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Knotted polarizations and spin in three-dimensional polychromatic waves
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We consider complex three-dimensional polarizations in the interference of several vector wave fields with
different commensurable frequencies and polarizations. We show that the resulting polarizations can form knots,
and interfering three waves is sufficient to generate a variety of Lissajous, torus, and other knot types. We
describe the spin angular momentum, generalized Stokes parameters, and degree of polarization for such knotted
polarizations, which can be regarded as partially polarized. Our results are generic for any vector wave fields,
including, e.g., optical and acoustic waves. As a directly observable example, we consider knotted trajectories of
water particles in the interference of surface water (gravity) waves with three different frequencies.
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I. INTRODUCTION

Polarization is a fundamental property of vector waves of
different nature. It is thoroughly studied in optics and electro-
magnetism [1], but can be equally applied to any vector wave
fields, e.g., elastic and acoustic waves [2–4]. Polarization can
be associated with the curve traced by the field vector F (r, t )
in a given point r. For a monochromatic three-dimensional
(3D) wave field F (r, t ) = Re[F(r)e−iωt ], this curve is gener-
ically an ellipse [1].

Rotation of the field vector at a given point r can also be as-
sociated with an intrinsic angular momentum (AM), i.e., spin
[3–9]. This is one of the fundamental dynamical properties of
vector waves, including electromagnetic, elastic, and acous-
tic ones. In the most general case, a two-dimensional (2D)
polarization state is described by the four Stokes parameters
(one of which is the normal spin component) [1,10], while 3D
polarized fields require nine generalized Stokes parameters
[11–14] (three of which are responsible for the spin compo-
nents [13,15]).

When the wave contains multiple frequencies, the motion
of the field vector becomes more complicated and in the limit
of an irregular chaoticlike motion implies total depolarization
of the wave. However, when a polychromatic field contains
only several frequency components with well-defined po-
larizations, the field vector motion is complicated but still
regular. This regime is only barely studied; the only properly
described case involves 2D paraxial fields with two com-
mensurable frequencies, which generate closed Lissajous-like
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polarization curves [16–19]. Notably, optical nonlinear wave-
mixing processes essentially involve generic polarizations and
spin angular momentum of all the harmonics [18]. Therefore,
there is strong motivation to take full control of the nontrivial
3D polarizations of polychromatic fields with commensurable
frequencies.

In this work, we show that interfering three or more waves
in 3D with commensurable frequencies produces closed po-
larization “trajectories” which are generally knotted [20] (i.e.,
cannot be continuously transformed into a circle without cuts
or self-crossings). Knotted structures in wave fields have been
intensively studied recently in various contexts [21], such as
knotted electromagnetic field lines [22–25], knots of wave sin-
gularities [26–31], and 2D Lissajous-like polarizations with
an extra synthetic dimension [19]. However, the 3D “knotted
polarizations” considered here is a novel physical entity, to
the best of our knowledge. We will describe several classes
of knots, which are naturally generated in polychromatic
fields. We will also analyze the spin angular momentum
and generalized Stokes parameters produced by such knot-
ted polarizations. These properties are highly important in
contexts of light-matter and spin-orbit interactions involving
high-harmonic generation [18,32,33]. Our approach is general
and can be applied to optical, acoustic, and other vector wave
fields. In particular, we show an example of knotted polariza-
tions in interference of surface water (gravity) waves. There,
such polarizations correspond to real-space trajectories of
water molecules and can be directly observed experimentally
[34].

II. KNOTTED POLARIZATIONS

We consider an interference of 3D vector fields with mul-
tiple commensurable frequencies ωn, n = 1, . . . , N , so that
F (r, t ) = ∑

n Re[Fn(r)e−iωnt ]. The field vector in a given
point r traces a closed 3D curve with the temporal period
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FIG. 1. Examples of knotted polarizations F (t ) in the interference of three waves with different frequencies and polarizations (shown to
the right from the knots). (a) The Lissajous knot (1) with A1 = A2 = A3, ω2/ω1 = 5/2, ω3/ω1 = 3/2, φ1 − φ2 = 0.04, and φ3 − φ2 = 1.8 (the
52 or three-twist knot [35]). (b) The torus knot (2) with p = 2, q = 3 (trefoil knot). (c) Figure-eight knot (3). The spins of the interfering
waves and resulted knotted polarizations are shown in magenta, whereas the 3D degree of polarization for the knotted states (a)–(c) are P = 0,
P = 1/2, and P � 0.67, respectively [36].

