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Structure of spin correlations in high-temperature SU(N) quantum magnets
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Quantum magnets with a large SU(N ) symmetry are a promising playground for the discovery of new forms
of exotic quantum matter. Motivated by recent experimental efforts to study SU(N ) quantum magnetism in
samples of ultracold fermionic alkaline-earth-like atoms in optical lattices, we study here the temperature
dependence of spin correlations in the SU(N ) Heisenberg spin model in a wide range of temperatures. We
uncover a sizable regime in temperature, starting at T = ∞ down to intermediate temperatures and for all
N � 2, in which the correlations have a common spatial structure on a broad range of lattices, with the sign
of the correlations alternating from one Manhattan shell to the next, while the amplitude of the correlations is
rapidly decreasing with distance. Focussing on the one-dimensional chain and the two-dimensional square and
triangular lattice for certain N , we discuss the appearance of a disorder and a Lifshitz temperature, separating
the commensurate Manhattan high-T regime from a low-T incommensurate regime. We observe that this
temperature window is associated to an approximately N-independent entropy reduction from the ln(N ) entropy
at infinite temperature. Our results are based on high-temperature series arguments and as well as large-scale
numerical full diagonalization results of thermodynamic quantities for SU(3) and SU(4) square lattice samples,
corresponding to a total Hilbert space of up to 4 × 109 states.
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I. INTRODUCTION

More than a decade ago first proposals put forward the use
of internal states of ultracold atoms in order to implement var-
ious models of SU(N ) quantum magnetism and multiorbital
physics [1–4]. In contrast to “plain” quantum simulations,
where the emulation of a particular condensed matter prob-
lem is central to the effort, here the proposals offered a new
playground for theory and experiment to explore uncharted
territory. The study of SU(N ) quantum magnetism started
historically as a largely academic endeavor in the context of
integrable systems and large-N limits of SU(2) quantum mag-
netism [5–8], but in the meantime a large swath of theoretical
and numerical work has demonstrated that the field of SU(N )
quantum magnetism offers many opportunities for exciting
new physics, waiting to be uncovered in experiments [9,10].

Concerning the experimental atomic, molecular and optical
physics platform, it turned out that the alkaline-earth(-like)
fermionic atoms 87Sr [11–18] and 173Yb [19–23] are well
suited for this line of research. On the road towards SU(N )
quantum magnetism of localized moments on a lattice, the
realization of a Mott insulating state of 173Yb atoms formed an
important milestone [24,25], paralleling the earlier achieve-
ments of SU(2) Mott insulators [26,27]. The realm of SU(2)
magnetism has seen tremendous experimental progress with
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the advent of the real-space resolution of spin correlations
using quantum gas microscopes and other probes [28–34].
For 173Yb, first promising experimental results for nearest-
neighbor spin correlations in SU(4) and SU(6) Mott insulators
were reported recently [35–37], and efforts towards quan-
tum gas microscopes for Sr or Yb atoms are on their
way [38–41].

The original proposals and the subsequent experimental
work motivated a broad range of theoretical and computa-
tional works on various aspects of SU(N ) quantum magnets
[42–78]. A significant effort was put into understanding the
ground state (T = 0) phase diagrams of quantum spin models
in the fundamental representation of SU(N ) [52,78–97].

The experiments for Mott insulators of 173Yb [24,25] op-
erate currently in a temperature (T ) or entropy (S) regime,
which is low enough to freeze-out the charge fluctuations at
the repulsion energy U , therefore justifying the Mott insulat-
ing regime. However the thermal entropy per particle is still
substantial, so that one likely operates at effective tempera-
tures above or around the magnetic exchange scale J .

In this manuscript, we address the structure and temper-
ature dependence of real-space and momentum-space spin
correlations in this particular temperature or entropy regime.
We find an underlying common structure of correlations in
real-space for all N in SU(N ) and across many lattices. We
also find that many aspects of the thermodynamics in this
regime are to a large extent N-independent.

II. MODEL

An appropriate starting point to describe the systems of in-
terest is a single-band, SU(N )-symmetric, fermionic Hubbard
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model, which models 173Yb or 87Sr atoms (in the electronic
1S0 ground state) confined to an optical lattice.1

HHubbard = −t
∑

〈i, j〉,α
(c†

i,αc jα + H.c.) + U

2

∑
i

ni(ni − 1).

(1)

Here, t denotes the tunneling amplitude for nearest-neighbor
bonds on the lattice and U > 0 parametrizes the repulsive
onsite interaction strength. c†

i,α (ci,α) are the creation (annihila-
tion) operators of fermions with internal state α ∈ {1, . . . , N}
on lattice site i. The operator ni ≡ ∑

α ni,α = ∑
α c†

i,α ci,α
determines the total number of fermions on site i.

While the general phase diagram of this model is to a large
extent unknown, and the charting thereof constitutes one of
the goals of the experimental investigations, it is clear that
at integer fillings, in the limit of strong repulsive interactions
U � |t | and low temperature T � U , Mott insulating phases
do occur, where charge fluctuations are suppressed, and the
system is thus insulating, i.e. charge transport is inhibited. In
this limit, the description of the system can be simplified by
projecting out the local occupancies away from the considered
integer filling and therefore adopting an SU(N ) symmetric
effective spin model. Depending on the integer filling 〈ni〉 =
n, the spin model is formulated with local spins in the n-
box antisymmetric irreducible representation of SU(N ). The
Heisenberg spin model then reads

HHB = J
∑

〈i, j〉,A
SA

i SA
j , (2)

with the antiferromagnetic coupling J = 4t2/U > 0 at lead-
ing order in t/U 2. The sum A extends over the N2 − 1
generators of SU(N ). The dimension of the spin operators
depends on the irreducible representation considered, and we
will now focus exclusively on the case of unit filling n = 1,
corresponding to the fundamental irreducible representation
of SU(N ) (Young tableau: �) of dimension N . In this partic-
ular case the spin interaction can also be rewritten exactly as
a sum of two-site transposition operators:

HHB = J
∑
〈i, j〉

1

2

(
Pi j − 1

N

)
, (3)

with Pi j = ∑
α,β |αi, β j〉〈βi, α j |, i.e. a two site permutation

operator with α, β ∈ {1, . . . , N}. Some parts of the recent
literature on quantum spin models in the fundamental rep-
resentation are working with this permutation formulation.
In order to allow for a simple comparison to the established
correlations and temperature scales for SU(2), we however
continue our discussion with the Heisenberg Hamiltonian in
the spin operator convention Eq. (2). We discuss the relation

1The inclusion of the 3P0 clock state leads to a multiorbital SU(N )
Hubbard model, which is interesting in itself [115–118], but not the
topic of the present work.

