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We show that two-dimensional band insulators, with vanishing bulk polarization, obey bulk-and-edge to
corner charge correspondence, stating that the knowledge of the bulk and the two corresponding ribbon band
structures uniquely determines a fractional part of the corner charge irrespective of the corner termination.
Moreover, physical observables related to macroscopic charge density of a terminated crystal can be obtained
by representing the crystal as collection of polarized edge regions with polarizations �Pedge

α , where the integer
α enumerates the edges. We introduce a particular manner of cutting a crystal, dubbed “Wannier cut,” which
allows us to compute �Pedge

α . We find that �Pedge
α consists of two pieces: the bulk piece expressed via quadrupole

tensor of the bulk Wannier functions’ charge density and the edge piece corresponding to the Wannier edge
polarization—the polarization of the edge subsystem obtained by Wannier cut. For a crystal with n edges, out of
2n independent components of �Pedge

α , only 2n − 1 are independent of the choice of Wannier cut and correspond
to physical observables: corner charges and edge dipoles.

DOI: 10.1103/PhysRevResearch.2.043012

I. INTRODUCTION

While the bulk description of solid-state materials is
generally available, the description close to the material’s
boundaries (termination) is often not accessible. For this rea-
son, a particularly important role for material science is played
by bulk quantities—they depend only on the material’s bulk
although they predict a certain quantity that can be mea-
sured once a boundary is introduced. In other words, the sole
existence of the bulk quantities requires some form of bulk-
boundary correspondence. To name a few examples, the bulk
electrical polarization of an insulator predicts a fractional part
of the end charge [1–5], the bulk orbital magnetization [6,7]
predicts persistent current circulating along the boundary,
bulk geometric orbital magnetization [8] predicts a fractional
part of the time-averaged edge current circulating along the
boundary of a periodically, adiabatically driven insulator, and
the bulk magnetoelectric polarizability of a three-dimensional
insulator predicts a fractional part of the surface charge den-
sity resulting from the application of an external magnetic
field [9,10].

In recent years [11,12], the term bulk-boundary correspon-
dence is almost exclusively used in the context of topological
phenomena. In that more strict sense, the bulk-boundary cor-
respondence assumes that the bulk quantity is topological
invariant; hence, the boundary quantity is quantized. Notable
examples include quantum (spin) Hall effect where Chern
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number (Kane-Mele invariant [13]) predicts quantized (spin)
Hall conductance [14–16] and Z2 invariant predicting quan-
tized zero-energy conductance of the Kitaev chain [17–20].
In this work, such correspondence is referred to as topo-
logical bulk-boundary correspondence [12,21–24]. In certain
cases, bulk-boundary correspondence can be enriched by the
attribute “topological” in the presence of certain symmetries:
The bulk polarization and a fractional part of the end charge
become quantized in the presence of inversion symmetry, the
bulk geometric orbital magnetization and a fractional part of
the time-averaged edge current are quantized in the presence
of inversion or fourfold rotation symmetry [8], and similarly,
the magnetoelectric polarizability and the associated bound-
ary quantity are quantized in the presence of time-reversal
or inversion symmetry [9]. On the other hand, no symmetry
quantizes the bulk orbital magnetization. It may be of interest
to ask a reverse question: In which cases can a topological
bulk-boundary correspondence be extended to its unquan-
tized version? This work deals with one example where such
an extension is not possible—the bulk quadrupole moment
and the corner charge. Namely, in the presence of fourfold
rotation symmetry, the bulk quadrupole moment is topolog-
ical invariant and predicts the quantized corner charge [25],
whereas in the absence of this symmetry constraint it is not
possible to predict the corner charge without specifying the
edge terminations [26]. In this work, we show that instead of
bulk to boundary correspondence, a bulk-and-edge to corner
correspondence can be formulated.

In 2015, Zhou et al. [27] proposed that for band insulators,
a fractional part of the corner charge Qc can be computed from
the knowledge of the bulk and the two corresponding ribbon
band structures via the following relation:

Qc = Pedge
x + Pedge

y mod e, (1)
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where Pedge
x (Pedge

y ) is the x component (y component) of the
edge polarization for the edge along the x (y) direction. These
authors defined the edge polarization in terms of so-called
maximally localized hybrid Wannier functions [28] and ver-
ified the relation (1) using two tight-binding models [27]. One
year later, in their pioneering work, Benalcazar et al. proposed
the model [25] that in the presence of fourfold rotation sym-
metry [29] exhibits quantized corner charge that is given by
topological invariant dubbed “bulk quadrupole moment” qxy,

qxy = Qc − Pedge
x − Pedge

y mod e, (2)

with Pedge
x,y defined in the same manner as in Eq. (1). The

nonvanishing value of “Qc − Pedge
x − Pedge

y ” proves that pre-
viously proposed relation (1) cannot hold in general. Note
that fourfold rotation symmetry forces the relation Pedge

x =
−Pedge

y mod e to hold, and hence the qxy = Qc mod e which
expresses topological bulk-boundary correspondence. Subse-
quent works [30,31] by two independent groups proposed an
expression that was meant to predict qxy in the absence of
the symmetry constraints, using the bulk Hamiltonian as its
sole input. These findings were supported by calculations on
several tight-binding models [30,31]. Shortly after, Ono et al.
provided counterexamples showing that the proposed expres-
sion does not hold in general. In this work, we show that there
exists no unique value for qxy, since the edge polarizations in
Eq. (2) are not uniquely defined quantities.

This work considers two-dimensional band insulators with
a well-defined corner charge, which is the case when not
only the bulk but also the boundary is gapped and the edge
charge density vanishes. Figure 1 shows one example of a
terminated crystal, with the index α enumerating the corners.
Two edges, along lattice vectors �eα and �eα+1 with the corre-
sponding unit normal vectors �nα and �nα+1, meet at the corner
with the index α. The main result of this work is finding that
the physical observables related to macroscopic [32] charge
density ρmacro of such terminated crystal—corner charges and
edge dipoles—can be obtained by representing the crystal as a
collection of edge regions with polarizations �Pedge

α ; see Fig. 1.
We find that the edge polarizations �Pedge

α consist of two pieces,

�Pedge
α =Lα q̂ · �nα/2 + �Pedge

α , (3)

with Lα = |�eα| being the shortest repeated length along the
α direction. The quadrupole tensor density q̂ (bulk piece) is
defined as the quadrupole tensor of the charge density of the
bulk Wannier functions divided by the area of the unit cell.
The Wannier edge polarization �Pedge

α is obtained from the cor-
responding ribbon band structure by performing a “Wannier
cut;” see Sec. III B for the precise definition. For a crystal in
with n edges, there are n edge polarizations with 2n indepen-
dent components; out of those 2n − 1 are independent of the
choice of Wannier cut (see Sec. III C).

