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Intrinsic quantum Ising model on a triangular lattice magnet TmMgGaO4
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The rare-earth magnet TmMgGaO4 is proposed to be an intrinsic quantum Ising magnet described by the
antiferromagnetic transverse field Ising model (TFIM) on a triangular lattice, where the relevant degrees of
freedom are the nondegenerate dipole-multipole doublets of the Tm3+ ions and the transverse field has an
intrinsic origin from the weak splitting of the doublet. We compare this special doublet of Tm3+ with the
dipole-octupole Kramers doublet. We study the proposed effective model for the Tm-based triangular lattice and
consider the effects of external magnetic fields and finite temperatures. From the orthogonal operator approach,
we show that the TFIM with the three-sublattice intertwined ordered state agrees with the experiments and
further clarify the discrepancy in the numbers of the magnetic sublattices and the measured magnon branches.
We make specific predictions for the evolution of the magnetic properties with the external magnetic field.
Furthermore, we demonstrate that an emergent U(1) symmetry emerges in thermal melting of the underlying
orders and at the criticality, and summarize the previously known signatures related to the finite-temperature
Berezinskii-Kosterlitz-Thouless physics. We discuss the broad relevance of intrinsic quantum Ising magnets to
many other systems, especially Tm-based materials.

DOI: 10.1103/PhysRevResearch.2.043013

I. INTRODUCTION

Frustrated magnetism is an exciting field in modern
condensed-matter physics and has been under active in-
vestigation for the past few decades. Generally speaking,
frustration arises from competing interactions among local
moments that cannot be satisfied simultaneously. The strong
competition can give rise to exotic low-energy behaviors in
frustrated magnets. This feature retains in the simplest classi-
cal antiferromagnetic Ising model, where for some particular
frustrated lattices (triangular [1], Kagomé [2], pyrochlore
[3,4]), there are macroscopic degenerate ground states asso-
ciated with a finite zero-point entropy.

An interesting and important question to consider is the
fate of classical macroscopic degeneracy in the presence of
quantum fluctuations. Quantum fluctuations allow tunneling
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within the macroscopic degenerate manifold, and therefore
will lift the macroscopic degeneracy. Depending on lattice
structures, the resulting quantum ground state can be either
magnetically ordered or disordered [5–9], owing to the so-
called order-by-disorder or disorder-by-disorder mechanism
[5,8,10–16]. In practice, the simplest way to introduce quan-
tum fluctuations is to add a transverse field to the Ising
spins. The resulting model is the transverse field Ising model
(TFIM), which has not only received considerable theoretical
attention, but is also achievable in experiments. This model
is sign-problem free in any lattice, therefore it can be effi-
ciently dealt with by unbiased quantum Monte Carlo (QMC)
simulations. These qualities render TFIM a good platform for
collaborations among experimental, theoretical, and numeri-
cal communities.

In realistic materials, two distinct physical origins of
the transverse field were proposed and have been summa-
rized in Ref. [17]. These two distinct ones are referred
to as extrinsic origin and intrinsic origin. For the extrin-
sic origin, the transverse spin components act as ordinary
magnetic dipole moments, hence the transverse field is di-
rectly achievable with the physical magnetic field along the
transverse directions. This mechanism applies to various Co-
based Ising magnets such as CoNb2O6 [18–20], BaCo2V2O8

[21–23], and SrCo2V2O8 [24,25]. For the intrinsic origin, the
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transverse field is generated internally and models the intrin-
sic crystal-field splitting between two relevant crystal-field
levels that are responsible for the low-temperature magnetism.
It was further proposed that rare-earth magnets with low
crystal-field symmetries would automatically generate such
an intrinsic transverse field for the local moments with even
number of electrons. This is because the low crystal-field
symmetries cannot provide enough symmetry operations that
protect the degeneracy of the crystal-field levels. Neverthe-
less, the intrinsic transverse field could also emerge in the case
with high crystal-field symmetries. This was emphasized for
TmMgGaO4 in the introduction of Ref. [17] as an example of
the intrinsic transverse field.

The TFIM with an intrinsic transverse field was first pro-
posed for TmMgGaO4 in Ref. [26]. TmMgGaO4 [27–29]
is a Mott insulator in which the Tm3+ ions form a perfect
triangular lattice. Experimentally, thermodynamic [27–29]
and detailed neutron-scattering [26] measurements have been
performed, and the elementary spin-wave-like excitation spec-
trum with respect to the magnetically ordered ground state has
been well recorded [26]. In this system, the two lowest crystal
field levels of the Tm3+ ion that contribute to the local mo-
ment are the point-group-symmetry-demanded singlets. This
intrinsic transverse field arises from the intrinsic splitting be-
tween the two singlets. The crystal field splitting is demanded
by symmetry and appears at the atomic level, so it cannot
be ignored compared to exchange interactions and must be
considered in the first place. This is explained in detail in
Secs. II and III. Moreover, in TmMgGaO4 the transverse and
longitudinal spin components behave fundamentally different
in nature; the system exhibits antiferromagnetic dipolar order
coexisting with the preformed multipolar order due to the
intrinsic transverse field [26]. The resulting state is an example
of the intertwined multipolar order, originally proposed in the
context of non-Kramers doublet systems in rare-earth magnets
[30], and also applies for TmMgGaO4.

In this paper, we systematically explore our proposed
TFIM for TmMgGaO4 and understand the physics of the Tm-
based triangular lattice antiferromagnets from a combination
of techniques and perspectives that involve the microscop-
ics, the thermodynamic and neutron scattering experiments,
the many-body modeling, the QMC simulation and mean-
field analysis, and the connection between the theory and the
measurements. Our effort in this paper requires a sophisti-
cated blending and mutual feedback amongst the microscopic
physics, the many-body physics, and the experimental under-
standing. Therefore, this paper does not have a single thread
of logic flow in the organization of the sections. To guide the
readers well, we outline the content of the remaining parts of
the papers here. In Sec. II, we explain the nondegenerate na-
ture of the two lowest crystal field levels of the Tm3+ ion and
refer them as the nondegenerate dipole-multipole (DM) dou-
blet. We further compare the Tm-based nondegenerate DM
doublet with the well-known dipole-octupole (DO) doublet. In
Sec. III, we explore the symmetry properties of the effective
spin operators, write down the TFIM for TmMgGaO4, and
review the experiments. In Sec. IV, we combine mean-field
calculation, QMC simulation, and theoretical arguments to
establish the finite temperature phase diagram of our pro-
posed TFIM on the triangular lattice. We explore the thermal

FIG. 1. The splitting of the J = 6 total moment of the Tm3+ ion
in TmMgGaO4 under the D3d crystal electric field (CEF). The energy
separation, h, between the ground-state singlet and the first excited
singlet is much smaller than the energy gap, �, to the other excited
crystal-field levels, and the two lowest levels are responsible to the
low-temperature magnetic properties.

Berezinskii-Kosterlitz-Thouless (BKT) phase and transitions,
as well as the emergent continuous U(1) symmetry near
the transitions. In Sec. V, we apply the orthogonal operator
approach to explain the selective measurements. From this
understanding, we were able to establish the connection be-
tween the theoretical results and the experiments. We establish
the magnetic excitations in different phases and point out the
qualitative differences between them. We clarify the the dis-
crepancy between the magnetic sublattices and the branches
of the measured magnon excitations in the ordered side. In
Sec. VI, we explore the effect of the external magnetic fields
in various physical quantities. We show the nonmonotonic
behaviors of the magnetic Bragg peak in magnetic fields, the
evolution of the magnetic excitation with the fields, and the
thermodynamic behaviors. In Sec. VII, we summarize our
understanding about TmMgGaO4 and point out the relevance
of the intrinsic TFIM for other Tm-based magnets. In the
Appendix, we provide the results from the linear spin-wave
theory where the full structures of the magnetic excitations are
available. These features are compared with the results from
the selective measurements.