2This is the formula valid for the fundamental representation. At
higher order in t/U , new terms in the spin model can be generated
(see, e.g., Ref. [97]), but we stick to the Heisenberg term here.

between different observables quantifying spin correlations in
Appendix A.

As mentioned in the introduction, our goal is to explore and
characterize the structure of spin correlations in a temperature
regime where the charge fluctuations can be neglected, i.e., at
T � U . This is an experimentally relevant regime, as some
of the currently reported experiments operate at entropies per
particle around or somewhat below ln N [25] in the Mott
regime. In the spin language this corresponds to temperature
ranges from T/J ∼ 1 to T/J = ∞. While spin correlations
of one-dimensional spin chains have been studied at finite
temperature in the past [42,44,45,74], there is a scarce number
of works [76] addressing SU(N ) spin correlations at finite
temperature in higher dimensions.

Our work is based on simple high-temperature series
considerations [98], complete numerical exact diagonaliza-
tion (ED) of periodic finite size clusters using a basis of
SU(N ) Young tableaux [77] and numerical linked cluster
expansion [99] results [also in the SU(N ) Young tableaux
basis], and aims to explore the structure and temperature
behavior of spin correlations in the currently experimen-
tally accessible temperature or entropy regime in SU(N )
Mott insulators across a variety of (mostly two-dimensional)
lattices.

III. SPIN CORRELATIONS AT HIGH TEMPERATURE

We start with a simple, but insightful, high-temperature
series consideration. We are interested in the following tem-
perature dependent spin correlations at distance r 
= 0 3:

Cspin(T, r) = Tr

[
ρ̂(T )

∑
A

SA
0 SA

r

]
. (4)

The density matrix

ρ̂(T ) = exp(−HHB/T )

Z (T )
(5)

is the standard normalized canonical Gibbs density matrix
(we set kB = 1), where Z (T ) = Tr[exp(−HHB/T )] denotes
the partition function. We assume a translation invariant sit-
uation and choose the reference site at the origin 0. For other
observables suitable to capture SU(N ) spin correlations and
their relation, please refer to Appendix A.

At infinite temperature (T/J = ∞) in the spin model (2)
all spin correlations as defined above vanish (cf. Appendix A),
irrespective of the value of N .

Let us now discuss the leading-order behavior in βJ = J/T
for a correlation at distance r for a general lattice made of
nearest-neighbor bonds of the same strength. Standard linked
cluster arguments for high-temperature series [98] imply that
the correlator at distance r starts at an order k in (βJ ) which is
directly linked to the Manhattan distance m between the origin
0 and site r. In Fig. 1, we indicate the Manhattan distance m
between the reference site and a few shells of sites on (a) the
linear chain, (b) the square lattice, and (c) the kagome lattice

3The autocorrelation is independent of temperature:
∑

A SA
0 SA

0 =
(N2 − 1)/(2N ).
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FIG. 1. Manhattan physics for SU(N ) magnets. Qualitative real-
space two-site correlation pattern in the high-temperature regime
J�T �U of the SU(N ) Heisenberg model on different geometries:
(a) one dimensional chain, (b) square lattice and (c) kagome lattice.
Blue (red) denotes a negative (positive) correlation with the reference
site (empty circle symbol). The sign of the correlator only depends
on the Manhattan distance m to the reference site. The dotted brown
line connects equidistant sites from the reference site and forms
Manhattan-shells denoted by m, i.e., nearest neighbors to the ref-
erence site are found in the first shell m = 1, then at distance two
m = 2 the second shell, etc. These shell structures are also known
as successive coordination spheres in related fields. The prefactor
gpaths(r) of the corresponding correlator is indicated at the lattice
sites. gpaths(r) counts the number of possible paths connecting the two
sites with m Manhattan distance steps (using only nearest-neighbor
bonds).

for illustration. The structure on other lattices can be derived
accordingly. As discussed below an additional element of
the leading order expression concerns the number of shortest
paths gpaths(r), measured in the Manhattan metric, which link
the origin to the site of interest. These numbers gpaths(r) are
marked in the site circles in Fig. 1.

The considerations so far are independent of the actual
Hamiltonian, as long as it consists only of nearest-neighbor
bonds on the lattice. There are also interesting connections to
the short-time expansion of correlations when starting from
an uncorrelated product state, as recently discussed and ex-
perimentally demonstrated in a Rydberg quantum magnetism
experiment on square and the triangular lattices [100].

For our Hamiltonian at hand, when written in the permu-
tation formulation (3), it is possible to explicitly calculate the
coefficient of the leading-order high-temperature expression
symbolically for all N [74,75] for the first few orders k � 12.
Given the simple structure of the terms we conjecture that the
expression holds for all k. Based on these results we are now
in a position to present the leading-order high-temperature
expression for general N on any lattice in any dimension, as
long as the Hamiltonian (2) only contains nearest-neighour
bonds of equal strength:

Cspin(T, r) = gpaths(r)

2
(−K )m

(
1

Nm−1
− 1

Nm+1

)
+ O(Km+1),

(6)

where K = βJ/2, and m is the Manhattan distance between
sites 0 and r on the considered lattice, while gpaths(r) counts

the number of paths between the two sites of length m, mea-
sured in the Manhattan metric.

This is a central result of our work. The expression (6)
allows us to predict both the real-space structure of the
correlations, and their relative N dependence in the high-
temperature regime of Hamiltonian (2), within the limits of
its applicability, to be discussed below.