The result (3) turns the bulk-boundary correspondence for
electrical polarization [2] into bulk-and-edge to corner corre-
spondence

Qc
α =Lα+1

Acell

�Pedge
α · �nα+1 + Lα

Acell

�Pedge
α+1 · �nα mod e, (4)

1

2

3

4

5

Qc
1

FIG. 1. Illustration of a crystal with boundary. To obtain a frac-
tional part of each of the five corners (hatched regions), the bulk and
the five edge terminations (dotted regions) need to be specified, while
the termination around the corners need not be specified. The edges
run along the lattice vectors �eα , with the unit normal vectors �nα point-
ing outward, α = 1, . . . , 5. The corner charge, where the edges along
�eα and �eα+1 meet, is denoted by Qc

α . The macroscopic charge density
of a crystal can be seen to be generated by a collection of polarized
edge regions (dotted) with polarizations �Pedge

α . The charge neutrality
and vanishing bulk polarization are assumed; hence,

∑
α Qc

α = 0,
whereas

∑
α

�Pedge
α need not vanish.

where Acell = |�eα × �eα+1| is the area of the unit cell defined
by the corresponding corner.

The remaining of the article is organized as follows. In
Sec. II, we review the modern theory of electrical polariza-
tions and define corner charges and edge dipoles. Section III
contains the main results of our work; therein we formulate
and prove bulk-and-edge to corner charge correspondence
and introduce the notion of Wannier cut and Wannier edge
polarization. Three simple tight-binding models that illustrate
the procedure described in Sec. III can be found in Sec. IV.
We conclude in Sec. V.

II. PRELIMINARIES

We start by reviewing the distinction between microscopic
and macroscopic charge density of a crystal. Section II B
reviews the modern theory of electric polarization of band in-
sulators and the corresponding bulk-boundary correspondence
[1,2].

A. Macroscopic charge density: Corner charge and edge dipole

The microscopic charge density ρ(�r) of a crystal can
change rapidly on a scale comparable or smaller than the size
of its unit cell ai. Hence, ρ(�r) itself is not a physical observ-
able but rather ρmacro(�r) [33] obtained by spatial averaging
(convolution) from ρ(�r) [32,34]

ρmacro(�r) =
∫

d2r′ρ(�r′)g(�r − �r′), (5)
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where g(�r) is a normalized function, positive in the vicinity
of �r = 0. One possible choice is a Gaussian function, g(�r) =
e
− r2

2ξ2 /(πξ 2), where the spread ξ > ai should be chosen with
some care. Namely, the crystal’s charge neutrality implies that
ρmacro(�r) vanishes for �r away from the crystal boundaries,
which is satisfied with given accuracy only for a sufficiently
large ξ .

As an example, consider a tight-binding model with eigen-
vectors |ψn〉. The microscopic charge distribution ρ(�r) is
obtained from the projector onto occupied states (i.e., ground-
state density operator)

P (�x, �x′) =
∑

n∈occ

ψ∗
n (�x)ψn(�x′), (6)

as

ρ(�r) = −e
∑

�x
P (�x, �x)δ(�r − �x) + ρ ion(�r). (7)

In the above equations, �x runs over the sites of the tight-
binding model, ρ ion(�r) is ionic charge distribution, and we
modeled the charge distribution of electronic orbitals by δ

function. The above microscopic charge density varies rapidly
within the unit cell.

In practice, even the macroscopic charge density ρmacro(�r)
of a crystal in not directly measured but rather the features
that can be extracted from it: the end or corner charges and
the edge dipoles. Let us first consider a finite quasi-one-
dimensional system with charge density ρmacro(r1), �r = r1�a1.
Because of charge neutrality in the bulk, ρmacro(r1) is nonva-
nishing only for r1 close to the ends of the crystal. We define
the edge charge Qe

Qe = a1

∫
dr1ρ

macro(r1), (8)

where the integration region includes only one end. For a
tight-binding model, Qe can be obtained from Eqs. (7) and
(5) using Gaussian function with appropriately chosen ξ . Al-
ternatively, as a more straightforward approach, one performs
moving window average on ρ which corresponds to the choice
of g(r1) in Eq. (5) to be unit-box function, having value 1/a1

within the unit cell at origin and zero otherwise. The result of
this averaging procedure is (see Sec. 4.5 of Ref. [34])

Qe = a1

∫ ∞

−∞
dr1 f1(r1)ρ(r1), (9)

where fα (r) is the following ramp function,

fα (r) =
{0 r < r0α

r − r0α r0α � r � r0α + 1
1 otherwise,

(10)

with r0α far away from the ends.
Next, we consider finite two-dimensional (insulating) crys-

tal that is charge neutral and with vanishing edge charge
density. Under these assumptions, ρmacro(�r) has to vanish for
�r away from the boundaries, for �r close to the middle of
the edges there can be two spatially separated line charge
densities of opposite signs, while for �r close to the corners
the macroscopic charge density is generally nonvanishing; see

+q2
+q2

-q2
-q2

0 0

0 0

0 0

-q1

-q1+q1

+q1

0
0

0

Qc
1

FIG. 2. The macroscopic charge density ρmacro(�r) for �r in the
bulk, the two edges, and the corner regions. For clarity, the crystal
is divided into cells (containing many unit cells) and the total charge
in each cell is shown. The corner is defined by the two edges with
the unit normal vectors �nα , α = 1, 2. When either Dedge

1 or Dedge
2

are nonvanishing, integrating ρmacro over different corner regions Rc,
denoted by dashed lines and the hatched region, results in different
corner charge.

Fig. 2. Two features can be extracted from such ρmacro(�r):
edge dipole and corner charge. The edge dipole Dedge

α , for the
edge along the lattice vector �eα and with the unit normal vector
�nα , is defined as

Dedge
α = Lα

∫
d (�r · �nα )�r · �nαρmacro(�r), (11)

where the integration line crosses around the middle of the
edge and Lα = |�eα|. The corner charge Qc

α is defined as inte-
gral of macroscopic charge density over certain corner region
Rc

α

Qc
α =

∫
Rc

α

d2rρmacro(�r). (12)

Only for vanishing Dedge
α and Dedge

α+1 is Qc
α independent of the

choice of Rc
α; see Fig. 2. The quantities (11) and (12) can

be computed directly from microscopic charge density ρ(�r)
if a moving window average is performed with the “window”
corresponding to the unit cell defined by the corresponding
corner. The result for edge dipole is

Dedge
α = Acell

∫ r0α+1

r0α

drα

∫
drα+1�r · �nαρ(�r), (13)

with �r = rα�eα + rα+1�eα+1 and Acell = |�eα × �eα+1|, where �eα

and �eα+1 are the edge lattice vectors and the integration limits
for rα+1 enclose the edge. For corner region Rc marked by the
dashed line in Fig. 2, one finds

Qc
α =

∫
d2r fα (rα ) fα+1(rα+1)ρ, (14)

where the integration is over the whole space. These features
of the crystal’s charge density, Dedge

α and Qc
α , can be repro-

duced by representing the crystal as a collection of regions
with polarization �Pedge

α as in Fig. 1. These edge polarizations
�Pedge
α are not uniquely determined by the crystal’s charge

density—while their transversal component is given by the
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FIG. 3. A ribbon infinite in �e1 direction with N2 unit cells in �e2

direction (a). Nonzero polarization �P implies end charge Qe once the
ribbon is terminated (b). The end charge Qe, defined as the charge
contained in the region bounded by the dashed lines, can be com-
puted by multiplying the charge density ρ in Eq. (9) by continuous
ramp function f1(r1), which takes values 0 (dotted region), r1 − r01

(hatched region), and 1 (filled region) (b), followed by integration
over the whole space. The region where the ramp function takes
nonzero values is denoted by dashed line (�r − �r0) · �n = 0, which
crosses the ribbon far from ends.

corresponding edge dipole

�Pedge
α · �nα = Dedge

α , (15)

it is only the sum of the longitudinal components that is fixed
by the corner charge via bulk-and-edge to corner correspon-
dence (4). In Sec. III, we present an algorithm for computing
the edge polarizations �Pedge

α from the knowledge of the crys-
tal’s bulk and the corresponding ribbon band structures.