II. NONDEGENERATE DIPOLE-MULTIPOLE DOUBLET
OF Tm3+ ion

For completeness, we explain the microscopics of the
Tm3+ [26] in TmMgGaO4. The Tm3+ ion has a total orbital
angular moment L = 5 and total spin moment S = 1, and the
spin-orbit coupling gives a total moment J = 6 [26,28]. The
13-fold degeneracy of the J moment is split by the crystal
field. The ground state and the first excited state of Tm3+

are both singlets (see Fig. 1) and are well separated from
other excited levels. These two states together are dubbed DM
doublet and are given as a linear superposition of |Jz = 3n〉
with

|�g〉 = c6[|6〉 + |−6〉] + c3[|3〉 − |−3〉] + c0 |0〉, (1)

|�e〉 = c′
6[|6〉 − |−6〉] + c′

3[|3〉 + |−3〉], (2)
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FIG. 2. (a) Definition of the triangular lattice. The three sub-
lattices are marked in blue, red, and black, respectively. (b) The
Brillouin zone of the triangular lattice.

where |3n〉 (with n ∈ Z) refers to the quantum number of
Jz. |�g〉 (|�e〉) refers to the ground state (the first excited
crystal-field level), and the two singlets carry A1g and A2g

representation of the D3d point group, respectively. Here
c6, c3, c0, c′

6, c′
3 are real numbers with |c6| ≈ |c′

6| � c3, c′
3, c0.

Their nature of the one-dimensional (1D) irreducible repre-
sentation can be simply seen by applying the threefold rotation
operation:

e−i 2π
3 Jz |Jz = 3n〉 = |Jz = 3n〉. (3)

Other integer spin numbers do not have this property, and they
often give rise to two-dimensional (2D) representations of the
D3d point group. Due to the integer spin nature for Tm3+,
there is no Kramers-theorem-demanded degeneracy.

Note that both |�g〉 and |�e〉 are nonmagnetic, and thus
thinking locally about the single-ion physics would not lead
to any magnetism. The magnetism should come from the ex-
change interaction between the local moments. The intrinsic
competition between the single-ion physics and the exchange
is captured and modeled as an intrinsic TFIM [26] and will be
explained in Sec. III.

As the Tm3+ DM doublet here was sometimes referred to
as a non-Kramers doublet, we clarify their difference. The
usual non-Kramers doublet that occurs in, for example, the
Pr3+ ion [31,32] of Pr2Zr2O7 and Pr2Ir2O7 or other rare-earth
triangular lattice magnets [30], is composed of two degener-
ate crystal-field states, and their degeneracy is not protected
by time reversal but protected by the point-group symmetry.
These states comprise the 2D irreducible representation. In
comparison, the Tm3+ doublet are two singlets with two inde-
pendent 1D irreducible representations.

It is instructive to compare the DM doublet of Tm3+ with
the DO doublet that also arises from the 1D irreducible repre-
sentations of the D3d point group [30,33–36] (see Table I). For
the DO doublet, the wave function of each state in the doublet
is a linear superposition of |Jz = 3n/2〉 where n is an odd
integer. The DO doublet was found to be applicable to Nd3+

in Nd-based pyrochlores [37–44], Sm3+ in Sm2Ti2O7 [45,46],
Ce3+ in Ce2Sn2O7 [34,47,48], and Ce2Zr2O7 [49–51] and
Er3+ in the spinels [52,53]. DO doublets can broadly exist in
magnets with a D3d point-group symmetry, other lattices such
as honeycomb magnets could support the DO doublet [54]. As
a parallel thought, the Tm3+ DM doublet could broadly exist
in many other structures (see Sec. VII).

TABLE I. The comparison between the nondegenerate dipole-
multipole (DM) doublet of Tm3+ and the dipole-octupole (DO)
doublet for Kramers ions.

Properties Nondegenerate DM doublet DO doublet

original moment integer half-odd integer
time reversal Sz → −Sz Sz → −Sz

time reversal Sx,y → Sx,y Sx,y → −Sx,y

degeneracy two separate singlets 2-fold degenerate
threefold rotation eigenvalue +1 eigenvalue −1

III. EFFECTIVE MODEL OF TmMgGaO4

Like any two-level systems, the Tm3+ DM doublet can be
captured by effective spin-1/2 operators that operate on the
doublet. We define the effective spin-1/2 operator Si on each
Tm site as

Sx
i = i

2
(|�i,e〉〈�i,g| − |�i,g〉〈�i,e|), (4)

Sy
i = 1

2
(|�i,g〉〈�i,g| − |�i,e〉〈�i,e|), (5)

Sz
i = 1

2
(|�i,g〉〈�i,e| + |�i,e〉〈�i,g|). (6)

One sees from the definition that |�i,g/e〉 are eigenstates of Sy,
while the Sx and Sz introduce hybridization between |�i,g/e〉.
The point-group symmetry demanded a splitting between
|�i,g〉 and |�i,e〉 is modeled as an intrinsic transverse field on
Sy, i.e., −h

∑
i Sy

i , where h is the splitting. Moreover, the x
and y in Sx and Sy are defined in the internal Hilbert space
of the DM doublet, |�i,g〉 and |�i,e〉, and have no connection
to the real space. Nevertheless, we often refer to these two
components as in-plane components for convenience. Sz has
its physical meaning both for the real space and for the internal
Hilbert space. Under the time reversal (T ), the effective spin
transforms as

T : Sx
i → +Sx

i , Sy
i → Sy

i , Sz
i → −Sz

i . (7)

Sx and Sy are even under T and transform as even-order mul-
tipoles under the crystal symmetries. From |�g〉 and |�e〉, it is
clear that Sx and Sy mostly connect |Jz = 6〉 and |Jz = −6〉
and mostly involve the 12th-order multipole moments. Sz

is odd under T and transforms as a dipole moment. The
low-temperature magnetization is provided by 〈∑i Sz

i 〉. While
the dipole moment, Sz, is probed by neutron scattering, the
multipole moments are hidden or invisible in conventional
probes and are often referred to as hidden orders or hidden
components in the literature.

From the saturated moment values in the magnetic field,
one infers that the Tm local moment is almost an Ising spin.
This is also understood from the wave functions of |�g〉 and
|�e〉 where |Jz = ±6〉 are dominant. The exchange between
the Tm local moments would primarily be an Ising interaction.
The exchange between the transverse components are strongly
suppressed as Sx and Sy are high order multipoles and they
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are even higher than the quadrupoles. The resulting effective
Hamiltonian for the interacting Tm local moment is the TFIM

H =
∑
〈i j〉

JzzS
z
i Sz

j −
∑

i

(
hSy

i + BSz
i

)
, (8)

where B ≡ μBg‖Bz represents the external magnetic field
along the z direction and spins locate on a triangular lattice,
as shown in Fig. 2. In Ref. [26], we actually included a tiny
second-neighbor Ising interaction J2 to improve the fitting to
the experiments. As the interaction energy scale between the
Tm local moment is already quite small, the tiny J2 does
not change the qualitative physics in this paper. Thus, we
rely on the above minimal model to capture the essential
physics about TmMgGaO4 and other intrinsic quantum Ising
magnets. Nevertheless, if one is more interested in the quanti-
tative aspects, other nonessential and nonuniversal ingredients
should be included into our Hamiltonian. These would involve
the long-range dipole-dipole (Sz-Sz) interaction and the Van
Vleck process through the excited crystal-field states.

The Tm3+ magnetic moment is much larger than the
one for the Yb3+ ion in YbMgGaO4. Although the first-
neighbor dipole-dipole interaction may be incorporated with
the superexchange interaction and modelled as a total Jzz in-
teraction, we here estimate the further neighbor dipole-dipole
interaction and find that the second-neighbor dipole-dipole
interaction is 0.48 K, the third neighbor is 0.31K, the fourth
neighbor is 0.134 K, the fifth neighbor is 0.092 K, and
the sixth neighbor is 0.053K. The Curie-Weiss temperature
is (−19 K) [26] and was obtained from fitting the low-
temperature magnetic susceptibility without subtracting the
Van Vleck contribution. If one simply attributes all the further
neighbor interactions beyond the first neighbor to the dipole-
dipole interactions, one readily finds that the first-neighbor
interaction Jzz is ∼ 11.5K and should dominate over further
neighbor interactions. Thus, it is legitimate for us to keep only
the first neighbor or first few neighbors in TFIM. Moreover,
the energy gap from the doublet to the lowest crystal-field
excited level is smaller than the one in YbMgGaO4 [55].
Thus the virtual Van Vleck process could further bring extra
ingredients into the quantitative modeling.

