate for the systematic
uncertainty of the effective acceptance itself. To this end,
we have defined a likelihood for the parameter �eff. acc. from
Eq. (25) and two nuisance parameters describing the overall
size of the systematic uncertainty and a pure renormalization
uncertainty. A similar strategy was used in Ref. [11]. Profiling
over the three parameters, we obtain �eff. acc. ∼ 0.1 which is
comparable with the result above. While we are thus confident

11We note that the systematic errors derived in Ref. [80] differ
somewhat from the official AMS-02 proton analysis [81]. However,
we only use Ref. [80] to extract the correlation length of the ef-
fective acceptance error which should be hardly affected by small
analysis differences compared to Ref. [81]. We validated that our
determination of �eff. acc. is not particularly sensitive to the analysis
choices of Ref. [80] by a comparison with the (inofficial) AMS-02
helium analysis presented in Ref. [82]. The effective acceptance error
correlation length obtained from Fig. 3.31 in Ref. [82] differs by less
than 20% from the value obtained from Fig. 3 in the main text.

12We have tested polynomial fits of lower and higher degree, but
found that they do either not reproduce the shape of the data/MC
correction function well or induce unphysical wiggles.

13To perform a χ 2 fit, we have to assign an error in each rigidity bin
shown in Fig. 3. For definiteness, we have chosen this error to be be
5%. We note, however, that this error cancels out in the calculation
of the correlations. Therefore, the choice of error does not affect our
determination of the correlation length �eff. acc..

that we obtained a reasonable estimate of the effective accep-
tance correlations from the available public information, their
precise form can only be provided by the AMS-02 collabora-
tion. At the precision level, we also expect small differences
in �eff. acc. between different cosmic-ray species due to specific
analysis cuts. We neglect such differences in this paper.

The remaining uncertainties play a subleading role. They
are always subdominant to either the two previously discussed
systematic errors or the statistical error. For those errors, we
refrain from a detailed analysis and adopt the correlation
lengths estimated in [21]:

�scale = 4 , �unf = 1 , �geo = 1 ,

�selection = 0.5 , �template = 0.5 . (27)

In the next step, we build the covariance matrix for each
suberror by multiplying the entries of the correlation matrix
by the AMS-02 errors (as displayed in Fig. 2) in the corre-
sponding bins. The covariance matrices for each suberror are
then added to build the AMS-02 covariance matrix for the full
systematic error. Figure 4 illustrates the overall correlations in
the AMS-02 antiproton and p̄/p systematic errors as derived
by our method. It can be seen that the systematic error in
the antiproton flux is correlated on a shorter length scale
compared to the error in the p̄/p ratio. This is because the
effective acceptance error, which has a relatively short corre-
lation length, affects the antiproton flux, but not the p̄/p ratio.
The full AMS-02 covariance also containing the statistical
error is provided in the ancillary files.

IV. IMPLICATIONS FOR THE AMS-02
ANTIPROTON EXCESS

The AMS-02 error correlations can now be used to gain
insights into cosmic-ray spectra. Of particular interest is the
question how the correlations affect the interpretation of the
antiproton excess at R = 10−20 GV. The latter has been
considered as a possible dark matter signal in a number of
studies [6–13]. At the same time, the significance of the excess
is rather controversial (ranging from 1 to 5 σ within the men-
tioned references). The previous studies took the systematic
errors in the AMS-02 antiproton flux to be uncorrelated (or
modeled correlations in a simplistic way).

In the following, we will reinvestigate the antiproton excess
in Sec. IV C, fully including the derived correlations in the
AMS-02 systematic errors. We decided to perform two com-
plementary likelihood analyses on the AMS-02 data. The two
analyses differ substantially in the modeling of cosmic-ray
propagation and in the considered species. Hence, we can
directly verify the robustness of the conclusions we draw
on the correlations with respect to the propagation model.
Before we describe our analysis methods, in Sec. IV B we will
briefly review the production and propagation of cosmic rays
in Sec. IV A.