As one can see from the term (−K )m, the spin correlations
are alternating in sign from one Manhattan shell to the next,
starting with the nearest-neighbor correlations being negative,
i.e., antiferromagnetic, as expected for an antiferromagnetic
spin Hamiltonian. This feature has been noticed before in
earlier work on linear chains [74] and the cubic lattice [76].
Furthermore, sites within the same Manhattan shell m are
more correlated by a factor gpaths(r), when multiple paths
link the two considered sites. These enhancement factors are
displayed in the circles in Fig. 1.

The dependence on N in SU(N ) is also remarkable. For
m = 1, i.e., nearest neighbors, the correlations are propor-
tional to (1 − 1/N2), indicating that the correlations are
actually increasing with N and converging to a constant value
at large N (for a given K). This is also an important feature,
and its thermodynamic implications will be discussed further
in Sec. V. For more distant sites with m > 1, the correlations
are proportional to (1/Nm−1 − 1/Nm+1) indicating that the
correlations decrease rapidly in magnitude with m and con-
verge towards zero as N grows, and even more strongly so for
larger m.

As a first step towards addressing the range of applicability
of the leading-order high-temperature series argument just
developed, we display in Fig. 2 numerical exact diagonal-
ization results for several finite-size square lattice clusters at
different temperatures T/J and distances m as a function of
N ∈ {2, . . . , 10} 4. The ED cluster have periodic boundary
conditions and range in size Ns from 12 to 18 (see Appendix B
for detailed information), depending on the value of N , where
Ns denotes the number of lattice sites. We use this notation
throughout the whole paper. In the upper three panels of
Fig. 2 we start at a rather high temperature of T/J = 50.
We show three panels, one for each m = 1 (black circles),
2 (red squares), and 3 (blue diamonds). At this temperature,
for the distances shown, the agreement between the high-
temperature series expansion result (6) (crosses) and the ED
results (symbols connected by a line) is very good. One can
also clearly see the rapid decay of the correlations with the dis-
tance m and, for m > 1, with N . The values of the correlations
themselves are tiny at this temperature. For the substantially
lower temperature T/J = 1.5 the lower three panels highlight
how the quantitative agreement between the result (6) and the
numerics starts to deteriorate, however the qualitative trends
remain unaltered and even a semi-quantitative agreement is
visible. These numerical results provide strong evidence that
the Manhattan picture introduced here prevails for a sizable
range in temperature and spatial extent for a broad range of
values of N .

4Where applicable we have divided the numerical results by
gpaths(r), in order to simplify the presentation.
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FIG. 2. Real-space spin correlations on the square lattice for two
different temperatures: T/J = 50 for the upper panel (with distances
m = 1, 2, 3) and T/J = 1.5 for the lower panel (for the same dis-
tances). Data points connected by a solid line denote numerical exact
diagonalization results while crosses without line correspond to the
leading-order high-temperature series result presented in Eq. (6).

IV. DISORDER TEMPERATURES AND
LIFSHITZ TRANSITIONS

In this section, we study in more detail for which distances
and temperatures the Manhattan picture starts to break down.
The ground state physics of the spin Hamiltonian (2) has been
explored for many values of N and lattice geometries over the
last decades, see, e.g., Refs. [5,52,78–86,89–97], and in most
cases the structure of the ground states differs qualitatively
from the Manhattan picture advocated in the previous section.
Based on the current understanding, we expect only bipartite
lattices with N = 2 to show a common sign structure of cor-
relations from high to low temperatures. In all other cases,
we have to assume the Manhattan picture to break down at
some temperature in one way or the other. In the following,
we discuss some scenarios on how this breakdown might
occur.

We start a few general considerations and discuss the no-
tions of a disorder temperature, a Lifshitz temperature, and

a thermal first-order phase transition. We then apply these
notions to discuss the well understood one-dimensional chain
case for N = 3 first, and then switch to two-dimensional
square lattices, where we focus on N = 3 and 4. We close
this section with a brief analysis of the N = 3 model on the
triangular lattice.

A. Disorder temperature TD(Ns)

For each distance, the high-temperature expansion starts
with the expression given by Eq. (6). We have however no de-
tailed understanding of the form of the coefficient of the next
order contribution in the high-temperature expansion. Such
an analysis would require a fully fledged series expansion
machinery as in Refs. [74–76], which is however not the goal
of the present work. In order to quantify the deviation, we
follow an idea put forward in the context of commensurate-
incommensurate transitions of short-range-ordered magnetic
systems [101–103]. In such systems, the transition from a
commensurate regime to an incommensurate regime can be
detected in real-space or momentum space. In real space, one
diagnostic is to determine the transition point (as a function of
a parameter, such as a coupling in the Hamiltonian, or in our
case the temperature T/J) by locating the first sign change in
a correlator at any distance deviating from the commensurate
structure. In our case, the commensurate region is the one
with the alternating Manhattan shell structure. The parameter
location is called a disorder point. Since in our case at hand
we are interested in the temperature dependence, we call this
system size dependent temperature, the disorder temperature
TD(Ns). Note that this temperature does not necessarily indi-
cate a thermodynamic phase transition, just a change in the
nature of short range correlations.