Here we briefly review the previous experimental efforts.
To the best of our knowledge, the single crystal sample
of TmMgGaO4 and its basic structure and thermodynamic
properties were reported in Ref. [27]. Even though the mea-
surements were performed above 1.8K, the magnetization
results already show the strong Ising-like features. More low-
temperature thermodynamic measurements were obtained in
Ref. [28], and the results were interpreted from classical
Ising moments with competing Ising interactions. The low-
temperature magnetic state was suggested to be a stripe order
with an alternating Ising spin arrangement on two magnetic
sublattices, and the transition to the stripe order was suggested
to occur at ∼ 0.27 K. This spin state has an ordering wave vec-
tor at M point in the Brillouin zone. The detailed elastic and
inelastic neutron scattering measurements were performed in
Ref. [26] together with the low-temperature thermodynamic
measurements. The appearance of the magnetic Bragg peak
at K point coincides with the peak at ∼1 K in the specific
heat data. The ordering wave vector K indicates a three-
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FIG. 3. Phase diagram of the model in Eq. (8). Here we set the
energy unit Jzz = 1. Two three-sublattice ordered phases, I (orange)
and II (green), and a polarized phase are found in the phase diagram.
The red dot represents quantum phase transition with (2+1)d XY
universality class. The left (a) is the mean-field result and the right
(b) is the Monte Carlo result that is calculated at inverse temperature
β = 8L with system sizes N = L × L (L = 6, 12, 24). The phase
boundary from phase I to II is difficult to capture in the current
algorithm and are schematic here.

sublattice magnetic order, which differs from the proposal
of stripe order in Ref. [28]. Moreover, the data-rich inelastic
neutron-scattering measurements show a coherent spin-wave-
like excitation with a well-defined dispersion.

To reconcile these experiments and the DM nature of the
Tm3+ local moments, one concludes with an intertwined dipo-
lar and multipolar orders for the ground state of TmMgGaO4

[26],
〈Sz〉 �= 0 with a three-sublattice structure, (9)

〈Sx〉 �= 0 and/or 〈Sy〉 �= 0. (10)

From the microscopics and our modeling, it is obvious to see
that the invisible component, Sy, is nonzero as it is polarized
by the intrinsic transverse field. In next few sections, we
will examine whether our modeling can provide useful un-
derstanding of the physical properties and insights for future
experiments on TmMgGaO4 and/or other Tm-based triangu-
lar lattice magnets.

IV. PHASE DIAGRAM

A. Mean-field analysis

The TFIM on the triangular lattice has been well studied
in the absence of the external magnetic field [6,56], while the
situation with the longitudinal field has not been investigated
yet. To gain some physical insight into the ground-state phase
diagram, we first tackle with the Weiss mean-field approxima-
tion by decoupling interactions between different spins as

Sz
i Sz

j → 〈
Sz

i

〉
Sz

j + Sz
i

〈
Sz

j

〉 − 〈
Sz

i

〉〈
Sz

j

〉
. (11)

Here the mean-field order parameter 〈Sz
i 〉 needs to be solved

self-consistently. The mean-field phase diagram is depicted
in Fig. 3(a).

In the Ising limit (without the transverse and longitudinal
fields), the system lies at a classically critical state that hosts a
macroscopic ground-state degeneracy: Any spin configuration
with 2-up-1-down or 1-up-2-down has the minimal energy.
With introducing the transverse field h, quantum fluctuations
allow quantum tunneling within the massively degenerate
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manifold. This quantum tunneling lifts the macroscopic
degeneracies and eventually stabilizes a three-sublattice long-
range ordered phase (dubbed the three-sublattice I state) as
the ground state owing to the quantum order-by-disorder
mechanism. Since the three-sublattice ordering is entirely
contributed by the quantum fluctuations, it is relatively weak
and is controlled by quantum fluctuation h in a nonmonotonic
fashion: With h being too small, the quantum order-by-
disorder effect is weak, while for a very large h the polar-
ization effect becomes more important, suppresses the three-
sublattice ordering, and drives the system into the “quantum
disordered” state where the spins are fully polarized along the
transverse direction. Although the above results are obtained
mean-field level, they are consistent with those obtained via
quantum dimer model mapping where quantum fluctuations
are taken into account in a perturbative manner [5,6].

As the external longitudinal field B is applied at the Ising
limit, the system immediately becomes unstable against the
magnetic ordering due to the criticality at this point. The
resulting state is another three-sublattice ordered state called
1/3-plateau state with a 2-up-1-down structure on each tri-
angular plaquette. Unlike the pure quantum origin in the I
phase, the three-sublattice ordering of the plateau state arises
at the classical level and are more stable. The plateau state
remains as the ground state upon increasing the magnetic field
until the system becomes fully polarized at Bc = 3Jzz through
a first-order transition. When the quantum fluctuation h is
switched on, the three-sublattice plateau state becomes the
quasiplateau phase (dubbed three-sublattice II state) because
the total magnetization is no longer a good quantum number.
Moreover, as the three-sublattice I phase is generated by the
quantum fluctuations and is fully gapped, it is stable against
the weak perturbations. But since that the ordering is rather
weak, a small external field B could drive the system to the
quasiplateau state across a phase transition. The transition
from the I to II state is of the second order, while the tran-
sition from II to the fully polarized state is of the first order,
consistent with what happens at h = 0 limit. The two phase
boundaries terminate at the classical critical point h = 0, and
at the quantum critical point hMF

c = 1.5Jzz, both located along
the B = 0 axis. These are depicted in Fig. 3(a) and obtained
from the mean-field analysis.

B. Path-integral quantum Monte Carlo method

To examine our mean-field results, we perform the QMC
simulations. We choose the the path integral with the {Sz

i }
basis. The partition function of the original model is mapped
onto a world-line representation:

Z = Tr[e−βH ] =
∑
{α0}

〈α0|e−βH |α0〉

= lim
dτ= β

n
n→∞

∑
{α}

αn=α0

〈αn|e−Hdτ |αn−1〉 · · · 〈α1|e−Hdτ |α0〉

=
∑
{α}

∞∑
k=0

∫ β

0
· ·

∫ β

τ2k−1

2k∏
i=1

dτi h2ke− ∫ β

0 U (τ )dτ , (12)

kink

(a)

x

τ

creation

deletion

shift

(b)

FIG. 4. The world-line configuration under imaginary time evo-
lution and update schemes. (a) is a world-line configuration of four
spins in a chain. Different colors correspond to different spin Sz

states. Along the imaginary time, every spin world line may be
divided into several flats by cause of Sy

i . (b) the diagrammatic sketch
of the update schemes.

where

U (τ ) = 〈α(τ )|
(∑

〈i j〉
JzzS

z
i Sz

j −
∑

i

BSz
i

)
|α(τ )〉. (13)

In Fig. 4(a), we depict a representative world-line configu-
ration that contributes to the partition function. The transverse
field term of

∑
i hSy

i causes the spin Sz to flip, and we refer to
such a flipping event as a kink. The temporal periodic bound-
ary condition |α(0)〉 = |α(β )〉 of the path integral demands
the number of the kinks Nk to be even with Nk = 2k (k ∈ Z)
in Eq. (12). Due to the presence of the longitudinal field B,
the cluster update fails, and instead, we design a metropolis
algorithm that contains two update schemes, creation/deletion
flat and shift kink, as shown in Fig. 4. The calculations of
acceptance rates of update schemes are quite standard through
the detailed balance equation and we will not show them
explicitly here. The thermal annealing procedure is employed
to deal with the freezing issue of the Monte Carlo simulation.