A. COSMIC-RAY PRODUCTION AND PROPAGATION

Cosmic rays are mainly composed of galactic matter which
has been energized by supernova shock acceleration. This
so-called primary component includes protons, helium, and
heavier nuclei like carbon and oxygen. Primaries, when they
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FIG. 4. Correlations of the AMS-02 systematic errors in the antiproton flux (left panel) and the p̄/p ratio (right panel). For better
orientation, we display the rapidity of every tenth bin.

propagate through the galaxy, induce secondary cosmic rays
by scattering processes in the interstellar disk. The source
term for a secondary a, which denotes its differential produc-
tion rate per volume, time, and energy, takes the form

qsec
a =

∑
i, j

4π

∫
dT ′

(dσi j→a

dT

)
n j φi(T

′) , (28)

where i runs over the relevant primary cosmic-ray species (φi

and T ′ denote their flux and kinetic energy, respectively) and
j over the target nuclei in the galactic disk (nj denotes their
number density). Secondary production is the main source of
certain nuclear cosmic rays like boron, but also plays a major
role in the generation of antimatter.

For antiprotons, which are the main concern of this pa-
per, we will employ the differential production cross sections
dσi j→ p̄/dT (with i, j = p, He) derived in Refs. [16,18]. Since
production cross sections are only known to a few percent
precision, they comprise an important source of systematic
errors in the modeling of antiproton fluxes. These will be fully
included in our cosmic-ray analysis. One of our fits will also
include the boron-to-carbon ratio B/C. The boron production
cross sections with uncertainties are taken from Ref. [9] (see
also Refs. [83,84]).

In addition to the secondary background, primary antipro-
tons can be induced by dark matter annihilation. The primary
source term reads

qprim
p̄ = ρ2

χ

m2
χ

〈σv〉
2

dN

dT
, (29)

where ρχ , mχ , and 〈σv〉 stand for the dark-matter energy
density, mass, and annihilation cross section. The antiproton
energy spectrum per annihilation is denoted by dN/dT . In this
paper, we will consider

χχ → b̄b (30)

as an exemplary annihilation channel and extract dN/dT from
Ref. [85]. The scan range for the dark matter mass is taken as
mχ =10–10 000 GeV.

Independent of their origin, cosmic rays follow com-
plicated trajectories on their passage through the galaxy.
Scattering on magnetic field inhomogeneities induces a ran-
dom walk which can be described as spatial diffusion.
Convective winds may blow charged particles away from the
galactic disk. In addition, cosmic-ray interactions with matter
lead to energy losses and annihilation, while Alfvén waves
induce reacceleration. The collection of processes is encoded
in the diffusion equation. In this paper, we will consider two
approaches to solve the diffusion equation following our pre-
vious studies [9,11]: the semianalytic solution in the two-zone
diffusion model [86–88] and a fully numerical solution based
on the GALPROP code [89–91]. In both schemes, diffusion
is assumed to occur homogeneously and isotropically in the
galactic halo. Magnetohydrodynamics considerations suggest
a power-law form of the diffusion coefficient K (in the GAL-
PROP code, K is denoted as Dxx),

K ∝ βηRδ , (31)

where R is the rigidity and β the velocity of the cosmic-ray
particle. While η = 1 in the standard implementation (as well
as in our previous works [9,11]), here, we will include η as a
free fit parameter. This change is partly motivated by recent
studies [92–95] which observed a substantial improvement
in the fit to secondary nuclear cosmic rays within the diffu-
sion model with free η. In addition, the freedom of η can
be viewed as a conservative choice since it tends to slightly
reduce the significance of a potential dark-matter signal (we
will return to this point later). From a physical perspective, an
increase of the diffusion coefficient (negative η) toward low
rigidity can be motivated by wave damping on cosmic rays
[96]. Following our previous work [9,11], we also include a
break in the power-law index δ at R ∼ 300 GV as required
to fit nuclear primary and secondary cosmic rays [97,98].
The high-energy break does, however, virtually not affect our
dark-matter analysis.

Both, the two-zone diffusion model and the numerical im-
plementation of GALPROP, allow for convective winds per-
pendicular to the galactic plane. Both include energy losses,
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annihilation, and reacceleration processes, although slight dif-
ferences in the implementation exist (concerning, e.g., the
modeling of the interstellar material and the spatial extension
of the reacceleration zone). For details, we refer to the original
references [86–91]. Some custom modifications to the default
setups have been described in our previous works [9,11].

B. METHODOLOGY

To investigate the significance a possible dark-matter
signal in the AMS-02 antiproton data, we consider two com-
plementary setups which we describe in the following. Within
both setups, we include the derived AMS-02 covariance ma-
trices of systematic errors for all species in the fit.