B. Modern theory of electric polarization:
Bulk-boundary correspondence

For purposes of this work, we will be interested in polariza-
tion of a ribbon. Consider a ribbon infinite in the �e1 direction,
with N2 unit cells in the �e2 direction, where �e1,2 are lattice
vectors; see Fig. 3(a). We assume that the ribbon is described
by a gapped (NN2) × (NN2) Bloch Hamiltonian hk1 , where
N is the number of sites per unit cell. For each k1 point,
we denote the projector onto occupied Bloch wave functions
|ψnk1〉 by Pk1 = ∑N2Nocc

n=1 |ψnk1〉〈ψnk1 |, where the integer Nocc

is the number of the occupied states per unit cell. For the
definition of Pk1 , the scalar product is assumed to be taken
over the supercell only; i.e., Pk1 is (NN2) × (NN2) matrix and
Pk1+2π = Pk1 . Modern theory of electric polarization states

that the polarization �P of the ribbon is given by [2,35]

�P = e

2π

(
i ln det′

[∏
k1

Pk1

]
�e1 −

∫ 2π

0
dk1Tr

[�̂xPk1

])
, (16)

where det′U denotes the product of nonzero eigenvalues of U
and �̂x is the position operator. The polarization (16) depends
on the choice of the origin �r = 0, which can be avoided if the
above expression is modified to include the ionic contribu-
tion to the charge density. The bulk-boundary correspondence
states

Qe mod e = L �P · �n/|�e × �e1|, (17)

where �n is a unit vector, perpendicular to some lattice vector
�e, and L = |�e| is the shortest repeated length along the direc-
tion �e. The end charge Qe, which is the macroscopic charge
contained in the dashed region in Fig. 3(b), can be computed
from Eq. (9).

An alternative formulation of electric polarization is ob-
tained by expressing the projector (6) onto the occupied states
of the ribbon as

P =
∑
R1

PR1 =
∑
R1,n

∣∣wR1,n
〉〈
wR1,n

∣∣, (18)

where |wR1,n〉 are (nonunique) exponentially localized Wan-
nier functions (WFs) and R1 enumerates different supercells
of the ribbon. When the ribbon is infinite (or under periodic
boundary conditions), the shape of WFs is independent of R1

due to translational symmetry. The polarization (16) can be
expressed using WFs as

�P = −eTr
[
PR1

�̂x] mod e�e1, (19)

which is independent of R1.

III. BULK-AND-EDGE TO CORNER CORRESPONDENCE

In this section, we prove the correspondence (4) between
the corner charge and the bulk-and-edge. We consider a ter-
minated system (flake) with vanishing bulk polarization and
focus on the upper-right corner, where for the purpose of
the following discussion we may assume that the remaining
three corners lie at infinity. We use the notation where two
edges have unit normal vectors �nα and are along certain lattice
vectors �eα , α = 1, 2. The lattice vectors �e1 and �e2 define
the unit-cell area Acell = |�e1 × �e2|; see Fig. 4. The reduced
coordinates (r1, r2) are defined as �r = r1�e1 + r2�e2.

We make two cuts along the lines (�r − �r0) · �nα = 0, where
the point �r0 lies in the bulk. These cuts divide the flake into
four regions (subsystems) (see Fig. 4): the two half-infinite
edges (dotted regions), the corner (hatched region), and the
remaining bulk region. Denoting the corner charge of the bulk
subsystem by Q̄c, we express the flake’s corner charge Qc as

Qc = Q̄c + Qe1 + Qe2 mod e, (20)

where Qe1,2 are the end charges of the two edge subsystems;
see Fig. 4. In writing the above relation, we used that the cor-
ner subsystem is charge neutral. (More generally, it contains
integer multiple of electron charge e.)

While many cuts allow one to separate flake into four
subsystems, we additionally require that Q̄c is a bulk quantity
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FIG. 4. A charge neutral flake with total bulk polarization zero.
The flake is semi-infinite in both directions. Two cuts (wavy lines)
along a charge neutral lines (�r − �r0) · �nα = 0, α = 1, 2, split the flake
into four subsystems: the two edges (dotted regions), the corner
(hatched region), and the remaining bulk subsystem. A fractional
part of the upper-right corner charge is given by Eq. (20). If the
cuts are chosen to be Wannier cuts, the resulting polarization of the
edge subsystem is called Wanner edge polarization �Pedge

α . The corner
region Rc is enclosed by dashed line. The end charge of the two edge
subsystems is denoted by Qe1 and Qe2.

and �Pedge
α are edge quantities. To be more precise, we require

that Q̄c is computable in terms of the bulk band structure, and
similarly �Pedge

α should be computable from the ribbon band
structure for the ribbon along �eα . We call such cuts Wannier
cuts, and the resulting edge polarizations �Pedge

α Wannier edge
polarizations. For a Wannier cut, the relation (20) becomes
bulk-and-edge to corner correspondence,

Qc = Q̄c + L2

Acell

�Pedge
1 · �n2 + L1

Acell

�Pedge
2 · �n1 mod e. (21)

Below we first define the bulk subsystem and prove that the
resulting Q̄c is expressed in terms of quadrupole tensor of the
charge density of the Wannier functions. Section III B details
on how to compute Wannier edge polarization �Pedge

α .

A. Bulk subsystem

To define the bulk subsystem, we make a choice for bulk
WFs, w̄ �Rn(�x). Assuming that WFs are assigned to their home
unit cell, the charge density of the bulk WFs ρWF(�r), centered
around �r = 0, reads

ρWF(�r − �R) = −e
∑
�xn

|w̄ �Rn(�x)|2δ(�r − �x) + ρ ion
�R (�r), (22)

where we included the ionic contribution ρ ion
�R to the unit cell

at �R. The second moment of the above charge density defines
the (bulk) quadrupole tensor density q̂,

q̂ = 1

Acell

∑
α,β=1,2

q̂αβ �eα ⊗ �eβ, (23)

where “⊗” denotes tensor product and q̂αβ = 〈rαrβ〉ρWF ≡∫
d2rρWF(�r)rαrβ .
We now go back to the flake from Fig. 4 and select the

rectangle � in the reduced coordinates (r1, r2). We define the
bulk subsystem to consist of the flake’s WFs with the center
in the rectangle �; see Fig. 5. For the rectangle � deep in the

RWF

RWF

FIG. 5. A flake with the regions � (dotted region with a thick
solid line) and Rc (hatched region with dashed line). The bulk sub-
system, located away from the edges (thin solid lines), is obtained by
tiling � with the occupied bulk WFs (wavy star-shaped objects). The
integer RWF is the “radius” of the bulk WFs; outside of it the charge
density of the bulk WFs can be neglected.

bulk, the bulk subsystem is obtained by tiling the rectangle
� with the bulk WFs. Hence, its charge density ρ̄(�x) takes a
simple form:

ρ̄(�r) =
∑
�R∈�

ρWF(�r − �R). (24)

Note that the charge density ρ̄ extends beyond the rectangle
�.