In the QMC simulations, we take the system sizes
N = L × L(L = 6, 12, 24) with periodic boundary condi-
tions. The ground-state phase diagram is calculated at inverse
temperature β = 8L and the result is shown in Fig. 3(b)
through the finite-size scaling. The QMC phase diagram
agrees with the mean-field one at the qualitative level. The
locations of the phase boundaries differ quantitatively. The
critical field hMC

c ≈ 0.82Jzz [56,57] is almost half of the mean-
field result hMF

c = 1.5Jzz with zero external field B = 0. This is
as expected, as the mean-field approximation underestimates
the quantum fluctuations, especially for the phase boundaries.
Nevertheless, the mean-field theory provides the essential
physical understanding and insights for the magnetic proper-
ties of the system.

C. Finite temperature regimes and BKT transitions

In this subsection, we extend the analysis from the zero
temperature or the near-ground-state low temperatures to fi-
nite temperatures and study the finite temperature properties
and the phase transitions out of the ordered one. To reveal the
finite-temperature transitions, it is necessary to perform the
field theoretical analysis near the transition and then supple-
ment with the QMC calculations. The three-sublattice order
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(a) (b) (c)

FIG. 5. Histograms of the order parameter ψ in different
temperature regimes obtained from QMC simulations. (a) Three-
sublattice long-range ordered state at low temperature T = 0.025.
(b) Quasi-long-range ordered BKT phase at intermediate temperature
T = 0.075. (c) Disordered state at high temperature T = 0.225. In
the QMC simulations, we set the model parameter Jzz = 1, h = 0.4,
B = 0, and the system size L = 12.

parameter is characterized by the Fourier transformed Sz dipo-
lar component at the K point. This can be captured by the
following complex field:

ψ = 1√
3

(m1 + m2ei2π/3 + m3e−i2π/3), (14)

where mi (i = 1, 2, 3) are the dipolar magnetizations of the
three sublattices at the neighboring sites and we have set
the lattice constant to unity. We can see that ψ character-
izes the three-sublattice ordering, as ψ = 0 occurs only when
m1 = m2 = m3, where the three-sublattice order vanishes. The
transformation of the field variable ψ under the lattice trans-
lation Tx̂ and the time reversal T operation take the following
form:

Tx̂ :ψ → ψei2π/3, (15)

T :ψ → −ψ. (16)

For the three-sublattice I state, the spin alignments at the
three sublattices are different from one another, therefore
the ground state is sixfold degenerate. With zero exter-
nal magnetic field, the ψ corresponding to the ground
states are located at a circle in the complex plane with
Arg ψ = (2n + 1)π/6 (n = 0, 1, ..., 5) that are protected by
the translation and time-reversal symmetry [see Fig. 5(a)].
This clock anisotropy is robust against the short-range
interactions such as weak transverse exchange and next-
nearest-neighbor Ising interactions that are present in the
materials, therefore our analysis remains valid against these
perturbations. In the vicinity of the melting of the magnetic or-
der, the coarse-grained Landau-Ginzburg-Wilson free energy
dictates the Z6 clock anisotropy and takes the following form
[58]:

HLGW = − K|∇ψ |2 + rψ∗ψ + u4(ψ∗ψ )2 + u6(ψ∗ψ )3

+ v6(ψ6 + ψ∗6), (17)

with ψ = |ψ |eiθ , where θ corresponds to the phase of the
field ψ . The Z6 clock anisotropy term v6 has a significant
implication on the nature of thermal and quantum phase
transitions. First, let us examine the thermal melting of the
three-sublattice states. Since the clock anisotropy term is
brought about by the quantum fluctuations from the transverse
field and is expected to be small, the phase fluctuations of the

order parameter ψ is soft and therefore becomes important
for the thermal melting at the first stage. By integrating out
the amplitude fluctuations, we obtain the 2D XY model with
a Z6 clock anisotropy. This theory exhibits an approximate
self-duality [59,60], where the dual theory is described in
terms of vortices of θ that act as the disorder parameter of
the original theory. It was previously understood that certain
self-dual quantum critical points can put constraints on the
physical observables such as a nondivergent Grüneisen ratio
[61]. The current transition is an approximate self-duality and
is driven by temperature. Whether an analogous property can
occur here will be explored in future work.

The thermal melting of the three-sublattice order takes a
two-step manner [5,56,62,63] and is also clearly identified
in the order parameter histogram as is shown in Fig. 5. At
the low-temperature phase T < Tc1 that is proximate to the
ground state, the Z6 clock term is relevant such that the phase
of φ is pinned to six equivalent angles, and we have the
three-sublattice long-range ordered state. This can be seen
in the angular histogram plot of the order parameter ψ in
Fig. 5(a) where the sixfold variation is shown. The dual phase
at T > Tc2 is the high-temperature disordered phase where
the vortices proliferate. The higher temperature transition at
Tc2 belongs to the BKT universality class, while the lower
temperature transition at Tc1 is dual to the high temperature
one and hence is called the inverse BKT transition. Unlike the
2D XY model with a global U(1) symmetry where Tc1 and
Tc2 coincide, in our case Tc1 and Tc2 do not coincide due to
the presence of Z6 clock term in the free energy of Eq. (17).
In the intermediate temperature Tc1 < T < Tc2, we have an
extended phase where both vortices and the clock anisotropy
become irrelevant. The irrelevance of clock anisotropy indi-
cates an emergent continuous U(1) symmetry that is shown
in Fig. 5(b). Due to the emergent U(1) symmetry, the sys-
tem behaves just like the low-temperature quasi-long-range
ordered phase of the XY model without any anisotropy term
and supports an algebraic spin correlation, and this thermal
regime with Tc1 < T < Tc2 is referred to as a BKT phase
[5,62,63]. As long as the ground state is in the three-sublattice
ordered phase, this BKT phase generically occurs in the finite
temperature regime regardless of the parameters. For this
reason, we plot the finite temperature phase diagram in Fig. 6
with a single choice of transverse field h/J ≈ 0.65 that might
be appropriate for TmMgGaO4 inside the three-sublattice or-
dered phase.

The underlying reason for the finite-temperature BKT
physics in this context arises from the emergent U(1) symme-
try. This emergent U(1) symmetry, however, no longer holds
in the presence of external magnetic fields. The magnetic
field breaks the time-reversal symmetry and brings about a
Z3 clock anisotropy to the system [63],

H3 = v3(ψ3 + ψ∗3), (18)

with v3 linearly proportional to B. This Z3 clock term is
always relevant at the phase transition. Therefore, the suc-
cessive BKT transition scenario in thermal melting as well
as an emergent continuous symmetry are no longer presented.
Moreover, from Eqs. (17) and (18), we obtain the order pa-
rameter symmetry for each phase, as is shown in Fig. 7. We
find that with magnetic field the order parameter symmetry
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FIG. 6. Finite temperature phase diagram with an external mag-
netic field B obtained from QMC simulations. The parameter we
take is Jzz = 1, h = 0.65 where the ground state is a three-sublattice
ordered state. The BKT phase at B = 0 axis is marked by thick purple
line. The lower and upper BKT transition points are Tc2 = 0.09(2)Jzz

and Tc1 = 0.035(15)Jzz [56]. The green solid-dot line refers to first-
order transition while the upper and lower red dots at B = 0 axis
correspond to BKT and inverted BKT transitions, respectively. The
phase boundaries (dash lines), when B is very small, are difficult to
capture in the current algorithm and are schematic here. The QMC
simulation is performed with system sizes L = 6, 12, 24 with the
periodic boundary condition.

of the three-sublattice I is reduced from Z6 to Z3 × Z2. The
symmetry is further reduced to Z3 in the intermediate three-
sublattice II state.