1. Setup 1

The first setup implements the approach described in
Ref. [9]. It is based on the two-zone diffusion model of
cosmic-ray propagation. The primary fluxes of p, He, C, N, O,
Ne, Mg, Si are taken as an input to predict the secondary fluxes
of antiprotons and boron. In addition, a primary antiproton
component from dark-matter annihilation is included. Solar
modulation is taken into account through an improved force-
field approximation [99], which—to describe charge-breaking
effects—contains one parameter in addition to the Fisk poten-
tial.

In setup 1, a simultaneous fit to the AMS-02 B/C ratio
[100], the AMS-02 antiproton flux [5], and the antiproton
flux ratio between AMS-02 and PAMELA [101] is performed.
The combination of B/C and p̄ is needed to determine the
propagation parameters and the significance of a dark-matter
excess, while the AMS/PAMELA flux ratio fixes the charge
breaking parameter in the solar modulation (see Ref. [9] for
details). The total goodness of fit is determined by χ2 =
χ2

p̄ + χ2
B/C + χ2

AMS/PAM which is evaluated with and without a
dark-matter component. Uncertainties in the production cross
sections of antiprotons and boron are fully included via co-
variance matrices [9].

2. Setup 2

The second setup follows the approach of Ref. [11] and
employs the GALPROP code for cosmic-ray propagation. The
primary source terms of proton and helium are modeled as
broken power laws. In addition, a primary antiproton source
term from dark-matter annihilation is included. From this
input, the full network of cosmic-ray propagation, scattering,
and propagation of secondaries is employed to determine the
proton, helium, and secondary antiproton flux. A major differ-
ence compared to setup 1 is that the propagation parameters
are constrained by primary fluxes and the p̄/p ratio instead
of the B/C ratio. Solar modulation is implemented through
the standard force-field approximation (with individual Fisk
potentials for both charge signs). A more refined treatment can
be evaded as the AMS-02 data is cut at rigidity R = 5 GV.
The propagation and solar modulation parameters as well as
the significance of a dark-matter excess is determined by a
simultaneous fit to the AMS-02 [81,102] and Voyager [103]
data on protons and helium as well as the AMS-02 antiproton-
over-proton [5] data. Uncertainties in the production cross

TABLE II. χ 2 values, number of free fit parameters, dark-matter
parameters and significances for the best fits within setup 1 (top) and
2 (bottom). For each setup the first and second column corresponds
to the fit without and with correlations in the AMS-02 errors, respec-
tively. The absolute χ 2 values given in each column refer to the fits
with (without) dark matter.

Setup 1
w/o corr. with corr.

χ 2
B/C (63 bins) 40.4 (41.4) 67.3 (67.3)

χ 2
p̄ (57 bins) 26.2 (28.8) 58.8 (58.9)

χ 2
AMS/PAM (17 bins) 11.5 (11.4) 11.2 (11.3)

χ 2
tot 78.2 (81.7) 137.3 (137.6)

No. of fit param. 7(9) 7(9)
mDM [GeV] 76 88
〈σv〉 [10−26 cm3/s] 0.73 0.4
�χ 2

tot 3.5 0.3
local sig. 1.9 σ 0.5 σ

global sig. 0.8 σ −
Setup 2

w/o corr. with corr.

χ 2
p̄/p (42 bins) 11.4 (16.2) 45.6 (46.4)

χ 2
p (50 bins) 1.8 (3.2) 104.5 (104.9)

χ 2
He (50 bins) 4.8 (4.5) 78.4 (77.6)

χ 2
p,Voy (9 bins) 1.8 (1.7) 2.9 (4.3)

χ 2
He,Voy (5 bins) 0.3 (1.0) 1.8 (2.0)

χ 2
tot 20.3 (27.2) 233.1 (236.3)

# of fit param. 16(18) 16(18)
mDM [GeV] 76 66
〈σv〉 [10−26 cm3/s] 0.91 0.74
�χ 2

tot 6.9 3.2
local sig. 2.6 σ 1.8 σ

global sig. 1.8 σ 0.5 σ

sections of antiprotons are again taken into account through
the covariance matrix matrix from Ref. [9].14

C. RESULTS

The results of our fits are summarized in Table II, which
provides the goodness-of-fit, dark-matter parameters and sig-
nificances for the best-fit points of setups 1 and 2. The χ2

values with and without a dark-matter component in the
antiproton flux are included in each column, the latter is dis-
played in parentheses. To highlight the impact of the derived
AMS-02 correlation matrices, we compare results with and
without the error correlations. The corresponding cosmic-ray
spectra and residuals are depicted in Figs. 5 and 6. The best-fit
propagation parameters within the two setups are listed in
Appendix C. The stated local significance of the dark-matter
signal refers to a �χ2 test for one degree of freedom. For the
global significance, we take into account the look-elsewhere