B. Lifshitz temperature TL(Ns)

Another diagnostic to track the change from commensurate
to incommensurate behavior is to determine when the peak
in the corresponding structure factor is moving away from a
commensurate location. The structure factor is defined as the
Fourier transform of the real-space correlations:

S (T, k) = N2 − 1

2N
+

∑
r 
=0

(Cspin(T, r) exp[ik · r]). (7)

In two of the specific geometries discussed below, the linear
chain and the square lattice, the Manhattan shell structure
of correlations in real space leads to a peak in the structure
factor at momentum π or (π, π ) respectively. We can then
track the structure factor as a function of temperature T/J and
detect the first temperature, coming from T/J = ∞, where
the location of the maximum starts to deviate continuously
from π or (π, π ), as in a bifurcation transition. This (pos-
sibly finite-size dependent) temperature is called the Lifshitz
temperature TL(Ns). In analogy to the disorder temperature,
the Lifshitz temperature is not necessarily an indication for a
thermodynamic phase transition.
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FIG. 3. Temperature dependence of spin correlations in the one-dimensional SU(3) Heisenberg model. (a) Real-space spin-spin correla-
tions Cspin(T, m) between sites at distance m as a function of temperature T/J for a Ns = 15 sites chain. The inset resolves the sign change
occurring as a function of T/J for the m = 7 correlator. (b) Disorder temperature TD(Ns)/J as a function of system size Ns. (c) Static structure
factor as a function of temperature T/J . The vertical red dotted and dashed dotted lines indicate the finite size bifurcation temperature
TL (Ns = 15)/J ≈ 0.24 (on the periodic 15-site chain) and the estimated infinite system size Lifshitz temperature TL (∞)/J = 0.281(5).
(d) Evolution of the peak location k/π of the structure factor as a function of temperature T/J for different chain lengths Ns. Dashed dotted
lines are finite-size ED data and display jumps when the peaks transition from one finite size momentum to another, using a temperature grid
of �T/J = 0.005. Solid lines with symbols correspond to results obtained using the continuous structure factor ansatz of Appendix C.

C. First-order phase transition

In dimensions higher than one, another distinct possibility
is that the Manhattan regime is separated from one or sev-
eral low-temperature regimes by a genuine thermal first-order
phase transition. In such a scenario, correlations in real space
would change discontinuously for many distances, and the
structure factor location is also expected to jump discontin-
uously away from the commensurate position.

1. One-dimensional N = 3 chain

As a warm-up application of these notions, we discuss
the SU(3) spin chain. The disorder temperature has not been
discussed yet for SU(N ) Heisenberg chains, to the best of
our knowledge. The Lifshitz temperature has been discussed
under a different name in Ref. [74].

For all N , the Manhattan regime of one-dimensional
chains is characterized by alternating correlations as shown in
Fig. 1(a) and a maximum in the structure factor at wave vec-
tor k = π . We proceed by analyzing finite-size complete ED
results for SU(3) chains up to Ns = 15. For each finite system

size at high enough temperature, the sign (and approximate
values) of the correlations are given by Eq. (6). In Fig. 3(a), we
display the real-space correlations as a function of the temper-
ature T/J for a system size Ns = 15. For high temperatures,
all real-space correlators indeed exhibit the sign predicted by
the Manhattan regime, i.e., the correlations alternate from one
site to the next. However, at T/J = TD(Ns = 15)/J ≈ 0.62,
the first correlator changes its sign, see the inset for m = 7 in
Fig. 3(a). At even lower temperatures other correlators change
their sign, e.g., at distance m = 2 the correlation changes sign
around T/J ≈ 0.3. In Fig. 3(b), we plot the system size depen-
dence of TD(Ns)/J for the SU(3) linear chain. We observe a
substantial drift of these disorder temperatures towards higher
values as Ns increases.5 It is not clear to us whether this disor-
der temperature will drift to infinite temperature as the system
size increases, or wether it will converge to a finite value
TD(∞). Assuming the scenario of a finite disorder tempera-
ture, a linear extrapolation in 1/Ns yields TD(∞)/J ≈ 0.74(2).

5We also observe some small modulation in Ns with a period three.
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Irrespective of this uncertainty, we interpret our observations
as an indication that the real-space extent and the tempera-
ture extent of our proposed Manhattan structured correlation
regime is substantial enough that it will be able to be explored
in near-term experiments measuring spin correlations beyond
nearest-neighbor distances.

Next we consider the correlations in momentum space by
investigating the structure factor S (T, k) of the SU(3) Heisen-
berg chain. At infinite temperature, the structure factor is flat
throughout the Brillouin zone. At high but finite tempera-
ture, the structure factor shows a broad peak at momentum
k = π for even Ns or at k = π ± π/Ns for odd Ns (see also
Refs. [44,45,74]). This is shown in Fig. 3(c). For Ns = 15,
we see a shift of the location of the maximum from k =
14π/15 to k = 4π/5 at the finite size Lifshitz temperature
TL(15)/J ≈ 0.24. This is followed by a further change from
k = 4π/5 to k = 2π/3 around T/J ≈ 0.15. The location of
the low-temperature peak is in agreement with the known
ground state physics of SU(N ) Heisenberg chains, which dis-
play algebraically decaying spin correlations oscillating with
wave vectors which are multiples of |k| = 2π/N [5,44,45,74].
In Fig. 3(d), we analyze the finite size dependence of Lif-
shitz temperature TL(Ns) using an expansion of the structure
factor around k = π discussed in Appendix C. The analysis
leads to a Lifshitz temperature of TL(∞)/J = 0.281(5) for
the one-dimensional SU(3) Heisenberg chain. In Ref. [74], the
Lifshitz temperature was discussed for N = 4 and N = 20 and
a Lifshitz temperature of about T/J ≈ 0.25 in our units was
found, lending support for an approximately constant Lifshitz
temperature for N � 3. In Ref. [44] it was noticed on the other
hand that the entropy per spin corresponding to these Lifshitz
temperatures is increasing with N . We will come back to this
observation in Sec. V.

Let us summarize for the N = 3 Heisenberg chain that
coming from high temperature, the first signal in temperature
is likely the disorder temperature TD/J � 0.73 (depending on
distance or system size), where the sign structure in real space
starts to show defects with respect to the Manhattan structure.
At a lower temperature TL/J ∼ 0.28, the peak in the structure
factor starts to move away from the commensurate π location.
So real-space correlations are indeed a valuable new probe
to investigate SU(N ) magnetism, as they are able to detect
deviations from the Manhattan regime at higher T/J than
momentum space probes.

2. Square lattices: N = 3 and 4

The Manhattan regime for the square lattice for all N
exhibits real-space correlations according to Fig. 1(b), while
in momentum space the structure factor peaks at (π, π ). On
the other hand the predicted ground state physics scenarios
differ starkly among the studied cases of N . The SU(2) case
is a well-known and its ground state is Néel ordered. The
correlations are expected to retain their sign structure from
high temperatures down to T/J = 0, while the structure factor
remains peaked at (π, π ) for all T/J < ∞.