The finite-temperature phase diagram of the three-
sublattice state is shown in Fig. 6. According to Fig. 6, if
one lowers the temperature from the trivial high-temperature
paramagnetic phase at B = 0, one experiences two successive
transitions at Tc2 and Tc1. For BKT transitions, the correla-
tion length diverges too fast near the thermal transition, the
diverging behavior of the specific heat near the transition
temperatures cannot be very well-observed experimentally
or even numerically. This seems to be what happens for
TmMgGaO4: No diverging behavior is revealed in the specific
heat data, instead only a tiny anomaly with a slightly broad
peak is shown at ∼1K [26,28].

FIG. 7. Evolution of the order parameter manifold (marked as
blue dots) with external magnetic field B. (a) The I state with B = 0,
(b) the I state with small B �= 0, (c): the intermediate three-sublattice
II state with larger B. The the symmetry of order parameter manifolds
are Z6, Z3 × Z2 and Z3 for three cases, respectively.

With the magnetic field in Fig. 6, the Z3 clock anisotropy
is introduced and the BKT scenario breaks down. For the
intermediate II state that breaks the Z3 symmetry, there is only
the first-order thermal transition. For the I state that breaks the
Z2 symmetry in addition to Z3, the Z2 and Z3 symmetries
should break at different temperatures, therefore one expects
another Ising transition in addition to the first-order transition
in the thermal melting. Unlike the BKT transitions that are
weak and unclear in the heat capacity, these transitions are
expected to show diverging signals (the Ising transition) or
discontinuous signals (the first-order transition) in the thermo-
dynamic measurements, as is shown in the magnetic specific
heat data in Ref. [28]. However, for the transitions involving
the I state where the magnetic field is weak, the divergent
behavior is too weak to be observed experimentally or even
numerically, as the system is close to the B = 0 point where
the BKT scenario happens. As it is at T = Tc1 where the actual
magnetic order appears, we expect that phase II starts from Tc1

when the external field is applied. The dashed phase boundary
in Fig. 6 is drawn schematically.

D. Some experimental implications on BKT physics

Experimentally, it is typically hard to detect BKT transi-
tions in magnetic systems. Here we discuss how to determine
BKT transition temperatures from experiments. Inside the
BKT phase between Tc2 and Tc1, the algebraic spin correlation
would lead to a quasi-Bragg peak at wave vector K . In prin-
ciple, Bragg peaks may be distinguished from quasi-Bragg
peaks by the elastic peak profile at the K point, but this is again
difficult. Further neutron-scattering studies might be useful to
sort out the lower transition temperature Tc1.

A relevant experimental prediction given by Damle in Ref.
[63] is the singular uniform magnetic susceptibility along
the z direction in part of the BKT phase regime, despite
absence of ferromagnetic order in this system. Due to the
small energy scale of the interaction, the direct susceptibility
measurements may not be able to give clear signals, espe-
cially because the impurity and disorder effects could affect
very low-temperature thermodynamic behaviors. Somewhat
equivalently, it is more convenient for us to examine the Sz-Sz

correlation at the � point in the neutron-scattering measure-
ment. From the available neutron data for TmMgGaO4 [26],
we observe a clear upturn of the Bragg peak intensity at the
� point below ∼1 K. The intensity is, however, 100 times
smaller than the one at the K point. It is known that, in the
real materials, interlayer couplings could destroy the 2D BKT
phase and convert the BKT phase transitions to a real ordering
transition. We here tentatively identify Tc2 as ∼1 K, which is
consistent with the Tc2 obtained from the magnetic specific
heat. From the phase diagram by Isakov and Moessner in Ref.
[56] that indicated the phase boundary of the BKT phase, we
conclude that Tc1 is ∼0.5K. Thus, we postulate that the range
of BKT phase is from ∼0.5K to ∼1K for TmMgGaO4.

Here we numerically examine the power-law behaviors of
the Sz-Sz correlation at � point and at K point inside the BKT
phase. We have

χ
�

= L2

β

〈∣∣∣∣
∫ β

0
dτ m

�
(τ )

∣∣∣∣
2〉

(19)
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FIG. 8. Susceptibilities χ
�

and χK versus the linear system size
L for four different temperatures when h = 0.65 in BKT phase. Solid
lines are power-law forms ∼L2−9η (on the left panel) and ∼L2−η (on
the right panel). Small systems maybe will deviate from power-law
forms due to the effect of large-finite size scaling.

and the order parameter susceptibility

χK = L2

β

〈∣∣∣∣
∫ β

0
dτ mK (τ )

∣∣∣∣
2〉

, (20)

where mq ≡ 1
N

∑
i Sz

i exp(iq · ri ) with N the system size. Ac-
cording to the previous field theoretical analysis by Damle
[63], they are expected to scale with the system size L as

χ
�

∼ L2−9η(T ), (21)

χK ∼ L2−η(T ), (22)

with 1/9 � η(T ) � 2/9 in part of the BKT phase [63]. The
QMC results are shown in Fig. 8 and both fit rather well to
Eqs. (21) and (22). Although there is always no ferromagnetic
long-range order in the BKT phase, χ

�
is still divergent with

the system size in part of the phase region.

V. DYNAMIC PROPERTIES FROM ORTHOGONAL
OPERATOR APPROACH AND

SELECTIVE MEASUREMENTS

The previous section deals with the phase diagram and
the magnetic ordering structures. These properties are static
magnetic properties. To provide more information about the
system, we here explore the dynamic properties from the
orthogonal operator approach and the selective measurements.
In Sec. V A, we explain the orthogonal operator approach. In
Sec. V B, we turn to the selective measurement that directly
applies the orthogonal operator approach for Tm-based trian-
gular lattice antiferromagnets.

A. Orthogonal operator approach

Even though the in-plane components are nonzero, they
are not visible from the experiments. These hidden-order-like
features can be revealed from an approach called orthogo-
nal operator approach [30,35]. The notion of hidden order
was introduced into condensed-matter physics in the study
of the compound URu2Si2 [64]. The order parameter asso-
ciated with the hidden order does not couple strongly with
the conventional experimental probe such that the order does
not explicitly show up in the usual experimental probes. To

identify the nature of the hidden order, our simple sugges-
tion was to find the physical observables whose operators
do not commute with the proposed hidden order operators,
and at the same time make sure these observables are ready
to detect experimentally. These operators are referred to as
orthogonal operators. The dynamic correlations or spectra of
these operators would reveal the structure and the nature of
the underlying hidden orders. These thoughts have been ex-
plored for the quadrupolar orders and the octupolar orders of
triangular lattice magnets [30,35] as well as the spin nematics
in frustrated magnets [65].

Because the nonvanishing in-plane components are in-
duced by the intrinsic transverse field, strictly speaking, they
are not the Landau symmetry-breaking orders. Nevertheless,
their presence and behavior are very much similar to the roles
of the hidden orders and thus can be understood in a similar
manner.

B. Selective measurements

Having figured out the phase diagrams in the previous sec-
tion, we here explain the experimental consequences for the
dynamics from the selective measurements and the orthogonal
operator approach. The three-sublattice order that we found
from the model is characterized by the order parameter ψ de-
fined by the dipolar magnetization, which is directly reflected
as the magnetic Bragg peaks at the K point. Meanwhile, due
to the intrinsic crystal field, there is always a nonvanishing
expectation value in the transverse components that arises
not from the spontaneous symmetry breaking but from the
intrinsic polarization effect. Since the transverse components
are the magnetic multipoles, they do not directly couple to the
neutron spins and hence are hidden in the neutron probes. Due
to the peculiar local moment structure of this system, however,
the elementary excitations of the multipole moment can be
measured in the dynamic probes such as the inelastic neutron
scattering, owing to the noncommutative relation between the
dipole and the multipole moments. This specific idea was ini-
tially pointed out in the context of the non-Kramers doublets
[30] and also applies here. As the neutron spins only directly
couple to the dipole components, in the inelastic neutron scat-
tering what is measured is the Sz-Sz correlation,

Szz(q, ω) = 1

2πN

∑
i j

∫ +∞

−∞
dt eiq·(ri−r j )−iωt

〈
Sz

i (0)Sz
j (t )