We now prove that the corner charge and the edge dipole
of the bulk subsystem, Q̄c

α and D̄edge
α , are expressed in terms of

the bulk quadrupole tensor q̂. For simplicity, we assume that
all sites of the flake lie on the lattice itself (lattice without the
basis). In this case, instead of working with ρWF(�r), we use
the quantity QWF

�R : the charge at lattice position �R, originating

from the bulk Wannier functions centered at �R = 0,

QWF
�R = −e

Nocc∑
n=1

|w(0,0)n( �R)|2 + NocceδR1,0δR2,0. (25)

In the above expression, we assume that the ionic charge
contribution eNocc is localized at the lattice sites, and thus∑

�R QWF
�R = 0. We compute Q̄c using the corner region Rc

with boundaries (�r − �r0) · �nα = 0, where �r0 lies in the bulk;
see Fig. 5. Hence, the corner charge of the bulk subsystem Q̄c

is obtained from Eq. (14),

Q̄c =
∑
�R∈�

{−θ (−R1)RWF − θ (−R2)RWF + θ (−R1)θ (−R2)

+ θ (R1)[RWF − θ (−R2)] + θ (R2)[RWF − θ (−R1)]

+ θ (R1)θ (R2)}QWF
�R , (26)

where θ (x) ≡ |x|H (x) with H (x) being the Heaviside step
function and RWF being the radius of the bulk WFs; see Fig. 5.
Since

∑
�R QWF

�R = 0 holds, only the bulk WFs whose charge is
not fully contained in Rc contribute to Q̄c. The three terms in
the first line of the sum (26) count the charge contained in the
region outside of Rc (not necessarily inside of �), originating
from the bulk WFs whose center is in Rc. Similarly, the
second and the third lines of the sum (26) correspond to the
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charge contained within Rc, originating from the bulk WFs
whose center is in � \ Rc. Using the assumption that the bulk
polarization vanishes �P = ∑

�R �RQWF
�R = 0, we rewrite Eq, (26)

as

Q̄c =
∑
�R∈�

R1R2QWF
�R = L1L2

Acell
�n1 · q̂ · �n2, (27)

where in the last equality we used Eq. (23), Lα = |�eα|, and
that the unit normal vectors �nα point toward the outside of
the subsystem. The above result is valid for both convex and
concave angles ∠(�e1, �e2).

To obtain the edge dipole D̄edge
1 from the charge density ρ̄,

we consider a flake infinite in the �e1 direction (ribbon) and
focus on the upper edge. For concreteness, we assume that
the unit cells at the top edge of � have coordinates (R1,−1).
Because of the translational invariance, the charge QR2 , which
is (microscopic) charge of the ribbon at the lattice site �R, is
independent of R1. Using Eqs. (24) and (25), we write

QR2 =
{∑

R′
2>R2

QWF
R′

2
R2 � 0,

−∑
R′

2�R2
QWF

R′
2

R2 < 0,
(28)

where the notation QWF
R2

≡ ∑
R1

QWF
�R has been introduced. The

edge dipole [see Eq. (13)] for the edge along �e1 is expressed
as

D̄edge
1

�e2 · �n1
=

∑
R2

R2QR2

= −
∑
R2�0

R2

∑
−R2<R′

2�R2

QWF
R′

2
. (29)

Changing the order of the two sums in the above expression,
we obtain

D̄edge
1

�e2 · �n1
=

∑
R′

2�0

QWF
R′

2

∑
R′

2�R2<RWF

R2 −
∑
R′

2<0

QWF
R′

2

∑
R′

2�R2<RWF

R2

= 1

2

∑
R′

2

R′
2

2QWF
R′

2
, (30)

where the cutoff RWF drops out for the ribbon wider than the
radius of the bulk WFs, and in writing the second line we used∑

R′
2

QWF
R′

2
= ∑

R′
2

R′
2QWF

R′
2

= 0. Repeating the same calculation
for the other edge, we obtain

D̄edge
α = Lα�nα · q̂ · �nα/2. (31)

The relations (27) and (31) show that the corner charge
and the edge dipole resulting from the macroscopic average
of the charge density ρ̄, can be seen to be be generated by
polarizations Lα q̂ · �nα/2, placed long the four edges of �. For
a more general case, when the corner region Rc is defined
by lines (�r − �r0) · �n′

α = 0, applying the bulk-boundary corre-
spondence (17) to these edge polarizations gives

Q̄c = L1|�e′
2|

|�e1 × �e′
2|

�n′
2 · q̂ · �n1/2 + |�e′

1|L2

|�e′
1 × �e2| �n

′
1 · q̂ · �n2/2, (32)

where �e′
α are lattice vectors satisfying �e′

α · �n′
α = 0, normalized

such that |�e′
α| gives the shortest repeated length in the lattice

FIG. 6. A corner defined by the edges along lattice vectors �e1,2

and unit-normal vectors �n1,2. The corner region Rc is defined by the
(dashed) lines (�r − �r0) · �n′

α = 0, where the point �r0 lies in the bulk.

direction �e′
α; see Fig. 6. The above expression reduces to

Eq. (27) for �n′
α = �nα .

B. Edge-subsystem: Wannier edge polarization �Pedge
α

To define the edge subsystem and Wannier edge polar-
ization, we considering a ribbon with the periodic boundary
condition in the �eα direction. We call “Wannier cut” the pro-
cedure where the bulk Wannier functions, used to define the
bulk subsystem in the previous subsection, are removed from
the middle of the ribbon. After such removal, what remains of
the ribbon are two edge subsystems. For a sufficiently wide
cut, the charge densities of the two edge subsystems do not
overlap when projected onto the �eᾱ direction. Therefore, we
can define the subsystem corresponding to a single edge α

and its polarization we call Wannier edge polarization �Pedge
α .