T = 2π/�, where � is the lowest common multiple of {ωn}.
Such polarization curves can be topologically nontrivial and
form knots [20] (see Fig. 1). Note that the polarization curve
depends only on the frequencies and elliptical polarizations of
the interfering waves Fn in the given point r. From now on we
fix this point and only consider temporal dependencies of the
fields.

Because of the time-harmonic character of the in-
terfering waves, the Cartesian field components F (t ) =
[Fx(t ),Fy(t ),Fz(t )] are sums of cos(ωnt ) and sin(ωnt ) terms
with different amplitudes. Knotted curves described by such
harmonic terms are known as Fourier or harmonic knots
[37,38]. These knots are labeled by three integer indices
(i, j, k) � (1, 1, 1) indicating the numbers of frequencies in
the three Cartesian field components. Remarkably, any type of
knot can be constructed as a Fourier-(1, 1, k) knot with some
k [39].

In the simplest case, when each Cartesian component has
only one frequency, such Fourier-(1,1,1) knots are called
Lissajous knots [40–42], with F (t ) given by

[A1 cos(ω1t + φ1), A2 cos(ω2t + φ2), A3 cos(ω3t + φ3)], (1)

where the frequencies ωn, n = 1, 2, 3, are proportional to
three coprime integers, whereas An and φn are amplitudes and
phases. In physical terms, the Lissajous-knot polarizations
are produced by a superposition of three linear polarizations
oriented along the three Cartesian axes, as shown in Fig. 1(a)
for the example of 52 or “three-twist” knot [20,21,35,41].

One of the most important classes of knots are torus knots
Tp,q, which lie on a torus surface and are characterized by a
pair of coprime integers (p, q) [20,21]. Notably, every type of
torus knots can be represented by a Fourier-(1,1,2) knot with
F (t ) given by [43]

A[cos(ω1t ), cos(ω2t + φ2),− sin(ω1t ) + cos(ω3t + φ3)],

ω2

ω1
= q

p
,

ω3

ω1
= q − p

p
, φ2 = π

2p
, φ3 = π

2p
− π

4q
.

(2)

Polarization torus knots are produced by a superposition of
one circular and two linear polarizations, as shown in Fig. 1(b)
for the example of trefoil knot T2,3 [20,21]. Note that waves

with frequencies satisfying Eq. (2) can be generated in non-
linear wave-mixing processes [19,44].

The Lissajous and torus knots do not exhaust all possible
Fourier knots. For example, the figure-eight knot can be gen-
erated by the field F (t ) as follows [38]:

A[cos(ωt ) + cos(3ωt ), 0.4 sin(3ωt ) − sin(6ωt ),

0.6 sin(ωt ) + sin(3ωt )]. (3)

This is a superposition of two elliptical and one linear polar-
izations [Fig. 1(c)].

III. SPIN IN OPTICAL AND ACOUSTIC FIELDS

The normalized period-averaged spin AM density in a
monochromatic vector wave field can be characterized by the
expression S = Im (F∗× F)/|F|2, |S| � 1. In optical fields,
F = E is the electric field [6,10,45], while in sound wave
fields in fluids or gases, F = V is the velocity field [3,4,9].
Note that this simplified approach ignores the presence of
other fields (magnetic field in optics and pressure field in
acoustics [4,5,7,9,46–48]), but this omission is justified in
many practical problems, where experimental measurements
and phenomena are sensitive only to the electric and velocity
fields.