〉
,

(23)

and the transverse component correlation is not directly
visible in the neutron-scattering measurement. Based on the
above selective measurement, a regular neutron-scattering
measurement would behave like a polarized neutron
measurement that automatically selects the Sz-Sz correlation.
As the neutron spin detects the longitudinal dipole moments,
it “flips” the multipole moment that is orthogonal to the dipole
moment, creating the coherent spin-wave excitations. There-
fore, in an inelastic neutron scattering experiment, what is
measured is the elementary excitation of the multipole compo-
nents that contains the information on the underlying hidden
multipole structures. We have calculated the dynamic struc-
ture factors for three representative parameters. The results are
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FIG. 9. Dynamical correlation function Szz(q, ω) calculated within the linear spin-wave theory of (a), (b) the three-sublattice I state, (d),
(e) the intermediate three-sublattice II state, and (c), (f) the paramagnetic (or polarized) state. The parameter we take for the representative
points are (a) h = 0.8, B = 0; (b) h = 1.3, B = 0; (c) h = 2, B = 0, (d) h = 0.8, B = 1.3; (e): h = 1.3, B = 1.3; (f) h = 1.3, B = 1.8. In all
cases, we take Jzz = 1.

shown in Fig. 9. For the paramagnetic (or Ising disordered)
side, there is only one branch of excitation, reflecting the
uniform structure of the paramagnetic (or Ising-disordered)
phase with a ferro-multipole order 〈Sy〉 [see Fig. 9(c)]. If
another Tm-based triangular lattice material is located in
this parameter regime and phase, there will be no transition
through all temperatures but the excitation spectrum surpris-
ingly becomes more coherent as the temperature is lowered,
despite the absence of any ordering. This phenomenon can be
quite striking from the experimental perspective.

Meanwhile, for the three-sublattice ordered state, one can
roughly identify two branches of excitations in Fig. 9(b)
and clearly identify two branches of excitations in Fig. 9(a).
The experimental situation [26] in TmMgGaO4 is more
close to Fig. 9(b) that shows a reasonable agreement with
the experimental data. In Fig. 9(b), we choose the specific
parameter h/hMF

c � 0.87 where hMF
c is the critical field of

the mean-field theory. The counting of the branch number
immediately brings up a question that the number of branches
in the experiment is inconsistent with the number of magnetic
sublattices. This question was not raised in Ref. [26] and
is addressed here. In fact, our honest linear spin-wave
calculation of the full spectra in the Appendix gives three
branches of dispersions that correspond to the three-sublattice
magnetic structure. The reason that the Sz-Sz correlation looks
like two branches is because the selective measurement makes
the intensity of part of the excitation spectra rather weak such
that the spectra look like two branches. This indicates the
incompleteness of the selective measurements. Other dynamic
measurements such as optics and THz may avoid the selective
measurement issue and provide complementary information
about the excitations here.

For the specific TmMgGaO4 material, the previous
neutron-scattering experiment shows a tiny spin gap at the
K point [26]. This is expected as the model and the system

do not have any continuous symmetry to support any gapless
Goldstone mode. The reason that the gap is tiny is a common
consequence of the quantum order by disorder [66] for the
TFIM with the antiferromagnetic Ising interaction on the tri-
angular lattice. This tiny-gapped mode is sometimes referred
to as a pseudo-Goldstone mode, as it appears as a breaking
of continuous symmetry at the quadratic or linear spin-wave
theory level [66].

VI. MORE EFFECTS FROM EXTERNAL
MAGNETIC FIELD

The external magnetic field not only enriches the phase
diagram but also generates more experimental consequences
to be examined. In this section, we will first focus on the static
properties of the system such as the magnetization and static
spin structure factor under the external magnetic field, and
then explore the dynamic properties of the system.

A. Susceptibility, magnetization, and non-monotonic ordering

Except in a small parameter regime near the critical point
(see Fig. 3) where the magnetic field could drive a re-entrant
transition by crossing the three-sublattice ordered one, we
do not expect phase transitions upon increasing tempera-
tures with or without the external field for the paramagnetic
(or the Ising disordered) state that preserves all the lattice
symmetries. This behavior is fundamentally different from
those of the three-sublattice ordered state, which can be
used to identify these two phases without performing the
neutron scattering experiments. The magnetic susceptibil-
ity χ zz as a function of the temperature is calculated via
QMC and is plotted in Fig. 10(a). At high temperatures,
the magnetic susceptibility satisfies the Curie-Weiss law with
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FIG. 10. (a) The magnetic susceptibility χ zz versus the temperature T for the paramagnetic (or the Ising disordered) state. Here we take the
parameter Jzz = 1, h = 2.5, 5.0. The magnetic susceptibility is defined as χ zz = ∂m/∂B, where m = (

∑
i Sz

i )/N is the dipolar magnetization
per site. (b), (c) Magnetization m (in red) and the magnetic Bragg peak |mK |2 (in blue) for the three-sublattice state at low temperatures. The
parameter we take is Jzz = 1; for (b) h = 0.25, for (c) h = 0.65. All results are calculated through QMC with the system size L = 12 and
β = 80. The error bars are much smaller than the points.

χ zz � C/(T − �CW), where C is the Curie constant and
�CW = −3Jzz/2 where one can extract the exchange param-
eter Jzz. There is a crossover to the low temperature behavior
where χ zz saturates to a constant. This is because the Hamil-
tonian does not have any continuous symmetry and the total
magnetization is not a good quantum number to label the
many-body states. Within a simple mean-field theory, we find
the low-temperature χ zz is given as

χ zz|T →0 ≈ 1

6Jzz + 2h
. (24)

Compared to the QMC data, we find that at large h, they
coincide very well. Therefore, one can extract the model
parameter Jzz and h simply from the high-temperature and
low-temperature behaviors of χ zz if the system is located in
the paramagnetic phase. The above relation is especially use-
ful if the ground state of the system is in the Ising disordered
phase.

We continue to discuss the magnetization process of the
three-sublattice state that can be relevant for the specific mate-
rial TmMgGaO4. In the absence of the external magnetic field,
the three-sublattice ordering arises from the quantum order-
by-disorder mechanism. The spin excitation gap is relatively
small [see Figs. 9(a) and 9(b)]. This property makes the three-
sublattice state fragile against the external magnetic field. A
small external field at Bc1 will cause the closing of the spin gap
and drive the system towards the intermediate quasiplateau
state. Here quasiplateau is used as the total magnetization is
not conserved. With the increasing external magnetic field, the
spin gap reopens and the intermediate state becomes stable.
Further increasing magnetic field, the spin gap drops until the
system is driven to a polarized state by the magnetic field at
Bc2 above which the system is smoothly connected to the fully
polarized one.

The presence of the intermediate quasiplateau state renders
the the magnetization process nontrivial, as shown in Fig. 10
from the QMC calculation. For small h, the magnetization
curve shows a clear 1/3 quasiplateau feature in the inter-
mediate regime. Meanwhile, deep in the quasiplateau state,
the system has an approximate 2-up-1-down structure that
contributes to a robust three-sublattice ordering compared to
the case without the external field. Therefore, in the elastic
neutron-scattering experiments, the intensity of the magnetic
Bragg peak |mK |2 (proportional to |ψ |2) is expected to show

nonmonotonic behaviors: deep in the quasiplateau state the
intensity is large, while approaching the three-sublattice state
I the intensity is expected to decrease; the intensity is also
expected to decrease when the field is large enough where the
system becomes nearly polarized [see Fig. 10(b)].

For the case relevant with TmMgGaO4 where the trans-
verse field h is comparable to the exchange Jzz, in the
quasiplateau regime, the 2-up-1-down structure is heavily dis-
torted, therefore the quasiplateau feature of the intermediate
regime is not clearly observed in the magnetization curve.
Instead, the line shape curves slightly downward at Bc2 [see
Fig. 10(c)]. This feature is found in the magnetization data of
TmMgGaO4 at about 2.5 T, which marks the transition field
Bc2 [26–29]. Above Bc2 the system becomes polarized, but
not fully aligned along the z direction due to the presence of
the intrinsic transverse field. To allow the magnetization to
approach the saturation value, a larger external field has to be
applied. This feature is in stark contrast to ordinary systems
where the internal transverse field is absent. For the magnetic
Bragg peak |mK |2, the nonmonotonic behavior persists with
large transverse fields [see Fig. 10(c)].