The SU(3) Heisenberg model on the square lattice also
shows long-range spin order [84,91], with an ordering wave
vector ±(2π/3, 2π/3) or ±(−2π/3, 2π/3). The two distinct
orientations differ in their sign of the spin correlations across

the diagonal of a square plaquette. This difference can be
elevated to an Ising order parameter which could order at
finite temperature due to its discrete nature, despite the true
long-range order of the spin correlations being inhibited at
finite temperature due to the Hohenberg-Mermin-Wagner the-
orem [104,105]. This scenario is similar to those put forward
for frustrated SU(2) systems [106,107], and being actively
discussed in the context of nematic ordering in the pnictide
superconductor materials [108,109].

The ground state of the SU(4) square lattice Heisenberg
model is predicted to exhibit an even more involved spatial
pattern of SU(4) symmetry breaking [85]. Here it is also
conceivable that the dimerization pattern orders at finite tem-
perature, before true long-range order for the spins occurs at
T = 0.

In both the SU(3) and the SU(4) cases predicted the low-
temperature regime is distinct from the Manhattan regime
expected at high temperature. We discuss in the following
complete ED simulations on a Ns = 18 cluster for SU(3)
and a Ns = 4 × 4 = 16 sites cluster for SU(4) and study
the behavior of real-space correlations and structure factors
as a function of temperature T/J . These complete numer-
ical diagonalizations have been performed by adopting the
SU(N ) Young tableaux basis [77], combined with large-scale
SCALAPACK [110] highly parallel diagonalization routines.
The largest block to be diagonalized numerically had a dimen-
sion of almost 800 000. A microcanonical view on the SU(3)
data is discussed in Appendix B.

We start the discussion of the results for the real-space
correlations of the two cases in Fig. 4(a) and 4(b) for SU(3)
and SU(4), respectively. Data points connected by a solid
line display the ED results evaluated at the corresponding
temperatures. The dashed lines on the other hand display
the leading-order behavior Eq. (6) of the Manhattan regime.
The high-temperature sign structure in the ED data in both
cases is in perfect agreement with our Manhattan regime pre-
diction and extends down to an intermediate temperature of
TD/J ≈ 0.325 for SU(3) where the distance-(3, 0) correlator
turns from negative to positive. For SU(4) the distance (2, 2)
correlator changes sign at TD/J ≈ 0.575, which is almost
twice as high as in the N = 3 case. In both cases, the deviation
from the Manhattan picture occurs at the largest possible
distance on the considered cluster, which is analogous to the
one dimensional chain discussed above. It is noteworthy that
the correlations beyond the nearest-neighbor distance remain
quite small in the N = 4 case compared to the N = 3 case,
even down to rather low temperatures.

In Figs. 4(c) and 4(d), we show the structure factor for
various distinct wave vectors as a function of T/J for SU(3)
and SU(4), respectively. As expected we observe a maximum
at (π, π ) in the high-temperature regime. At low temperature,
we recognize a direct shift of the peak to the location expected
in the ground state, i.e., k = (2π/3, 2π/3) and symmetry
related momenta for N = 3 and k = (π, π/2) and symmetry
related momenta for N = 4. These finite-size transitions oc-
cur at TL(Ns = 18)/J ≈ 0.15 for N = 3 and TL(Ns=16)/J ≈
0.21 for N = 4. In the absence of larger systems allowing
a finite-size analysis it remains open whether these temper-
atures signal a first-order phase transition from the short-
range-ordered Manhattan regime to the spatial symmetry

043009-6



STRUCTURE OF SPIN CORRELATIONS IN … PHYSICAL REVIEW RESEARCH 2, 043009 (2020)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

T/J

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

C
sp

in
(T

,r
)

(a)
r = (1, 0)

r = (1, 1)

r = (1, 2)

r = (2, 0)

r = (3, 0)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

T/J

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
sp

in
(T

,r
)

(b)

r = (1, 0)

r = (2, 0)

r = (1, 2)

r = (2, 2)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

T/J

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

S(
T
,k

)

(c)

TL(∞)TL(18)
k = (π, π)

k = (π, π/3)

k = (2π/3, 2π/3)

k = (2π/3, 0)

k = (π/3, π/3)

k = (0, 0)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

T/J

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

S(
T
,k

)
(d)

TL(∞)TL(16)

k = (π, π)

k = (π, π/2)

k = (π, 0)

k = (π/2, π/2)

k = (π/2, 0)

k = (0, 0)

FIG. 4. Temperature dependence of spin correlations in the two-dimensional square lattice SU(3) and SU(4) Heisenberg model: Full ED
spin correlation results for the largest accessible clusters for SU(3) (Ns = 18) and SU(4) (Ns = 16). (a) and (b) shows the correlation functions
Cspin(T, r) with a fixed reference site 0 for N = 3, Ns = 18 and N = 4, Ns = 16, respectively. Leading-order high-temperature expansion
results [Eq. (6)] are illustrated as dashed lines. (c) and (d) shows the corresponding structure factor S(T, k). The vertical red dashed and
dashed dotted lines indicate the finite size bifurcation temperature TL (Ns=18)/J = 0.150(5) [TL (Ns=16)/J = 0.210(5)] and the estimated
infinite system size Lifshitz temperature TL (∞)/J = 0.180(5) [TL (∞)/J = 0.230(5)] for SU(4)], obtained by the continuous structure factor
ansatz.

broken low-temperature regime, or whether these features
are indicators of Lifshitz temperatures separating two short-
range-ordered regimes, while a distinct symmetry breaking
transition occurs at even lower temperature. In case a Lif-
shitz temperature occurs first coming from high temperature,
we can estimate the infinite system Lifshitz temperatures us-
ing the analysis in Appendix C. We then obtain TL(∞)/J =
0.180(5) for SU(3) and TL(∞)/J = 0.230(5) for SU(4).