The above expression for the normalized spin originates
from the time-averaged non-normalized expression 〈G ×
F〉 = Im (F∗× F)/(2ω) and the density of “field quanta”
given by the energy density divided by frequency, 〈F ·
F〉/ω = |F|2/(2ω), where G is the vector potential, such that
F = ∂tG. In optics, A = −G is the magnetic vector potential
in the Coulomb gauge [48], while in acoustics R = G is the
displacement field [9], so that G × F = R × V is the natural
mechanical AM form.

In the polychromatic field F considered above, the vector
potential equals G(r, t ) = ∑

n ω−1
n Im[Fn(r)e−iωnt ]. Substitut-

ing it into the spin form 〈G × F〉 with time-averaging over
the period T yields the normalized spin density in a polychro-
matic field:

S =
∑

n ω−1
n Im(F∗

n × Fn)∑
n ω−1

n |Fn|2
. (4)
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This equation shows that the spin of a polychromatic field
represents a properly weighted sum of the spins Sn of the
interfering monochromatic components. In the particular case
of 2D bichromatic optical fields, consisting of circularly po-
larized waves, the general expression (4) coincides with the
one used in Refs. [16,18]. Obviously, the spin (4) vanishes
for interfering linearly polarized fields, such as the Lissajous
knots [Fig. 1(a)]. For other knotted polarizations it is generi-
cally nonzero [see [36] and Figs. 1(b) and 1(c)] for the spin of
the torus and figure-eight knotted polarizations [Eqs. (2) and
(3)], and restricted by |S| � 1.

Remarkably, the above spin AM in polychromatic fields
with complex 3D polarization curves allows a very simple me-
chanical analogy. Let us consider a mechanical point particle
of unit mass moving in real space along the closed trajectory
r(t ) = G(t ). Then, the period-averaged mechanical AM of
this particle, 〈r × ∂t r〉, equals the spin 〈G × F〉, whereas its
averaged kinetic energy, 〈|∂t r|2/2〉, is half of the field energy
〈F · F〉. This hints that the curve traced by the vector poten-
tial G could be more fundamental than the one traced by the
field F . Of course, all previous considerations about knotted
polarizations can be equally applied to the vector-potential
polarization.

Note that for monochromatic fields, the polarization el-
lipses of the field F and its vector potential G coincide
with each other (up to a constant factor). In contrast, the
complex polarization curves of polychromatic fields and their
vector potentials generally differ considerably. This is because
single-harmonic elliptical motion is invariant with respect to
the time-derivative operation, while complex polychromatic
motion is not.

IV. GENERALIZED STOKES PARAMETERS
AND DEPOLARIZATION

The above consideration of the spin AM suggests that any
quadratic forms of fields could be considered in a similar
manner, such that interference terms between different fre-
quencies are averaged out and the form represents a weighted
sum of contributions from each frequency component. For
example, the canonical momentum of a polychromatic field
is calculated similarly to the spin but with the substitu-
tion of the quadratic form Im(F∗

n × Fn) → Im[F∗
n · (∇)Fn]

[3,4,7,9,46,48]. Calculation of optical or acoustic radiation
forces and torques also involves similar quadratic forms and
allows a similar approach [49,50].

Here we consider important quadratic forms used for the
description of 3D partially polarized fields, namely, the gen-
eralized Stokes parameters �l , l = 0, 1, . . . , 8 [11–14]. For
monochromatic fields, these parameters appear from the Her-
mitian 3 × 3 coherence matrix �i j = 〈F ∗

i Fj〉, i, j = x, y, z,
and its decomposition �i j = 1

3

∑8
l=0 �l{λl}i j via the Gell-

Mann matrices λl [11–14]. Here �0 = Tr(�̂) is associated
with the field intensity, parameters �1, �3, �4, �6, and �8

are related to the real part of �̂, while the three parameters �7,
�5, and �2 related to the imaginary part of �̂ are proportional
to the Cartesian components of the spin density S [13,15].