B. Dynamic properties in magnetic fields

Here we discuss the dynamical properties in the presence
of external magnetic field. With applying small external mag-
netic field, the gap first decreases and closes at Bc1. As Bc1

is typically small, this phenomenon is subtle and can be hard
to observe experimentally. With increasing magnetic field, the
system gap reopens across Bc1 as it enters the intermediate II
regime. In the II regime, the gap behaves nonmonotonically:
the gap first increases, reaches maximum and drops until the
system becomes polarized at Bc2 via a first-order transition.
As this transition being first-order, the gap does not close
across Bc2.

We have calculated the spin excitation spectra with mag-
netic field, as shown in Figs. 9(d)–9(f). From Fig. 9(d), we
can clearly see three spin-wave branches, consistent with
the three-sublattice magnetic order. Therefore, the selection
rule breaks down with magnetic field. Another observation
is that there remains nonzero intensity even in the fully po-
larized state, see Fig. 9(f). This is a peculiar feature for our
nondegenerate dipole-multipole doublet systems due to the in-
trinsic transverse field: The spins are tilted to acquire nonzero
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transverse components, which results in the non-vanishing
intensity in the polarized state.

VII. DISCUSSION

A. Summary for TmMgGaO4

In this paper, we have performed a theoretical study on
the triangular lattice TFIM relevant with the TmMgGaO4

material. We clarify the intrinsic origin of transverse field of
this material as the crystal-field splitting. We established the
full phase diagram by combining the mean-field theory and
the QMC simulation. We discuss the continuous symmetry
and BKT physics that emerge in the thermal melting and at the
quantum critical point. We explain the properties of phases in
the neutron-scattering measurement and the thermodynamic
experiments. The available experimental data show that this
material at zero field is well consistent with the TFIM with
the three-sublattice intertwined dipolar and multipolar ordered
ground state.

We mention a couple recent works on TmMgGaO4 and the
TFIM on triangular lattice. A recent numerical-oriented work
[67] explored our proposed effective model for TmMgGaO4

using more updated numerical techniques and focused on
the numerical aspects of the model. Their results supported
the validity of the TFIM for TmMgGaO4. Reference [67]
suggested the system first enters the BKT phase at ∼4K
and then enters the three-sublattice ordered state at ∼1 K.
This differs from the results of the current work, where we
have ∼1K for the upper BKT transition and ∼0.5 K for the
lower one. They further established the roton mode at the M
point inside the three-sublattice ordered state. This is prob-
ably due to the presence of the second-neighbor interaction.
One may understand this in analogous with the supersolidity
and the roton mode in the spin-1/2 XXZ model or repulsive
hard-core boson model at half-filling on the triangular lattice
where the roton condensation leads to the Sz order [68,69]
on top of the transverse component order. The difference is
that the TFIM here develops an emergent U(1) symmetry and
cannot have supersolidity while the XXZ model has a global
U(1) symmetry. One may further consider the effect of the
dipole-dipole interaction and other effects on this roton mode.

Another quite recent experimental work [29] supplemented
the early thermodynamic results [28] with neutron-diffraction
measurements and corrected the early claim of a pure Ising
model with more analysis. In the recent work [29], the au-
thors added the transverse field and suggested the Mg/Ga
site disorder could create a (random) distribution of the trans-
verse field. They argued that this site disorder could be the
origin of their proposed partial up-up-down order. Based on
the neutron-diffraction and thermodynamic measurements,
Ref. [29] compared the parameters of different couplings of
the model with finite-size exact diagonalization calculation
and supported the proposal of a TFIM with random disorders.
Since Ref. [29] raised the possible issue of random disorders,
we agree that the quantitative behaviors of the thermodynamic
results might be more sensitive to disorder effects on the
exchange and g factors as well as the residual coupling to the
high-order multipolar moments. On the other hand, the ran-
dom exchange and/or the random transverse field would lead

to the line broadening with a similar range of energies in the
spin-wave spectrum [29]. Although a well-defined spin-wave
spectrum with a clear dispersion was recorded in the inelastic
neutron-scattering measurement and reported in Ref. [26],
we still think more data-rich experiments are needed at this
stage if one hopes to extract more quantitive information. For
example, one could carry out the inelastic neutron-scattering
measurements as a function of the external magnetic field
and establish the excitation spectrum in the (more robust)
three-sublattice ordered state of the phase II. One can combine
the results of zero field and finite fields and give an estimate
of the transverse field distribution from the linewidth of the
excitations after subtracting the broadening due to the magnon
interactions and the instrument resolution.

In our analysis here, we did not consider the random disor-
der effect that was actually raised after the first online version
of the current work in Ref. [28], and were unable to provide
or address much more detailed numerical and quantitative
aspects that relate to the experiments quantitatively. We fo-
cus more on the generic and qualitative physics that may be
more robust in the experiments. Regardless of the specific
material, it will be interesting to understand the fate of the
finite-temperature BKT phase in the presence of quenched
random disorders, and this may be analyzed with the pertur-
bative renormalization calculation within the BKT phase.

B. Connection to upper branch magnetism

In fact, the magnetism of TmMgGaO4 belongs to the cate-
gory of systems with upper branch magnetism. The notion of
upper branch magnetism was introduced in Ref. [70]. It refers
to the case where the local crystal-field environment simply
favors a nonmagnetic state while the superexchange interac-
tion prefers magnetic states of some sort. For the specific
illustrative example in Ref. [70], the local crystal-field ground
state is a singlet and the first excited states are a twofold
degenerate doublet. The specific system there was modeled as
an effective spin-1 magnet and the crystal-field splitting was
modeled as a single-ion anisotropy for the spin-1 moment.

In what sense is TmMgGaO4 regarded as upper branch
magnetism? The magnetism cannot occur if there is no ex-
change interaction between the Tm local moments. Crudely
speaking, it is the exchange interaction that “drag down” the
excited energy level. More precisely, it is the nontrivial quan-
tum mechanical interplay between the intrinsic transverse
field and the Ising exchange that gives rise to the magnetism
and the associated coherent excitation. What do we expect
experimentally if the system is controlled more by the single-
ion physics? The magnetism will be gone. Despite that, the
coherent magnetic excitation would persist. This may occur
in some other systems.

C. Extension to other Tm-based compounds

A series of rare-earth triangular lattice magnets has been
summarized in Ref. [30]. We expect that other materials,
especially some Tm-based compounds, can also be described
by the TFIM and share similar physics with TmMgGaO4. The
Tm-based magnetism is not a common subject in quantum
magnetism of rare-earth systems. Some of the insights that
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we learn from TmMgGaO4 could be applied to other Tm
magnets. In the following, we survey the existing Tm magnets
and explain the physics in them.

1. Tm spinels and Tm pyrochlores

The Tm spinel, MgTm2Se4, has been studied by the
neutron-scattering measurement [71]. The crystal electric
field states were carefully studied in Ref. [71]. It turns out
that the crystal-field ground state and the first excited state are
similar to the ones in TmMgGaO4. They are separated from
other excited levels by an energy gap more than 10 meV. The
wave functions of the lowest two states are

|�g〉 = 0.66960|6〉 + 0.14821|3〉 + 0.24361|0〉
− 0.14821|−3〉 + 0.66960|−6〉, (25)

|�e〉 = −0.70097|6〉 − 0.092966|3〉
− 0.092966|−3〉 + 0.70097|−6〉, (26)

and the energy separation between them is about 0.885 meV.
Similar to TmMgGaO4, one could introduce an effective spin-
1/2 degree of freedom that operates on these two states.