So in conclusion of this study of the SU(3) and SU(4)
square lattice cases, we can again confirm that the Manhattan
regime indeed accounts for the structure of spin correlations
in real and momentum space from infinite temperature down
to quite low temperatures. As in the chain case, we observe
that the real-space correlations signal a sign change at a higher
temperature than the putative temperature of the Lifshitz tran-
sition governing the structure factor.

3. Triangular lattice: N = 3

As the last example we display the real-space spin correla-
tions as a function of temperature T/J for the SU(3) triangular
lattice Heisenberg model in Fig. 5 for Ns = 12. This system

size is not very large, it is however the largest we can diag-
onalize completely while being compatible with the expected
three sublattice ordered ground state physics [82,91,111]. At
high temperature, we expect the Manhattan regime to manifest
itself, and indeed in the left panel of Fig. 5 we can see that
the nearest-neighbor correlation is negative, while the distance√

3 and 2 correlators are positive as they both belong to the
m = 2 Manhattan shell. A similar Manhattan structure of cor-
relators on the triangular lattice has recently been observed at
short times in a nonequilibrium Rydberg quantum magnetism
experiment [100]. At a disorder temperature TD(Ns = 12)/J ≈
0.69 the distance 2 correlator changes sign, then reaching the
expected sign structure of the three sublattice ordered ground
state. This disorder temperature is about two times larger than
in the square lattice case. It remains to be seen whether this is
a finite-size effect or due to the different geometry.

In the right panel of Fig. 5, we present the corresponding
structure factor S (T, k) as a function of temperature T/J . On
the triangular lattice the Manhattan regime leads to a (shallow)
peak at the K points in the Brillouin zone for all N , and that
is well reproduced in our data. For N = 3, the peak remains
at the K momenta for all temperatures, as the ground state
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FIG. 5. Temperature dependence of spin correlations in the two-dimensional triangular lattice SU(3) Heisenberg model: full ED spin
correlation results for Ns = 12. (a) shows the correlation functions Cspin(T, r) with a fixed reference site 0. Leading-order high-temperature
expansion results [Eq. (6)] are illustrated as dashed lines. The vertical red dashed dotted line indicates a disorder temperature TD(Ns = 12)/J ≈
0.69, where the distance 2 correlator changes sign. (b) shows the corresponding structure factor S(T, k).

develops Bragg peaks at these very momenta. So there is no
Lifshitz temperature for the triangular lattice N = 3, despite
the fact that some of the correlations change their sign in real
space as a function of temperature, signaling the breakdown
of the Manhattan regime.

V. EQUATION OF STATE ON THE SQUARE LATTICE

In the discussion so far, we used only the temperature T/J
as a control parameter of the thermal equilibrium. However,
in the ultracold atom context it is also useful to understand
the physics in terms of the entropy S or the entropy per site
s. In order to address the entropy dependence of the cor-
relations (as, e.g., studied in Ref. [44] for one dimensional
SU(N ) chains) we numerically determine the entropy per site
s ≡ S/Ns as a function of the energy density e ≡ E/Ns. This
function s(e) is known to be a thermodynamic potential, and
allows therefore to extract, e.g., the temperature via

ds

de
= 1

T (e)
.

We note that for our nearest-neighbor spin Hamiltonians (2)
the energy per site e = z

2 Cspin(n.n.) is related to the nearest-
neighbor spin correlator discussed above via the coordination
number z of the lattice.

We calculated the entropy S(T ) and the energy E (T ) from
the finite size partition function obtained by complete nu-
merical diagonalizations of periodic square lattice systems.
Furthermore, we have implemented a numerical linked cluster
expansion (NLC) based on a real-space cluster expansion in
terms of squares [99], while the complete numerical diago-
nalizations required for each cluster were performed in the
SU(N ) Young tableau basis [77].

In Fig. 6, we show the resulting curves s(e) for various N
between 2 and 10 for the square lattice. We chose the origin
of the y axis at the infinite temperature reference value ln(N ).
We have indicated the (s, e) coordinates corresponding to
T/J = 1/2 with filled squares in Fig. 6. Curiously we observe
that almost all curves lie on top of each other in the regime
corresponding to high temperature. The consequence of this

observation is that in the high-temperature regime of SU(N )
Heisenberg models one has to shelve away an N-independent
amount of entropy per site to cool to the same temperature
(here T/J = 1/2 as an example). Obviously this is not true
when cooling to the ground state, as then the full entropy per
site of ln(N ) has to be removed.

Our leading-order high-temperature series expansion result
(6) allows us to understand the origin of this phenomenon. In
this expansion, the nearest-neighbor correlations (m = 1) de-
pend on N as (1 − 1/N2), becoming basically N-independent
rather quickly. On the one hand this correlator is proportional
to the energy e, and on the other hand, we can determine
the entropy reduction away from infinite temperature from an
integration of the specific heat per site c(T ) = de/dT :

�s(T ) = ln(N ) − s(T ) =
∫ ∞

T

c(τ )

τ
dτ.
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FIG. 6. Entropy per site as a function of the energy per site for
the SU(N ) Heisenberg model on the square lattice. Lines with big
symbols denote numerical linked cluster expansion (NLC) results,
while the dot-dashed lines with small symbols denote complete nu-
merical diagonalizations for periodic finite size clusters. The squares
are plotted at the (s, e) coordinate corresponding to T/J = 1/2 for
all N .
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FIG. 7. Schematic phase diagram of the SU(N) Heisenberg
model on the square lattice for N � 10. The maximum achievable
entropy per site for a given N is log N (corresponding to T → ∞)
signalized by the height of the bars. The question marks indicate the
absence of quantitative information regarding the Lifshitz or disorder
entropies for N > 4 as well as the absence of reliable information on
the nature of the ground state on the square lattice for N > 5.

We thus see that the approximate N-independence of the
nearest-neighbor correlator in the Manhattan regime, and its
relevance for the energy, implies that the entropy reduction
to reach a certain final temperature is approximately N-
independent on the type of lattices considered in this work.