For the polychromatic fields considered here, we introduce
the natural analogs of the coherence matrix and the general-

ized Stokes parameters as

�i j =
∑

n

F ∗
niFn j = 1

3

8∑
l=0

�l{λl}i j, (5)

such that the polarization parameters are sums of the
corresponding parameters for the interfering monochro-
matic waves: �l = ∑

n �
(n)
l [36]. Note that the vector

2(−�7,�5,−�2)/(3�0) represents an analog of the normal-
ized spin (4) but without ω−1

n weighting factors [13,15].
Among the different definitions of the degree of po-

larization for 3D fields [12,51–53], a natural choice is

P =
√∑8

l=1 �2
l /

√
3�0 ∈ [0, 1]. An elliptically polarized

monochromatic light, i.e., each of the interfering components
in our knotted fields, Eqs. (1)–(3) and Fig. 1, is fully po-
larized: P(n) = 1 [36]. However, calculating the polarization
parameters (5) for polychromatic knotted fields, we find that
its degree of polarization diminishes: P < 1. This means that
polychromatic knotted fields can be regarded as partially de-
polarized. In particular, for any Lissajous-knotted field (1)
with A1 = A2 = A3, we find that P = 0, i.e., it is totally un-
polarized [36]. This is natural, because such fields consist of
three independent oscillations with equal amplitudes along the
three axes. In turn, for any torus-knotted field (2), the degree
of polarization is P = 1/2, while for the figure-eight-knotted
polarization (3) we find P � 0.67 [36]. In these cases, the
presence of partial polarization is related to the presence of
nonzero spin (4) in such knotted fields [Figs. 1(b) and 1(c)]
[15]; total depolarization implies zero spin.

Note, however, that the spin, polarization parameters, and
degree of polarization are not directly related to topological
properties of knotted polarizations. These are rather geomet-
rical (or dynamical) properties of the field curve F (t ). For
example, the polarization parameters of the Lissajous knots
(1) strongly depend on the amplitudes An (scaling factors
along the Cartesian axes) [36], while the knot topology is
obviously independent of these.

V. KNOTTED TRAJECTORIES IN WATER WAVES

Remarkably, complex polarizations of polychromatic
waves is a directly observable phenomenon. While measuring
the time-dependent electric field with optical frequencies is
practically impossible, the sound-wave polarization is related
to the velocity field V (r, t ) or the displacement “vector po-
tential” R(r, t ) [9]. Here, the time-dependent field R(r, t )
describes the real-space displacement of the medium particles,
so that its polarization curve is the real-space trajectory of the
particle. Although it is a challenge to observe the displace-
ment of air or water particles at typical sound frequencies, this
can be easily done for surface water waves with much lower
frequencies and directly observable motion of water particles.
Indeed, a recent experiment [34] observed a 2D Lissajous-
like motion in the interference of water waves with different
frequencies. Here we show that a similar experiment can be
designed to observe 3D knotted trajectories of water particles
when taking into account their horizontal and vertical motions
and interfering three waves with different frequencies.

Using equations of hydrodynamics, the equation
of motion for the 3D displacement field R(r⊥, t ) =
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FIG. 2. Interference of three surface water waves, one propagating in x and two standing along y [Eq. (6)] with different frequencies and
phases corresponding to Fig. 1(b). The instantaneous surface shapes (grayscale) and 3D water-particle trajectories (colored) are shown for the
interference field (a) (see also its animated version [36]) and each of the interfering waves (b). Some of these trajectories correspond to trefoil
torus knots [Fig. 1(b)], while others are “unknots.” The (x, y) regions with knotted and unknotted trajectories are shown in (c).