14We have checked that a slight difference of the covariance matrix
[9] compared to the one used in Ref. [11] does virtually not affect
our results.
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FIG. 5. Antiproton flux (top) and B/C flux ratio (bottom) of the fit without (left) and with dark matter (right) within setup 1. The solid red
and blue curves (light and dark gray in the print gray-scale version) denote the best-fit spectra at the top of the atmosphere with and without
correlations in the AMS-02 errors, respectively. The dashed curves denote the corresponding interstellar fluxes. The dotted curves in the upper
right plot show the respective best-fit contributions from dark matter. Error bars denote the statistical and systematic uncertainties (according
to the diagonal entries of the total experimental covariance matrix). The red (blue) data points in the lower panels show the residuals of the fit
with (without) correlation. For the red points, we remark that error bars only depict the diagonal entries of the covariance matrix, namely, they
do not show the impact of correlations.

effect by evaluating the probability distribution among mock-
data sets created under the background-only hypothesis.15

15Note that in general the global probability distribution of the
considered �χ 2 deviates from the standard χ 2 distribution with two
degrees of freedom as Wilks’ theorem does not apply to cases where
one parameter (in this case the dark-matter mass) is only defined
under the alternative hypothesis [104,105]. The difference is found
to be sizable for the low significances observed here.

To make the connection to previous studies, let us first turn
to the fit results without including error correlations. Up to
the extra propagation parameter η [cf. Eq. (31)], this case
corresponds to the default configuration in Ref. [9] (for setup
1)16 and to the configuration “XS uncertainty by covariance

16Compared to Ref. [9], we also updated the boron absorption cross
section in the interstellar disk by scaling the proton-carbon cross
section derived in Sec. II to boron. This led to a slight reduction in
χ 2

B/C but did otherwise not affect our analysis.

043017-11



HEISIG, KORSMEIER, AND WINKLER PHYSICAL REVIEW RESEARCH 2, 043017 (2020)

FIG. 6. Antiproton-to-proton ratio (top) and proton flux (bottom) of the fit without (left) and with dark matter (right) within setup 2. The
solid red and blue curves (light and dark gray in the print gray-scale version) denote the best-fit spectra at the top of the atmosphere with
and without correlations in the AMS-02 errors, respectively. The dashed curves denote the corresponding interstellar fluxes. We display the
cosmic-ray measurements of AMS-02 (proton and antiproton-to-proton ratio) and Voyager (proton). The cosmic-ray fit of the AMS-02 data is
restricted to rigidities between the dotted black lines. Residuals are shown only for the AMS-02 data points. Error bars denote the statistical
and systematic uncertainties (according to the diagonal entries of the total experimental covariance matrix). The red (blue) data points in the
lower panels show the residuals of the fit with (without) correlation. Print; gray-scale version.

matrix” in Ref. [11] (for setup 2). Not surprisingly, we qual-
itatively reproduce the results given in these references. An
antiproton excess is observed at R = 10–20 GV. The latter is
compatible with a dark-matter particle of mass mχ ∼ 80 GeV
and annihilation cross section 〈σv〉 ∼ 10−26 cm3/s into bot-
tom quarks. However, in setup 1, the global significance is
only ∼1 σ , while it reaches ∼2 σ in setup 2. In both setups,
the significance is slightly smaller compared to Refs. [9,11],
which is due to the additional freedom in the propagation. The
extra diffusion parameter η allows for a stronger “bending” of

cosmic-ray fluxes toward low energy and, hence, absorbs a
small fraction of the excess.

When we turn to the fits including the correlations in the
AMS-02 systematic errors, we observe an overall increase in
the χ2 values. This is to be expected, since—with a realistic
modeling of systematic errors—one expects a total χ2 com-
parable to the number of degrees of freedom (dof). Setup 1
nicely fulfills this criterion, which gives us confidence that
the derived AMS-02 error correlations are indeed realistic.
In setup 2, a somewhat higher χ2/dof ∼ 1.5 occurs. This
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could possibly stem from a mild underestimation of system-
atic errors in the proton and helium data of AMS-02. We
wish to point out that the unofficial AMS-02 helium analysis
performed in the Ph.D. thesis [82] indeed derived larger uncer-
tainties compared to the published data. Alternatively, it could
indicate that we slightly overestimated the correlation length
in the proton and helium systematic errors. Even if this is the
case, it would not affect our conclusions on the dark-matter
excess as we have explicitly verified.17

Our key result is that the significance of the dark-matter
excess decreases substantially, once we include error corre-
lations in the AMS-02 data. In setup 1, the preference for a
dark-matter signal disappears completely, but even in setup 2
the global significance drops below 1 σ . Correspondingly, the
best-fit dark-matter signal is reduced by about a factor of 2
in both setups. It is thus obvious that the systematic errors of
AMS-02 provide sufficient freedom to absorb the antiproton
excess, once their correlations are properly taken into account.