This also explains the two apparently conflicting results
regarding one-dimensional chains, that the Lifshitz temper-
atures are almost independent of N according to Ref. [74],
while Ref. [44] reports an increasing entropy per site for
the Lifshitz points. Here we see that the two point of views
coincide when viewed from infinite temperature, but seem to
diverge when viewed from zero temperature.

Unfortunately our methods do not allow us to system-
atically and reliably study the low-temperature physics of
large N and Ns systems, so a large fraction of the s-N phase
diagram for the square lattice in Fig. 7 has to remain un-
charted. However our work has substantiated an extended
region in temperature or entropy where the correlations are
short-ranged and structured in real-space according to the
Manhattan structure. This region is indicated in green in
Fig. 7. For N = 2, this Manhattan region is continuously con-
nected to the low-temperature region with an exponentially
diverging correlation length for the same structure of correla-
tions. For N = 3 and 4, we have worked out the approximate
location of the Lifshitz or first-order transitions to a different
low-temperature regime in Sec. IV B. For larger N , we are
unable to reliably estimate the lower end of the Manhattan
region.

VI. CONCLUSION

In this work, we have analyzed the real-space structure of
spin correlations in the SU(N ) Heisenberg model with spins
in the fundamental representation on a broad range of lattices.
We find a unifying pattern, the Manhattan structure, where
spin correlations are organized in shells of equal Manhattan
distance, and alternating in sign from one shell to the next.

For selected cases we have investigated how the Manhattan
regime breaks down at low temperature through indicators
such as the disorder or Lifshitz temperature.

Investigating the dependence of the entropy reduction from
the infinite temperature value of ln(N ), we have realized that
the Manhattan regime is governed by an approximately N-
independent equation of state, see Fig. 6. This has interesting
consequences, such that the entropy reduction from ln(N )
to reach a certain temperature in the Manhattan regime is
approximately N independent, potentially easing the way to
reach low temperatures in the SU(N ) spin models, akin to the
Pomeranchuk cooling effect discussed previously [24,65,66].

An important open question remains however. While
reaching low temperatures in the Manhattan regime seems
easy, it is not clear how easy it will be to go to even lower tem-
peratures where more N specific novel physics can be reached.
For example in the one-dimensional chains the SU(N ) Wess-
Zumino-Witten regime predicted at zero temperature is visible
only at temperatures which decrease with N , as discussed in
Ref. [74]. The temperatures we report reaching the ground
state physics of the SU(3) and SU(4) square lattices with
TL/J ≈ 0.18 and TL/J ≈ 0.23 are already quite low.
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APPENDIX A: OBSERVABLES FOR SU(N)
SPIN CORRELATIONS

In this section, we discuss the relation between several
observables which are useful to quantify spin correlations
for SU(N ) quantum spin systems with local spins in the
N-dimensional fundamental (�) irreducible representation of
SU(N ). Assuming an arbitrary state ρ of the entire system
which is SU(N ) invariant [e.g., an SU(N ) singlet pure state, or
a non-symmetry-broken thermal density matrix), the two site
reduced density matrix ρi, j = TrE (i, j) [ρ], (where E (i, j) de-
notes all remaining degrees of freedom apart from sites i and
j] contains all the information regarding correlations between
sites i and j. The two site reduced density matrix of linear
dimension N2 has two subspaces: the symmetric subspace

( ) of dimension N (N + 1)/2 and the antisymmetric ( ) of
dimension N (N − 1)/2. The total weight of the state on the
symmetric and the antisymmetric subspaces are denoted pS

and pA respectively, with pS + pA = 1.
Let us now discuss a few observables and their relation to

pS and pA. We use the notation 〈Oi, j〉 = Tr [Oi, jρi, j].
(1) The two site permutation operator Pi j is particularly

simple in this respect. The operator has eigenvalue +1 (−1)
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in the symmetric (antisymmetric) subspace.

CP(i, j) ≡ 〈Pi, j〉 = pS − pA. (A1)

At infinite temperature, the two-site reduced density matrix
is proportional to the identity: ρi, j (T =∞) = 1/N2. This
leads to pS = N (N+1)

2N2 and pA = N (N−1)
2N2 . Thus the correlator:

CP(i, j) = 1/N at T = ∞.

(2) The contraction of SU(N ) spin operators which we
use in the Hamiltonian Eq. (2) are related to the permutation
operator as outlined in Eq. (3). This leads to the following
correlations:

Cspin(i, j) =
〈∑

A

SA
i SA

j

〉

= 1

2

(
CP(i, j) − 1

N

)

= 1

2
(pS − pA − 1/N ). (A2)

This operator reduces to the well-known Si · S j operator for
S = 1/2 for SU(2), yielding Cspin(i, j) = −3/4 (+1/4) for an
SU(2) singlet (triplet).

At infinite temperature, this correlation vanishes for all N :
Cspin(i, j) = 0 at T = ∞.

(3) In the recent “singlet-triplet-oscillations” (STO) ex-
periments for SU(2) and SU(N > 2) systems [28,35–37] it
is possible to estimate the symmetric (pS , “triplet”) and the
antisymmetric (pA, “singlet”) fraction of a nearest-neighbor
density matrix on several lattices (e.g., honeycomb, cubic).
We refer to those references for the details of the method.

(4) We anticipate that in future quantum gas microscopes
it will be possible to record snapshots of the internal spin
state configurations of a cloud of atoms, in analogy to what
is currently possible for SU(2) fermions in an optical lattice
[29–33]. In such experiments, it is then possible to measure
“color-color” correlations, i.e., to measure the probability of
finding two atoms at sites i and j in the same internal SU(N )
spin state α.