[X (r⊥, t ),Y (r⊥, t ),Z (r⊥, t )] on the water surface z = 0
for deep-water (gravity) waves can be written as [36]
∂2

t Z = g∇⊥ · R⊥, where r⊥ = (x, y), ∇⊥ = (∂x, ∂y),
R⊥ = (X ,Y ), and g is the gravitational acceleration.
For a monochromatic plane-wave field R(r⊥, t ) =
Re[R e−iωt+ik·r⊥ ], with k = (kx, ky ) being the wave
vector, this yields −ω2Z = igk · R⊥, where ω2 = gk is
the dispersion relation [54]. These equations describe
a well-known fact: in a plane gravity wave, the water
particles move along circular trajectories lying in the plane
determined by the wave vector and normal to the surface
[55]. In other words, a single deep-water wave has a

purely circular polarization. Then, interfering oppositely
propagating waves with the same frequency yields a
superposition of opposite circular polarization, i.e., a linear
polarization with the position-dependent orientation. Thus,
propagating and standing gravity waves provide circular
and linear polarizations necessary for the torus knots (2)
[Fig. 1(b)].

Explicitly, we consider the interference of an x-propagating
plane wave and two standing waves along the y axis with three
different frequencies and phases but equal amplitudes. This
results in the displacement field

R(r⊥, t ) ∝

⎛
⎜⎝

cos (ω1t − k1x)

0

− sin (ω1t − k1x)

⎞
⎟⎠ +

⎛
⎜⎝

0

cos (ω2t + φ2) cos (k2y)

cos (ω2t + φ2) sin (k2y)

⎞
⎟⎠ +

⎛
⎜⎝

0

− cos (ω3t + φ3) sin (k3y)

cos (ω3t + φ3) cos (k3y)

⎞
⎟⎠, (6)

where k1,2,3 = ω2
1,2,3/g. Choosing the frequencies and phases

satisfying Eqs. (2), we find that the real-space trajectory of the
water motion at r = 0, R(0, t ), is exactly the torus knot (2)
[Fig. 1(b)].

Figure 2 shows the water surface shape and water-particle
trajectories R(r⊥, t ) for the whole interference field (6) with
p = 2, q = 3, corresponding to the trefoil knot in Fig. 1(b),
and also for each of the interfering waves. Note that differ-
ent points of the water surface (x, y) correspond to different
mutual phases of the interfering waves. Therefore, water mo-
tions in different points have different 3D trajectories. In our

case, these trajectories represent trefoil knots and “unknots’
[20,21]. The (x, y) regions with knotted and unknotted tra-
jectories are shown in Fig. 2(c). Numerical calculations [56]
show that the fraction of knotted trajectories here is about
12%. Many of the polarization trajectories are nearly self-
intersecting, which can make the precise knot topology hard to
resolve. Such self-intersections occur at every transition here
between unknot and trefoil knot, but the arcs pass through
each other (i.e., not reconnecting like vortices [57,58]). More
complicated superpositions give rise to larger areas of knot-
ting, with transitions between multiple knot types.
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VI. CONCLUSIONS

We have studied polychromatic 3D vector waves with
closed (periodic) field trajectories. In particular, we have
found that interference of three or more vector waves with
different frequencies can generate a variety of knotted 3D
polarizations, including Lissajous, torus, and other knots. We
have introduced a natural formalism for the spin angular
momentum (including a simple mechanical analogy), gen-
eralized Stokes parameters, and other quadratic forms for
polychromatic yet periodic 3D vector waves. This revealed the
presence of nonzero spin and partial depolarization in generic
knotted polarizations. Finally, using the generic character of
our consideration, valid for any 3D vector wave fields, we
have provided an example where knotted polarizations appear
as directly observable trajectories of water particles in the
interference of surface-water (gravity) waves.

These results provide a natural application of the knot
theory to wave physics, different from the previously studied
knots of field lines [22–25] or singularities [26–31]. More-
over, our work considerably extends earlier studies of complex
polarizations in polychromatic fields, previously restricted to

2D bichromatic Lissajous-like polarizations [16–19], as well
as theory and potential applications of the spin AM, so far
mostly restricted to monochromatic waves [3–7]. Since com-
plex 3D polarizations and polychromatic fields are highly
important for light-matter interactions, nonlinear and ultrafast
processes, quantum control, etc. [18,19,32,33,59], one can
expect that nontrivial topological and dynamical features of
knotted polarization states will find applications in complex
wave systems.
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