In both setups, the correlations in the absorption cross
section uncertainties, which we derived in Sec. II, play an
important role. However, there is also an interesting distinc-
tion: In setup 1, the effective acceptance error in the antiproton
flux contributes to reducing the significance of the antiproton
excess. In setup 2, the p̄/p ratio is employed in the fit (instead
of the antiproton flux). Since the effective acceptance error
cancels in p̄/p one might think that it is irrelevant in this case.
However, we observe that the fit then takes advantage of the
effective acceptance error in the proton flux. This can be seen
in Fig. 6, where the excess in p̄/p partly shifts into the proton
channel, once correlations are included.

We finally wish to emphasize that our conclusion, namely,
that the antiproton excess is explainable by systematic effects,
is not built on the systematic error correlations alone. Rather,
the full interplay between all uncertainties matters—those in
the cosmic-ray propagation, those in the antiproton production
cross sections, and those in the AMS-02 systematic errors. To
emphasize this point, let us turn to an example: We have tested
the significance of the antiproton excess in setup 2 without
including production cross section uncertainties and in a more
restrictive propagation setup (without the diffusion parameter
η). In this case, the correlations in the AMS-02 systematic
errors had a contrary effect: Compared to uncorrelated sys-
tematic errors, they strongly increased the significance of the
antiproton excess to ∼5 σ . The same observation has already
been made in Ref. [11]. We should thus refine our previous
statement: The AMS-02 systematic errors alone might not
absorb the observed spectral feature in the antiproton flux.
However, in combination with the other main uncertainties,
the correlated systematic errors can account for the previously
seen excess such that there is no longer a preference for a
dark-matter signal.

17Technically, we checked that the significance of the dark-matter
excess is only marginally affected when we set the correlation length
of the effective acceptance error to a smaller value of �eff. acc. ∼
0.1. Note that we chose to alter the correlations of the effective
acceptance error as other systematic error sources do not support
correlations on short rigidity scales.

Finally, we remark that our results should not be un-
derstood as to exclude the dark-matter interpretation of the
antiproton feature at R = 10–20 GV. Any improvement in the
description of cosmic-ray propagation and the modeling of
antiproton production cross sections will reduce the uncertain-
ties and help to determine whether an antiproton excess exists.
Both the dark-matter interpretation as well as the interpreta-
tion as a combination of systematic effects will thus undergo
further scrutiny in the next years. Obviously, additional in-
formation on systematic errors, provided by the AMS-02
collaboration, would be extremely useful in this regard.

V. CONCLUSIONS

Four years ago, the AMS-02 collaboration published their
first measurement of the cosmic-ray antiproton flux. After
background subtraction, it seemingly revealed a small resid-
ual component in the spectrum at rigidity R = 10−20 GV.
Since then, the antiproton excess has been subject to major
controversy in the community. On the one hand, its pos-
sible explanation in terms of annihilating dark matter has
caused a wave of excitement. In particular, since the fa-
vored mass mχ = 50−100 GeV and (hadronic) annihilation
cross section 〈σv〉 = 0.5−3 × 10−26 cm3 s−1 could also ten-
tatively be linked to the galactic center gamma ray excess.
On the other hand, systematic effects have been a matter of
concern.

Since the antiproton excess was first observed, major im-
provements in the modeling of the antiproton background and
the description of cosmic-ray propagation have been made.
But one decisive piece has been missing so far: the full co-
variance matrix of systematic errors in the AMS-02 antiproton
data. Correlated systematic errors are so important because
they can cause features in the residuals and potentially fake a
dark matter excess. Therefore, in this paper, we comprehen-
sively derived the correlations in the AMS-02 data with the
purpose of further scrutinizing the excess.