The Tm-based pyrochlore has rarely been studied. The
crystal-field levels of Tm2Ti2O7 were computed in Ref. [72].
It was found that the crystal-field ground state is a singlet with
the wave function

|�g〉 = 0.147|6〉 − 0.692|3〉 − 0.692|−3〉 − 0.147|−6〉, (27)

and the first excited state is a doublet with twofold degener-
acy. This crystal-field-level setting is identical to the specific
case that was considered in Ref. [70]. The energy separation
between the ground-state singlet and the first excited doublet
is of the order of 10 meV, so it is not in the weak crystal-field
regime for rare-earth magnets. It is likely that other isostruc-
tural Tm-based pyrochlores could have a smaller crystal-field
gap and allow more interesting magnetism to happen.

2. Tm honeycomb lattice and Tm Kagomé lattice magnets

Here we extend some of our thoughts to other 2D systems.
We start with the honeycomb magnet RNi3Al9 where R is
the rare-earth ion and Tm is a member of them [73]. These
materials have both conduction electrons and local moments,
so it is a conductor and there is a Kondo physics in some
of them. The local moment magnetism is from the rare-earth
moments. We focus the discussion on the Tm-based materials.
Other materials in this family such as the Yb-based ones could
involve Kitaev and other anisotropic spin interactions between
the local moments and are also worth further investigation.
The magnetization measurement in the single crystal sam-
ple of TmNi3Al9 is quite similar to the one in TmMgGaO4,
where the out-of-plane response is dominant and the in-plane
response is negligible. There are two possibilities for the Tm
magnetism in TmNi3Al9. The first possibility is that the Tm
local moment is a (degenerate) non-Kramers doublet. The
other possibility is that the Tm local moment is a nonde-
generate DM doublet like the one in TmMgGaO4, and the
effective model for the Tm magnetism would be a TFIM. Due
to the presence of the itinerant electrons, the Ising interaction
may involve further neighbors. This material develops a mag-

netic order at 2.9 K from the thermodynamic and transport
measurements. From the experience about TmMgGaO4, we
expect a coherent excitation spectrum. This may be confirmed
by further experiments with neutron scattering measurements.

Tm-based Kagomé magnets have been explored recently
[74–76], and effective spin-1/2 degrees of freedom are used
to describe the Tm magnetism. Unlike the triangular lattice
and the honeycomb lattice, the point-group symmetry does
not involve an on-site threefold rotation, and there is no non-
Kramers doublet on the Kagomé lattice. Thus there is always
an intrinsic splitting between the two relevant crystal-field
levels of the Tm3+ ion. Because the Tm3+ singlets are not
the same kind of singlets as the ones in TmMgGaO4, the
exchange part of the interaction is not simply by the Ising
model.

3. Tm double perovskites

Another class of Tm magnets is the Tm-based double per-
ovskite. Unlike the rare-earth pyrochlores and the rare-earth
triangular lattice magnets, these materials have not been well
studied before. Here Tm ions form a FCC lattice. Only two
Tm-based double perovskites Ba2TmSbO6 and Ba2TmBiO6

have been studied [77]. Besides the basic thermodynamic
and structural measurements at high temperatures, very little
information is known for these two materials. Thus, we cannot
extract much more physical understanding for the time being.
But these two materials remain as good candidates for frus-
trated FCC systems with spin-orbit-entangled local moments
[78].

D. General expectation for intrinsic quantum Ising magnets

From our study of TmMgGaO4 and the discussion on many
other Tm-based magnets, we think the intrinsic quantum Ising
magnets can widely exist in nature. The Tm3+ ion in the D3d

crystal field is a bit special. Even though the D3d point group
is a high-symmetry group with many operations, the singlet
representations are allowed here and correspond to the two
low-lying singlets in TmMgGaO4. In more general cases [17],
we do not have such a high-symmetry point group, and thus
we think the intrinsic transverse field can be more common
in rare-earth magnets with lower crystal-field symmetries.
Nevertheless, a lower crystal-field symmetry is not a sufficient
condition to make the two low-lying singlet closer in energies.
Instead, one could imagine the lower crystal-field symmetry
is obtained by weakly breaking a higher crystal-field sym-
metry. An example is the tripod Kagomé magnet that can be
obtained from the pyrochlore magnets by replacing the apical
rare-earth atoms with other nonmagnetic ones such that the
originally degenerate non-Kramers doublet picks up a small
energy splitting. For the half-integer spin local moments, the
Kramers theorem necessarily demands a twofold degeneracy
that makes the quantum Ising model description impossible.
Thus, an interesting direction to search for the intrinsic quan-
tum Ising magnets is to examine the rare-earth magnets with
low crystal-field symmetries and integer-spin local moments.
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APPENDIX: RESULTS FROM LINEAR
SPIN-WAVE THEORY

In this Appendix, we provide the linear spin-wave theory
and results for the magnetic excitations in the three-sublattice
magnetic orders. The reason that we do this calculation is
to clarify the discrepancy between the number of the mag-
netic sublattices and the numbers of the measured magnon
branches.

For the three-sublattice magnetic ordered states, the system
has

√
3 × √

3 magnetic unit cell; each spin can be labeled by
combination of magnetic unit cell position r and sublattice
index s (s = 1, 2, 3). The mean-field ground states can be ob-
tained by Weiss mean-field theory, where the mean-field spin
orientations for each sublattice s can be labeled by unit vector
ns. Then one can always associate two unit vectors us · ns = 0
and vs = ns × us so ns, us and vs are orthogonal with each
other. Next we perform Holstein-Primakoff transformation for
the spin operator Srs,

ns · Srs = S − b†
rsbrs, (A1)

(us + ivs) · Srs = (2S − b†
rsbrs)

1
2 brs, (A2)

(us − ivs) · Srs = b†
rs(2S − b†

rsbrs)
1
2 . (A3)

After performing the Fourier transformation,

brs =
√

3

N

∑
k∈BZ

bkse
iRrs·k, (A4)

the spin Hamiltonian can be rewritten in terms of boson bilin-
ears as

Hsw = 1

2

∑
k∈BZ

�(k)†h(k)�(k) + const, (A5)

where

�(k) = [bk1, bk2, bk3, b†
−k1, b†

−k2, b†
−k3]T , (A6)

h(k) is a 6 × 6 Hermitian matrix, and BZ is the magnetic
Brillouin zone. Then we can Bogoliubov diagonalize Hsw with
�(k) = Tk�(k), where

�(k) = [βk1, βk2, βk3, β
†
−k1, β

†
−k2, β

†
−k3]T , (A7)

is the diagonalized basis and Tk is the transformation ma-
trix. Details of the diagonalization can be referred to in
Refs. [79–81]. The diagonalized Hamiltonian reads

Hsw = 1

2

∑
k∈BZ

�(k)†E (k)�(k) + const

=
∑
k∈BZ

ωksβ
†
ksβks + const, (A8)

where E (k) = diag[ωk1, ωk2, ωk3, ω−k1, ω−k2, ω−k3]. Within
this formalism, we find that the coherent contribution to the
Szz correlator takes the following form:

Szz(k, ω) = S

6

3∑
s=1

[T †
k Uz(Uz)†Tk]s+3,s+3δ(ω − ω−ks), (A9)

where Uz is a 6D vector

Uz = [
uz

1 + ivz
1, uz

2 + ivz
2, uz

3 + ivz
3,

uz
1 − ivz

1, uz
2 − ivz

2, uz
3 − ivz

3

]T
. (A10)

Due to the quantum fluctuation, the magnetic orders are
suppressed from the mean-field values, as a result, the band-
width of the single-magnon spectra will be renormalized. This
is a well-known feature of the linear spin-wave theory [82]. If
one is interested in more quantitative features, one could use a
more involved renormalized spin-wave theory that takes into
account the suppression of the magnetic orders by quantum
fluctuations [82]. However, the linear spin-wave theory does
provide a useful understanding of the structure of the mag-
netic excitations. In our spin-wave calculation, there are three
branches of dispersions that are consistent with the number of
the magnetic sublattices.
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