For concreteness, we set α = 1 and denote by hk1 the Bloch
Hamiltonian of the ribbon, with supercell having 2N2 + 1 unit
cells located at positions R2�e2, R2 ∈ [−N2, N2]. The transla-
tionally invariant Wannier cut is performed using hybrid bulk
WFs |w̄k1R2n〉,

∣∣w̄k1R2n
〉 =

N1−1∑
R1=−N1

eik1R1 |w̄ �Rn〉, (33)

where the periodic boundary condition identifies the sites at
R1 = −N1 with those at R1 = N1. The Wannier cut is per-
formed in the middle of the ribbon supercell by removing
2L + 1 hybrid bulk WFs |w̄k1R2n〉 with R2 ∈ [−L, L] from the
space spanned by the occupied states

PL
k1

≡ Pk1 −

n=Nocc

R2=L∑
n=1

R2=−L

∣∣w̄k1R2n
〉〈
w̄k1R2n

∣∣. (34)

The integer L should be chosen sufficiently large such the
projector PL

k1
does not contain the sites from the middle unit

cell of the supercell, i.e.,

Pk1 (�x, �x′) → 0, (35)

for the reduced coordinates x2, x′
2 ∈ [−1/2, 1/2]. As WFs are

more localized, a smaller value of L is required. The matrix
elements of the projector onto occupied states of the edge

043012-6



BULK-AND-EDGE TO CORNER CORRESPONDENCE PHYSICAL REVIEW RESEARCH 2, 043012 (2020)

subsystem above the Wannier cut read

Pedge
k1

(�x, �x′) = H (x2)H (x′
2)PL

k1
(�x, �x′). (36)

Note that for a ribbon with the fixed width N2, the value of
L should not be too large; otherwise the hybrid bulk WFs do
not fully belong to the space of occupied states of the ribbon.
This can be diagnosed by inspecting the charge neutrality of
the resulting edge subsystem’s supercell,∑

�x

∫
dk1

2π
Pedge

k1
(�x, �x) → Nocc(N2 − L), (37)

where the value on the right-hand side is the ionic charge—the
removal of the hybrid bulk WF also removes the correspond-
ing ionic charge. If the conditions (35) and (37) are satisfied
with required accuracy, the Wannier cut has been performed
successfully. The edge polarization �Pedge

1 is given by Eq. (16)
using Pedge

k1
in place of Pk1 .

C. Discussion

Putting together the bulk and the edge subsystems, we
obtain the main result of our work, namely that the corner
charges and the edge dipoles are determined by the edge
polarizations (3). The bulk-and-edge to corner charge cor-
respondence is obtained after substituting Eq. (32) and the
expression for the edge polarization into Eq. (20),

Qc
Rc = |�e′

2|
|�e′

2 × �e1|
�Pedge
1 · �n′

2 + |�e′
1|

|�e′
1 × �e2|

�Pedge
2 · �n′

1, (38)

where the corner charge is defined by the corner region Rc

in Fig. 6. It is worth mentioning that not only Wannier po-
larization �Pedge

α but also the edge polarization (3) depends on
the choice of the bulk WFs. This observation agrees with the
previously mentioned statement that the two edge polariza-
tions �Pedge

α have four independent components whereas there
are only three independent physical observables.

The bulk subsystem defined in Sec. III A is special because
its charge density can be obtained by tiling. The bulk sub-
system can be viewed as a flake with a special termination
that we call Wannier termination. It is instructive to compare
the relation between the corner charge and the quadrupole
moment of a flake with an arbitrary termination versus the
one with Wannier termination. Assuming that the two lowest
moments of the flake’s (microscopic) charge density ρflake

vanish, we write the second (off-diagonal) moment as

q̂flake
12 = 1

N1N2Acell
〈x1x2〉ρflake , (39)

where the flake has N1,2 unit cells along the two primi-
tive vectors. For an inversion-symmetric rhomboid flake, the
macroscopic charge density ρflake,macro consists of four corner
charges Qc with alternating signs superimposed with the edge
dipoles; see Sec. II A. Denoting the coordinates of the center
of charge of the top-right corner by �X = 1

2 X1�e1 + 1
2 X2�e2, with

the origin at the flake’s inversion center, gives 〈x1x2〉ρflake,macro =
〈x1x2〉ρflake = QcX1X2. The corner charge Qc can be approxi-
mated from the flake’s quadrupole moment,

Qc ∼ X1X2

N1N2
Qc = L1L2

Acell
�n1 · q̂flake · �n2. (40)

We used that Xα/Nα → 1 in the thermodynamic limit Nα →
∞. Hence, for a flake with an arbitrary termination, the corner
charge can be obtained from the microscopic charge density
ρflake from Eqs. (39) and (40) only with algebraic accuracy in
the flake’s size. On the other hand, for a flake with Wannier
termination (i.e., bulk subsystem), q̂flake is given by Eq. (23),
and we know that the relation (27) holds with exponential
accuracy as the flake size is increased beyond the radius of the
tile (Wannier functions). In other words, Wannier termination
pins X1 (X2) to the value N1 (N2).

IV. EXAMPLES

In this section, we consider three two-dimensional tight-
binding models which we use to illustrate the procedure
described in the previous section. For each example, we per-
form two independent calculations: (1) After diagonalization
of the flake’s Hamiltonian, we obtain macroscopic charge
density ρmacro from Eqs. (5) and (7), and subsequently the
corner charge Qc and the edge dipole Dedge from Eqs. (12)
and (11), and (2) we make a choice of the occupied bulk WF,
calculate the bulk quadrupole tensor and the Wannier edge
polarizations for each edge of interest—these quantities give
the edge polarization (3) that are used to compute the corner
charge and the edge dipole moments; see Eqs. (4) and (15).
Alternatively, Dedge

α can be obtained from the corresponding
ribbon calculation; see Eq. (13). The first example considers
the Benalcazar-Bernevig-Hughes (BBH) model [25,29] with
broken fourfold rotation symmetry such that the corner charge
is no longer quantized. In the dimerized limit of BBH model,
the procedure from Sec. III is carried out analytically. The sec-
ond example considers a model with a single occupied band
where the corners are formed by several different orientations
of the edges. The final example is meant to illustrate a scenario
where the bulk contribution to the edge polarization (3) is
small, which explains why it was overlooked in Ref. [27].

To carry out the above-mentioned calculations, we need
to specify the bulk Hamiltonian and the edge boundary con-
ditions. We consider a special form of boundary conditions
that we call “theorist” boundary conditions: The Hamiltonian
around the boundaries is assumed to be the same as the
bulk Hamiltonian with the hoppings to the missing sites set
to zero. Theorist boundary conditions are used here out of
convenience; they do not have any particular relevance for
realistic systems.

A. BBH model with broken fourfold rotation symmetry

Here we consider a two-dimensional π -flux dimerized
model [25,29], which is a particular case of BBH model
that exhibits quantized corner charge protected by fourfold
rotation symmetry C4

H = eiπ/4
∑

�R

(| �R, 1〉〈 �R + �ax, 2| + | �R + �ay, 4〉〈 �R, 1|

+ | �R + �ax + �ay, 3〉〈 �R + �ay, 4|
+| �R + �ax, 2〉〈 �R + �ax + �ay, 3|) + H.c. + H4, (41)

where the four orbitals | �Rγ 〉, γ = 1, . . . , 4 are placed on a
square lattice with primitive vectors �aα = a�eα , where �ex (�ey)
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(a)

(b)

FIG. 7. The ribbon corresponding to the BBH model (41) with
theorist boundary conditions in the y direction. The bulk Wannier
functions can be chosen to be localized on four sites and are repre-
sented by the squares (a). The projector PL=1

kx
is obtain by removing

the bulk Wannier functions belonging to the unit cell at R2 = 0 (b);
see Eq. (34). Dashed circles group the sites that belong to the same
unit cell and integers correspond to γ .

is the unit vector along the x (y) direction. The fourfold rota-
tion acts as C4 : | �Rγ 〉 → | �Rγ + 1〉 and is responsible for the
quantization [29] of the corner charge to the value of Qc = e/2
mod e. The term H4 breaks fourfold rotation symmetry while
preserving its twofold rotation subgroup