In the rigidity range R = 10−20 GV, the systematic er-
ror dominantly descends from cosmic-ray absorption in the
AMS-02 detector. The relevant nuclear cross sections which
enter the AMS-02 simulation carry major uncertainties. These
directly translate to the measured fluxes of antiprotons, pro-
tons, and heavier cosmic rays. We carefully computed the
mentioned absorption cross sections within the Glauber model
and performed a global fit to the data from nucleon-nucleus
and nucleon-nucleon scattering experiments, the latter of
which serve as input to the theoretical model. Including in-
elastic shadowing effects, we obtained an excellent fit to
the data. This computation also allowed us to reliably infer
the correlations of the absorption cross section error in the
AMS-02 systematics. Furthermore, we found a data-driven
estimate for correlations in the effective acceptance error
and used covariance functions for subdominant contributions
related to the AMS trigger and unfolding procedure. From
the correlations of individual errors, we constructed the co-
variance matrix for the total experimental error in the anti-
proton and proton flux as well as the p̄/p ratio. Similarly, we
also derived the corresponding covariances for He and B/C
which also enter our cosmic ray analysis. The final AMS-02
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covariance matrices are made available for public use in the
ancillary files [109].18

In the final step, we turned to a reevaluation of the antipro-
ton excess. To this end, we performed a spectral search for
dark matter in the AMS-02 antiproton data, where we fully
took into account the derived correlations in the AMS-02 sys-
tematic errors. Our fits also incorporate a detailed modeling of
the uncertainties in the antiproton production cross sections
which affect the prediction of the astrophysical antiproton
background. The results were obtained in two complementary
propagation setups with a conservative choice of propagation
parameters. In the first setup, we observe that the antiproton
excess disappears, once the AMS-02 systematic error corre-
lations are taken into account—without correlations, a local
(global) excess of 1.9 σ (0.8 σ ) had been found. In the second
setup, the systematic error correlations reduce the significance
of the excess from 2.6 σ (1.8 σ ) locally (globally) to 1.8 σ

(0.5 σ ). We conclude that with all uncertainties properly taken
into account, the AMS-02 data do not prefer a dark matter
interpretation at this stage. The fact that we obtain consistent
results in both propagation setups gives us further confidence
in the robustness of this conclusion.

While our findings emphasize the importance of error
correlations in the AMS-02 data, we remark that including
the systematic errors in the background model turns out to
be equally crucial. We found that ignoring uncertainties in
the antiproton production cross sections can even lead to the
(wrong) conclusion that AMS-02 systematic error correlations
increase the significance of the antiproton excess. Only the
interplay between correlated errors in the data, uncertainties in
the antiproton production and sufficient freedom in the cosmic
ray propagation allows the fit to fully absorb the antiproton
excess (without a dark-matter component).

Our result should not be understood as to exclude a dark-
matter candidate with mass mχ = 50−100 GeV and thermal
annihilation cross section. Rather, with the full account of sys-
tematic errors, our cosmic-ray fit is only weakly sensitive to
dark matter of this type. It can simply not distinguish between
a dark-matter excess at the 10% level and a correlated fluc-
tuation in the systematics. Further reducing these systematics
must be a main objective in the next years. It is of paramount
importance to strengthen the efforts to precisely measure
cosmic-ray cross sections at accelerators. At the same time,
existing and upcoming nuclear cosmic-ray data will help to
further advance the physics of cosmic-ray propagation. In the

precision era, which cosmic-ray physics has entered, it is no
longer the statistics, but the control of systematic errors which
decides on the prospects of indirect dark-matter detection.
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APPENDIX A: NUCLEON-NUCLEON
CROSS-SECTION FIT

In this Appendix, we display the best-fit values and covari-
ance matrices for the parametrizations of the nucleon-nucleon
cross sections and the slopes of the differential inelastic cross
sections as described in Sec. II D. The best-fit values and the
corresponding covariance matrices read

18The diagonal components of the covariance matrices correspond
to the errors published by AMS-02. The off-diagonal components
have been derived in this paper.