We therefore define a diagonal color correlator for SU(N )
spin models as

Ccolor (i, j) =
〈∑

α

|αi, α j〉〈αi, α j |
〉

=
〈 ∑

{A∈C}
2SA

i SA
j + 1

N

〉
, (A3)

where C denotes the set of N − 1 indices corresponding
to the diagonal spin operators SA

i , SA
j on site i and j,

i.e., the hermitian Cartan generators of the Lie algebra
su(N ). This observable is a projector and can be seen as
the probability to have the same spin color on site i and
j. For example, in the case of SU(2) and SU(3) the ob-
servable reads Ccolor (i, j) = 2〈Sz

i Sz
j〉 + 1/2 and Ccolor (i, j) =

2(〈S3
i S3

j 〉 + 〈S8
i S8

j 〉) + 1/3, respectively.
Due to the SU(N ) symmetry the expectation value 〈SA

i SA
j 〉

is the same for every component A and hence 〈∑A SA
i SA

j 〉 =
(N2 − 1)〈S0

i S0
j 〉. After some algebraic steps one obtains the

relation of the diagonal color correlator with the two site
permutation operator

Ccolor (i, j) = 1

N
+ N − 1

N2 − 1

(
〈Pi j〉 − 1

N

)

= 1

N
+ 1

N + 1

(
pS − pA − 1

N

)
. (A4)

At infinite temperature the Ccolor (i, j) correlator takes the
value 1/N .

APPENDIX B: MICROCANONICAL ANALYSIS

The material in the main text is derived from the canonical
Gibbs ensemble. In this Appendix, we highlight selected
results for spin correlations on square lattice clusters, where
large-scale numerical full diagonalizations exploiting the
SU(N ) symmetry [77] have been carried out. In Fig. 8, we
show results for a spatially symmetric 18 sites square cluster
for the SU(3) Heisenberg model. This cluster has periodic
boundary conditions and is spanned by the simulation cell
vectors T1 = (3, 3) and T2 = (−3, 3). The entire Hilbert
space has a dimension of 318 = 387 420 489. After dividing
the Hilbert space into SU(N ) irreducible representations, the
largest matrix size to be diagonalized features a dimension
of almost 800 000. The panels are arranged according to the
position of the second site in the correlator with the origin. In
each panel we show a two-dimensional histogram compiled
from all 318 eigenstates of the system, where on the x axis the
energy per site E/Ns is plotted, while on the y axis the value of
the corresponding correlator Cspin(�x,�y). Furthermore we
plot the energy-correlator behavior of the canonical predic-
tions in the temperature range T = 0 to T = ∞, based on the
same finite size data (dark green, dashed line). The positive
energy per site region corresponds to the ferromagnetic side
of the energy spectrum. One can see how the ferromagnetic
correlations build up as one approaches the maximum energy
per site (E/Ns = 2/3). On the antiferromagnetic side of the
energy spectrum, the behavior of the correlators is less regular,
but one can recognize that at low energy, the distribution of
the correlators starts to concentrate and converge towards the
T = 0, i.e., ground state results, where the canonical and the
microcanonical predictions match.

Overall one can see that the expected eigenstate thermal-
ization hypothesis (ETH) [112–114] behavior is not fully
reached yet for this system size, despite the huge total
Hilbert space. We attribute this to the large amount of
different quantum number sectors [spatial symmetry sec-
tors combined with SU(3) representations], which contribute
to the observables, and which are all included in the
plots.

APPENDIX C: CONTINUOUS STRUCTURE
FACTOR ANSATZ

In this section, we perform a continuous structure factor
ansatz and thereby estimate the Lifshitz temperature under
the assumption that coming from high temperatures a Lifshitz
transition occurs. We focus on the 2D square lattice but for
the one-dimensional chain the derivation is performed in an
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FIG. 8. Microcanonical analysis of spin correlations for the SU(3) Heisenberg model on a 18 sites square lattice cluster. (a) �x = 1,
�y = 1, (b) �x = 2, �y = 1, (d) �x = 1, �y = 0, (e) �x = 2, �y = 0, and (f) �x = 3, �y = 0. The geometry of the cluster is sketched in
(c), for a detailed description see Appendix B.

analog way. We start by decomposing the static structure
factor of the spin-spin correlations on the infinite square lattice
into harmonics

S(k) =
∑
j 
=1

′
2 cos[k(r j − r0)]〈S jS1〉 + N2 − 1

2N
, (C1)

where the sum
∑′ runs over the subset corresponding to the

indices of one quadrant of the lattice, centered by the reference
site r0. We cut the series at distance three and set correlations
for larger distances to zero by definition

S(k) = c0 + c1[cos(kx ) + cos(ky)]

+ c2[cos(2kx ) + cos(2ky)]

+ c3[cos(kx + ky) + cos(kx − ky)]

+ c4[cos(3kx ) + cos(3ky)]

+ c5[cos(2kx + ky) + cos(2kx − ky)

+ cos(kx + 2ky) + cos(kx − 2ky)], (C2)

where c j = 2Cspin(0, j). Taylor expanding around (π, π )
and keeping maximally quartic terms leads to the following
Ginzburg-Landau free energy like expression

S((π + x, π + y)) ≈ a0 + a1(x2 + y2) + a2(x4 + y4)

+ a3x2y2 (C3)

with

a0 = c0 − 2c1 + 2c2 + 2c3 − 2c4 − 4c5,

a1 = c1

2
− 2c2 − c3 + 9c4

2
+ 5c5,

a2 = − c1

24
+ 2c2

3
+ c3

12
− 27c4

8
− 17c5

12
,

a3 = c3

2
− 4c5. (C4)

By maximizing Eq. (C3) we find three different regimes: (I)
a trivial regime with the maximum at (π, π ), (II) a second
regime with four maxima along the diagonals ((π ± ε, π ± ε)
with ε = √−a1/(2a2 + a3)) through (π, π ) and (III) a third
regime with four maxima along horizontal and vertical lines
((0, π ± ε) and (π ± ε, 0) with ε = √−a1/(2a2)) through
(π, π ). Finally, by matching the coefficients ai with the ED
data for our largest cluster for every temperature, we obtain
a trajectory in the coefficient space. Starting from the origin
(T → ∞) the trajectory moves into the trivial regime, where
the structure factor is peaked at (π, π ), but bends back and
breaks through regime (II) at TL(∞)/J = 0.180(5) for SU(3)
and through regime (III) at TL(∞)/J = 0.230(5) for SU(4),
which are the estimated Lifshitz temperatures.
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