H4 = δ
∑

�R
(−1)γ | �Rγ 〉〈 �Rγ |. (42)

The two occupied bulk Wannier functions localized on four
sites can be written as

w̄ �R1 =
⎛
⎝

√
2 + δ2+√
2 + δ2

,− e3iπ/4√
2 + δ2+

, 0,
eiπ/4√
2 + δ2+

⎞
⎠

T

,

w̄ �R2 =
⎛
⎝0,

√
1 + δ2−

2

2
√

2 + δ2
,

e−iπ/4√
1 + δ2−

2

,
i
√

1 + δ2−
2

2
√

2 + δ2

⎞
⎠

T

, (43)

where the basis for the spinor is {| �R, 1〉, | �R + �ax, 2〉, | �R +
�ax + �ay, 3〉, | �R + �ay, 4〉}, and the notation δ± = δ ± √

2 + δ2

is used. The above bulk Wannier functions give the following
components of the bulk quadrupole tensor (23):

q̂xy = e

1 + δ2−/2
mod e,

q̂xx = q̂yy = 0 mod e. (44)

Wannier edge polarization �Px is computed by considering
ribbon with theorist boundary conditions in the y direction.
We take the ribbon supercell to consist of two unit cells
(eight sites) with coordinates Ry = 0, 1; see Fig. 7. The pro-
jector PL=1

kx
onto the ribbon states after performing Wannier

cut, which removes the hybrid bulk WFs with R2 = 0 [see

Eq. (34)], reads

PL=1
kx

=
⎛
⎝

∣∣ψedge
kx

〉〈
ψ

edge
kx

∣∣ 02×4 02×2

04×2 04×4 04×2

02×2 02×4

∣∣ψedge′

kx

〉〈
ψ

edge′

kx

∣∣
⎞
⎠,

∣∣ψedge
kx

〉 =
⎛
⎝ δ̃+√

1 + δ̃2+
,−e−iπ/4eikx a√

1 + δ̃2+

⎞
⎠

T

, (45)

where δ̃+ = δ + √
1 + δ2 and |ψedge′

kx
〉 = C2

4 |ψedge
−kx

〉; see
Fig. 7(b). Taking the corresponding subblock of the matrix
PL=1

kx
[see Eq. (36)] gives the projector onto the upper edge

subsystem

Pedge
kx

=
(∣∣ψedge

kx

〉〈
ψ

edge
kx

∣∣ 02×2

02×2 02×2

)
. (46)

Repeating the same calculation for the ribbon along the y
direction, after substituting Pedge

kx
(Pedge

ky
) into Eq. (16), we

obtain the two Wannier edge polarizations,

�Pedge
α = ae

1 + δ̃2+
�eα. (47)

The edge polarizations (3) read

�Pedge
α =

(
1

1 + δ̃2+
+ 1

2 + δ2−

)
ae�eα. (48)

The above result implies that the edge dipoles vanish Dedge
α =

0, while the corner charge of the upper-right corner Qc reads

Qc = 2e

1 + δ̃2+
+ e

1 + δ2−/2
mod e. (49)

Alternatively, considering the flake with theorist boundary
conditions in both x and y directions, the corner charge Qc

can be computed via Eq. (14), which agrees with the result
(49).

B. Orbitals without internal quadrupole moment

This example considers a two-dimensional tight-binding
model with two sites per unit cell, defined on an arbitrary Bra-
vais lattice with primitive vectors �a1 and �a2. The Hamiltonian
is written as

h =
∑

�R

[ ∑
γ=1,2

(
(−1)γ δ| �Rγ 〉〈 �Rγ |

+
∑

d=1,2

((−1)γ t | �Rγ 〉〈 �R + �ad γ̄ | + tγ | �Rγ 〉〈 �R + �adγ |)
)]

,

(50)

where | �Rγ 〉 is the γ orbital at the position �R and {1̄, 2̄} =
{2, 1}. The above Hamiltonian has inversion symmetry that
maps the γ orbital into itself; hence the bulk polarization is
quantized. We make a choice of parameters of Hamiltonian
(50) such that the bulk is gapped at half-filling and for theorist
boundary conditions the corner charge is sizable, δ = −1,
t = −0.08, t1 = 3.5 × t , and t2 = −1.5 × t . It is easy to see
that for these parameters, the bulk polarization vanishes.
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The occupied bulk WF |w̄ �R〉 is chosen as follows. When all
the hoppings are switched off t = 0, the maximally localized
WF takes the form |w̄0

�R〉 = | �R1〉 for δ < 0. The corresponding
(smooth) Bloch eigenfunction |ψ0

�k 〉 is given as∣∣ψ0
�k
〉 = 〈

ψ̃�k
∣∣w̄0

�R
〉∣∣ψ̃0

�k
〉

(51)

for |ψ̃0
�k 〉 (not necessarily smooth) Bloch eigenfunction. A

smooth gauge |ψ t
�k〉 for a finite value of the parameter t is

obtained by parallel transport of |ψ0
�k 〉 as the hoppings are

switched on

∣∣ψ t
�k
〉 = 〈

ψ̃ t
�k
∣∣( t∏

t ′=0

∣∣ψ̃ t ′
�k
〉〈
ψ̃ t ′

�k
∣∣)∣∣ψ0

�k
〉∣∣ψ̃ t

�k
〉
. (52)

We set t = −0.08 and drop the superscript t from now on. The
bulk WF takes the form

|w̄ �R〉 =
∑

�R
ei�k· �R|ψ�k〉. (53)

Inspecting the values of |w̄(0,0)( �R)|2 for different unit cells, we
observe that the obtained WF is well localized, with 99.5% of
the charge lying within the unit cell at (0,0). Using Eq. (23),
we obtain the bulk quadrupole tensor q̂ with components in
the (�a1, �a2) basis

q̂12 = q̂21 = −1.65919 × 10−3e, (54)

q̂11 = q̂22 = −7.34447 × 10−3e, (55)

where we assumed the ion charge e is localized at �R.

1. Edges along primitive vectors�a1 and�a2

We now perform a ribbon calculation for a ribbon with
periodic boundary conditions along the �a1 direction and the
supercell consisting of unit cells at positions R2 ∈ −[N2, N2],
N2 = 20. The Fourier transform of Eq. (50) gives Bloch
Hamiltonian hk1 . Substituting the bulk WF |w̄ �R〉 into Eq. (33),
the hybrid bulk WF |w̄k1R2〉 is obtained. We find that the
projector (34) PL

k1
for L = 14 satisfies the criteria (35) and

(37) both with accuracy of 10−12. From Eq. (36), the edge
projector onto the top edge along �a1, Pedge

k1
, is obtained, giving

the Wannier edge polarization

�Pedge
�a1

= (0.17609�a1 + 3.24851�a2) × 10−3e, (56)

where in Eq. (16) we used the grid of 120 equally spaced
k1 points. [In this section, we index the (Wannier) edge po-
larizations with the corresponding edge lattice vector instead
of the integer index.] The same procedure is repeated for the
right edge along �a2, which gives �Pedge

�a2
obtained from Eq. (56)

after setting �aα → �aᾱ . Substituting Eqs. (54)–(56) into the
expression for the edge polarization (3) gives