⎛
⎜⎜⎜⎝

c1

c2

c3

c4

c5

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0.0995
1.36
2.01

−2.25
0.816

⎞
⎟⎟⎟⎠, Vσ p̄p =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.0322 −0.0802 0.079 −0.048 0.0161

−0.0802 0.216 −0.231 0.153 −0.0542

0.079 −0.231 0.284 −0.216 0.0806

−0.048 0.153 −0.216 0.183 −0.0723

0.0161 −0.0542 0.0806 −0.0723 0.0296

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A1)

⎛
⎜⎝

c6

c7

c8

c9

⎞
⎟⎠ =

⎛
⎜⎝

0.0505
1.56
1.42

−0.933

⎞
⎟⎠ , Vσ p̄n =

⎛
⎜⎜⎜⎝

0.0872 −0.224 0.241 −0.103

−0.224 0.659 −0.838 0.4

0.241 −0.838 1.37 −0.773

−0.103 0.4 −0.773 0.549

⎞
⎟⎟⎟⎠ , (A2)
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⎛
⎜⎜⎜⎜⎜⎝

c10

c11

c12

c13

c14

c15

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−0.424
2.51

−9.48
20.8

−16.5
3.08

⎞
⎟⎟⎟⎟⎟⎠ , Vσpp =

⎛
⎜⎜⎜⎜⎜⎝

0.00942 −0.0303 0.0719 −0.0996 0.0564 −0.00744
−0.0303 0.11 −0.293 0.434 −0.257 0.036
0.0719 −0.293 0.875 −1.38 0.853 −0.125

−0.0996 0.434 −1.38 2.25 −1.43 0.215
0.0564 −0.257 0.853 −1.43 0.919 −0.142

−0.00744 0.036 −0.125 0.215 −0.142 0.0227

⎞
⎟⎟⎟⎟⎟⎠, (A3)

⎛
⎜⎜⎜⎝

c16

c17

c18

c19

c20

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0.0480
0.417

−0.345
−0.626
0.443

⎞
⎟⎟⎟⎠ , Vσpn =

⎛
⎜⎜⎜⎝

0.021 −0.0539 0.0738 −0.0588 0.0179
−0.0539 0.147 −0.218 0.183 −0.058
0.0738 −0.218 0.372 −0.344 0.116

−0.0588 0.183 −0.344 0.336 −0.118
0.0179 −0.058 0.116 −0.118 0.0424

⎞
⎟⎟⎟⎠ , (A4)

(d1

d2

d3

)
=

( 10.7
5.81

0.320

)
, Vβ p̄p =

( 0.386 −0.371 −0.0793
−0.371 0.533 0.075
−0.0793 0.075 0.019

)
, (A5)

(d4

d5

d6

)
=

( 7.76
−5.24
0.794

)
, Vβpp =

( 0.111 −0.0961 −0.0272
−0.0961 0.0864 0.0237
−0.0272 0.0237 0.00827

)
. (A6)

For the corresponding uncertainty bands in the nucleon-
nucleon cross sections and slopes, see Table III.

APPENDIX B: ERROR CORRELATIONS IN THE AMS-02
PROTON, HELIUM AND B/C DATA

The calculation of the covariance matrices of AMS proton,
helium, and B/C errors proceeds analogously to those for
antiprotons and p̄/p which was described in Sec. III. We first
split the systematic errors into their components.

1. Proton flux

In the proton case, the error related to absorption cross sec-
tions is 1% at R = 1 GV, 0.6% from R = 10−300 GV and
0.8% at R = 1800 GV [81]. Between the given rigidities, we
interpolate logarithmically. The effective acceptance error is
obtained by (quadratically) subtracting the cross-section error
from the acceptance error given in the Supplemental Material
of Ref. [81]. The unfolding, scale, and trigger uncertainties
can directly be taken from the same reference.

2. Helium flux

Cross-section errors are taken to be 1% for helium over
the full rigidity range [102]. Effective acceptance, unfolding,
scale, and trigger error are extracted in the same way as for
the proton flux from the Supplemental Material of Ref. [102].

3. B/C flux ratio

For B/C, we employ the effective acceptance error of 1%
over the full rigidity range [100]. The cross-section error is ob-
tained by (quadratically) subtracting the effective acceptance

TABLE III. Uncertainties on the nucleon-nucleon cross sections
and slopes.

σ p̄p σ p̄n σpp σpn β p̄p βpp

1 − 2% 2 − 14% ∼ 1% 1 − 2% 4 − 7% 3 − 6%

error from the total acceptance error given in the Supplemen-
tal Material of [100]. The systematic unfolding, scale, trigger,
and background subtraction errors are taken from the same
reference. The background subtraction error (which was ab-
sent in the proton and helium fluxes) is related to the spallation
of heavier cosmic-ray species within the AMS detector.