�Pedge
�aα

= (−0.65350�aα − 0.42372�aᾱ ) × 10−3e. (57)

2. Edge along�e1 = 2�a1 +�a2

We consider a ribbon, periodic in �e1 = 2�a1 + �a2 direction,
with supercell along �a1-direction. Repeating the same calcu-
lation as above, we obtain for N2 = 30 that choosing L = 15

satisfies conditions (35) and (37) both with accuracy of about
10−8. The Wannier edge polarization for the upper edge of this
ribbon is

�Pedge
�e1

= (6.05756�e1 − 14.76152�a1) × 10−3e. (58)

The above result together with Eqs. (3), (54), and (55) give the
edge polarization �Pedge

�e1
for the edge along �e1

�Pedge
�e1

= (−0.45731�e1 + 0.28122�a1) × 10−3e. (59)

3. Edge along�e′
1 = 2�a1 −�a2

Proceeding as above, we obtain for the Wannier edge po-
larization for the upper edge of the ribbon along �e′

1

�Pedge
�e′

1
= (−6.76134�e1 + 17.14810�a1) × 10−3e, (60)

and the corresponding edge polarization,

�Pedge
�e′

1
= (1.41273�e1 − 4.52168�a1) × 10−3e. (61)

4. Edge dipole Dedge

We confirm that relation (15) holds exactly. For example,
for the edges along the lattice vectors �aα

�Pedge
�aα

· �nα

�eᾱ · �nα

= −0.42372 × 10−3e (62)

agrees with the value obtained from either flake or ribbon
calculation Dedge

�aα
/�eᾱ · �nα = −0.42372 × 10−3e.

5. Corner charge

Three different corners, as shown in Fig. 8, are considered.
To compute the corner charge, we consider a flake with the
boundaries along the edge vectors, with the lower-left corner
located at −N1�e1 − N2�e2 and the upper-right corner at N1�e1 +
N2�e2. After diagonalization of the Hamiltonian (50) for N1 =
N2 = 20, the charge density ρ(�r) is obtained from Eq. (7).

For the situation in Fig. 8(a), the corner charge Qc
a is

obtained by integrating the charge density (7) over the corner
area denoted by dashed lines; see Eq. (14). We obtain Qc

a =
−1.30687 × 10−3e which should be compared with Eq. (4),

Qc
a = L2

Acell

�Pedge
�a1

· �n2 + L1

Acell

�Pedge
�a2

· �n1

= −1.30700 × 10−3e, (63)

where Lα = |�aα|, and �nα is a unit normal vector as depicted in
Fig. 8(a).

Figures 8(b) and 8(c) consider the corner formed by the
edges �e1 = 2�a1 + �a2 and �e2 = �a2. For the corner region as
in Fig. 8(b), we plug the microscopic charge density (7)
into Eq. (5) and use Gaussian function. The integration of
macroscopic charge density over the corner region yields the
corner charge Qc

b = −1.11059 × 10−3e that should be com-
pared with

Qc
b = L1

Acell

�Pedge
�e1

· �n1 + L1

Acell

�Pedge
�a2

· �n1

= −1.11081 × 10−3e. (64)
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(a) Qa
c

(b)
Qb

c (c)

(d) (e)

Qc
c

Qd
c Qe

c

FIG. 8. Three different corners for the system described by the
Hamiltonian (50) with the corresponding corner regions (dashed
lines). The corner between the edges along the primitive vectors
�a1 and �a2, with the corner region parallel to the edges (a). The
corner defined by the lattice vectors �e1 = 2�a1 + �a2 and �a2 [(b), (c)].
Choosing the corner region above the line along �a1 (b) results in a
different corner charge compared to the corner region parallel to the
edges (c), i.e., Qc

b �= Qc
c. The same as in panels (b) and (c) for the

corner between the edges along �e′
1 = 2�a1 − �a2 and �a2 is shown in

panels (d) and (e). The unit normal vectors �n1, �n2 [−�n2 for panel (e)],
�n and �n′ are oriented to point toward the corner.

On the other hand, for the corner region in Fig. 8(c), the
corner charge Qc

c can be obtained from Eq. (14). The result
Qc

c = −0.75998 × 10−3e agrees well with

Qc
c = L2

Acell

�Pedge
�e1

· �n2 + L

Acell

�Pedge
�a2

· �n

= −0.75834 × 10−3e, (65)

where L = |�e1|, and �n is the unit normal vector as shown in
Fig. 8(c).

The third corner that we consider is shown in Figs. 8(d) and
8(e), formed by the lattice vectors �e′

1 = 2�a1 − �a2 and �a2. For
the corner region defined by the line along �a1 [see Fig. 8(d)],
the corner charge is Qc

d = −0.75806 × 10−3e. On the other
hand, from bulk-and-edge to corner charge correspondence
(4), we obtain

Qc
d = L1

Acell

�Pedge
�e′

1
· �n1 + L1

Acell

( − �Pedge
�a2

) · �n1

= −0.75923 × 10−3e, (66)

where we used that the edge polarization for the left edge
along �a2 in Fig. 8(a) is minus that of the right edge, i.e.,
−Pedge

�a2
. This relation holds for the present example because

the system is inversion symmetric. Finally, for the corner
region in Fig. 8(e), we use Eq. (14) to obtain the corner charge

Qc
e = 1.71431 × 10−3e that agrees with

Qc
e = L′

Acell

( − �Pedge
�a′

2

) · �n′ + L2

Acell

�Pedge
�e′

1
· (−�n2)

= 1.71347 × 10−3e. (67)

In the above expression, we used the notation L′ = |�e′
1|, and

the unit-normal vector �n′ is shown in Fig. 8(e).

6. Flake’s quadrupole moment tensor

For comparison, we also compute the quadrupole tensor for
the inversion symmetric flake shown in Fig. 8(a):

q̂flake
12 = q̂flake

21 = −1.1582 × 10−3e, (68)

q̂flake
11 = q̂flake

22 = −7.43307 × 10−4e. (69)

We observe that q̂flake
12 does not agree well with the corner

charge Qc
a for the flake size N1 = N2 = 20; see the last para-

graph of Sec. III C.

C. Orbitals with internal quadrupole moment

In the previous example, we assumed that the orbitals of the
tight-binding model (50) are isotropic, and hence they them-
selves have vanishing quadrupole moment with respect to
their center of mass. To include possible quadrupole moments
of the electron orbitals, we can replace the corresponding δ

function for the electrons in Eq. (7) with the actual shape
of the electron-orbital’s charge density. Alternatively, we can
perform following unitary transformation to the Hamiltonian
(50) which changes the basis from | �Rγ 〉 to | �Rγ̃ 〉,

| �R1〉 = 1√
2

(| �R1̃〉 + | �R2̃〉), (70)

| �R2〉 = 1√
2

(| �R1̃〉 − | �R2̃〉). (71)

Since inversion symmetry maps the two new orbitals as
1̃ ↔ 2̃, one can move the orbitals | �Rγ̃ 〉 to the positions �R +
(−1)γ̃ �X , where �X = X1�a1 + X2�a2 with X1, X2 ∈ [−1/2, 1/2].
The obtained tight-binding model is the same as the model
(50), although it has quadrupole moment tensor with compo-
nents in reduced coordinates equal to q̂12 = q̂21 = −eX1X2,
q̂11 = −eX 2

1 , and q̂22 = −eX 2
2 for the case when all the hop-

pings are set to zero.
In order to calculate the corner charge Qc of a flake for the

top right corner in Fig. 8(a), we proceed as in the previous
section, where the charge density (7) is changed compared
to the previous example because the positions of the orbitals
changed:

ρ(�r) = −e
∑
�Rnγ̃

(|〈 �Rγ̃ |ψn〉|2δ(�r − �R − (−1)γ̃ �X ) − δ(�r − �R)).

(72)

We obtain the corner charge of the flake by substituting the
above charge density into Eq. (14),

Qc = Qc
a + 0.0101783e × (X1 + X2) − eX1X2, (73)

where Qc
a is the corner charge (63) for the case when both the

orbitals are placed at the position �R, i.e., �X = 0. Similarly, the
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calculation of the bulk quadrupole tensor, using the bulk WF
from the previous example, gives

q̂12 = q̂21 = q̂(0,0)
12 − eX1X2, (74)

q̂11 = q̂(0,0)
11 − eX 2

1 , (75)

q̂22 = q̂(0,0)
22 − eX 2

2 , (76)

where the superscript “(0,0)” denotes the quadrupole moment
tensor in Eqs. (54) and (55). The calculation of Wannier edge
polarization has additional contribution from the second term
in Eq. (16),

�Pedge
�aα

= �Pedge,(0,0)
�aα

+ 0.0101784e × �X , (77)

where the term �Pedge,(0,0)
�aα

is given by Eq. (56). Similarly, the
edge polarization (57) gets modified to

�Pedge
�aα

= �Pedge,(0,0)
�aα

+ 0.0101784e × �X − 1
2 eX 2

ᾱ �aᾱ

− 1
2 eX1X2�aα. (78)

The bulk-and-edge to corner charge correspondence (4) gives
the corner charge

Qc = L2

Acell

�Pedge
�a1

· �n2 + L1

Acell

�Pedge
�a2

· �n1

= Qc
a + 0.0101784e × (X1 + X2) − eX1X2, (79)

which agrees well with the independent corner charge calcu-
lation (73).

Note that the model studied in this example for X1 = X2 =
1/6 is the same as the model previously studied in Ref. [27],
although here we chose different hopping parameters. We are
now in position to understand why the contribution from the
bulk quadrupole tensor q̂ was previously overlooked. Refer-
ence [27] assumes that e/2 ionic charge is localized at each
lattice site instead of ionic charge e localized at �R as was done
in Eq. (72). Therefore, the charge density (72) is modified to

ρ(�r) = −e
∑
�Rnγ̃

(
|〈 �Rγ̃ |ψn〉|2 − 1

2

)
δ(�r − �R − (−1)γ̃ �X ). (80)

The resulting corner charge Qc is given by Eq. (73) with the
last term −eX1X2 omitted. The above modification of the ionic
charge density changes the expressions for the quadrupole ten-
sor q̂ in Eqs. (74)–(76) to q̂(0,0). Therefore, Eq. (78) becomes

�Pedge
�aα

= �Pedge,(0,0)
�aα

+ 0.0101784e × �X , (81)

where the dominant contribution is from the �X -dependent
piece of the corresponding Wannier edge polarization (77).
For the hopping parameters chosen in this example, the bulk
contribution q̂(0,0)

12 from �Pedge,(0,0)
�aα

cannot be overlooked for
X1 = X2 = 1/6. On the other hand, for the hopping param-
eters used in Ref. [27], the bulk contribution q̂(0,0)

12 is an order
of magnitude smaller than the value in Eq. (54)—easy to over-
look in the presence of �X -dependent term in Eq. (81). This
statement should be compared to Eq. (79), where �X -dependent
bulk contribution −eX1X2 dominates.

V. CONCLUSIONS

The statement of the bulk-boundary correspondence, for-
mulated by the modern theory of electrical polarization
[2,3,34], is that the nonvanishing bulk polarization of a two-
dimensional insulator determines the edge charge density. On
the other hand, for vanishing bulk polarization, one can still
observe boundary signatures in form of corner charges and
edge dipoles. In this work, we prove that corner charges and
edge dipoles of band insulators can be obtained by repre-
senting a terminated crystal as a collection of edge regions
with polarization �Pedge

α , where α enumerates the edges (see
Fig. 1). We find that the edge polarization �Pedge

α consists of
two pieces, the bulk piece given by the quadrupole tensor of
bulk Wannier functions’ charge density and the edge piece that
we call Wannier edge polarization �Pedge

α . The Wannier edge
polarization is defined as polarization of the edge subsystem,
which is obtained by cutting out the region around the cor-
responding edge using “Wannier cut,” the cut that utilizes the
bulk Wannier functions as “shape cutter.” Within our represen-
tation of the terminated crystal, the edge polarizations �Pedge

α

determine the corner charges via mentioned bulk-boundary
correspondence. Since �Pedge

α has both bulk and edge piece,
the resulting correspondence (4) is dubbed bulk-and-edge to
corner correspondence, which is the main result of our work.
The edge polarizations �Pedge

α defined in this work depend on
the choice of occupied bulk Wannier functions, which is con-
sistent with the fact that the number of physical observables
(i.e., corner charges and edge dipoles) is one less than the
number of independent components of all edge polarizations.

In the context of this work, only the corner charges and the
edge dipole moments are considered as relevant physical ob-
servables characterizing the macroscopic charge density of a
terminated crystal. For this reason, only the lowest nonvanish-
ing multipole moment, polarization in this case, is taken into
account for the edge regions in Fig. 1. For example, one can
represent the crystal as a collection of edge regions that have
not only polarization but also quadrupole moment. Although
the quadrupole moment of the edge region affects neither the
corner charge nor the edge dipole (see Fig. 4), it does affect
finer (higher order) features [36] of the flake’s macroscopic
charge density. Admittedly, even the measurement of corner
chargers and edge dipoles may prove to be experimentally
challenging. Here we imagine a setup consisting of a crystal
with n edges, where the application of strain causes the edge
polarizations (3) to change. The change in the edge polariza-
tions results in the current flow along the corresponding edge,
which can be in principle measured. The measurement of the
currents related to the change of the edge dipoles requires
more local current probes which poses an additional difficulty.

In this work, we considered two-dimensional systems and
we expect the extension to three-dimensional systems to fol-
low along similar lines. Namely, for three-dimensional crystal
with vanishing bulk polarization, one can consider hinge
charge densities, or if the hinge charge densities vanish, the
corner charges. In the former case, the aim would be to repre-
sent the terminated crystal as a collection of polarized surface
regions, whereas in the latter case one would have polarized
hinge regions. Another interesting question in this context is
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finding all the symmetry constraints that quantize some of
the mentioned boundary signatures, where the bulk Wannier
functions can be chosen to respect the symmetry constraint.
On a more challenging side, we question whether the notion
of Wannier cut and Wannier edge polarization can be extended
to the systems lacking band structure or even single-particle
description, since in that case, no obvious generalization of
Wannier functions exists [37].
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