After characterizing the individual error components, we
assign a correlation matrix to each of them (following our
approach in Sec. III B). The cross-section error correlations
for the proton flux can directly be taken from our fit (see
Sec. II F). The cross-section error correlations for helium and
B/C are expected to be of similar shape. Therefore, we refrain
from performing cross-section fits for the absorption of these
species and rather adopt the correlations from the σpC-fit.
However, the natural unit for correlations is the momentum
(per nucleon) which (approximately) corresponds to half the
rigidity in the case of nuclei. Since the AMS data are provided
in terms of the rigidity, we thus have to stretch the correlations
from the proton case by a factor of two in order to apply them
to helium and B/C.19

The remaining correlations matrices are again taken to be
of the form Eq. (25). We consistently choose the scale and ef-
fective acceptance correlation lengths as in Eqs. (27) and (26).
For the trigger error which contains the geomagnetic error, we
take �trigger = 1 and for the unfolding error �unf = 0.5 [20].
Similarly, for the background subtraction error which only
affects B/C, we assume �background = 1 (since the contamina-
tion should be strongly correlated between a few neighboring
bins).

The main difference compared to the covariance matrices
derived by Ref. [20] consists of the modeling of the accep-
tance error correlations (including those related to absorption
cross sections and effective acceptances). These correlations
have been obtained by educated guesses in Ref. [20], while
we extracted the cross-section correlations from our fits in the

19Note that very recently measurements of nucleus-carbon inter-
action cross sections with the AMS-02 detector have been reported
[106].
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TABLE IV. Propagation, solar-modulation, and dark-matter parameters yielding the best fit within the setup 1 (left) and 2 (right) with and
without including correlations in the AMS-02 systematic errors. The values given in each column refer to the fits with (without) dark matter.

Setup 1
w/o corr. with corr.

K0 [kpc2/Gyr] 38.9 (37.8) 40.3 (39.8)
δ 0.468 (0.472) 0.462 (0.464)
η −1.05 (−1.12) −0.85 (−0.86)
Va [km/s] 43.7 (44.2) 45.5 (45.1)
Vc [km/s] 0 (0) 0 (0)
L [kpc] 4 (4) 4 (4)
φ0 [GV] 0.72 (0.72) 0.72 (0.72)
φ1 [GV] 0.81 (0.77) 0.75 (0.75)

mDM [GeV] 76 88
〈σv〉 [10−26 cm3/s] 0.73 0.4

Setup 2
w/o corr. with corr.

D0 [1028 cm2/s] 6.98 (2.77) 3.89 (2.26)
δ 0.338 (0.421) 0.385 (0.383)
η −0.03 (−1.01) −0.57 (−0.61)
vA [km/s] 17.4 (15.5) 16.5 (17.2)
v0,c [km/s] 12.4 (2.23) 5.45 (5.85)
zh [kpc] 6.87 (3.27) 4.08 (2.39)
ϕSM,AMS,p,He [GV] 0.59 (0.62) 0.60 (0.61)
ϕSM,AMS, p̄ [GV] 0.53 (0.56) 0.69 (0.51)
γ1,p 1.93 (2.16) 2.05 (2.10)
γ1 1.94 (2.24) 2.16 (2.21)
γ2,p 2.47 (2.41) 2.43 (2.43)
γ2 2.43 (2.37) 2.39 (2.39)
R0 [GV] 7.58 (1.28) 9.19 (1.38)
s 0.46 (0.30) 0.50 (0.43)

mDM [GeV] 76 66
〈σv〉 [10−26 cm3/s] 0.91 0.74

Glauber-Gribov theory and effective acceptance correlations
through the procedure described in Sec. III B.

APPENDIX C: COSMIC-RAY PROPAGATION
PARAMETERS

Table IV summarizes the best-fit propagation parameters
for the two setups considered. For the definition of all pa-
rameters [except for η which was defined in Eq. (31)] and
the respective details of the propagation model we refer to
Refs. [9] (for setup 1) and [11] (for setup 2). In setup 1, a

degeneracy between K0 and L arises and, therefore, L was
fixed to the lowest value L = 4 kpc suggested by positron
data [9] (the value L = 4 kpc is also motivated from a recent
Be/B analysis in the same propagation setup [107], see also
Ref. [108]). In addition to the parameters given in the table, in
both setups a rigidity break in the diffusion coefficient is taken
into account in the same way as in Refs. [9] and [11], i.e.,
�δ = 0.157, Rb = 275 GV, s = 0.074, and δ − δ2 = 0.12,
R1 = 300 GV, respectively. Note that although some parame-
ters in the two setups are equivalent, we choose the very same
notation as in the respective references to avoid ambiguities.
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