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Electromagnetic anapoles of a Cartesian expansion of localized electric currents
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Electromagnetic anapoles are nonradiating oscillations of electric charge. They are known to be formed
by a combination of an ordinary and a toroidal multipole. In this work, we introduce a different family of
anapoles based on a Cartesian electric-current multipole expansion and propose a way to create the lowest-order,
centrosymmetric member of this family. We also find a nontoroidal multipole structure that radiates as an electric
dipole despite its zero total dipole moment. Radiation-free charge oscillations are interesting not only in view of
their unique fundamental properties, but also in view of practical applications, e.g., in near-field-based optical
sensing and detection.
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The electromagnetic multipole expansion is a useful tool
for characterizing electromagnetic fields radiated or scattered
by small particles, because any such field can be unam-
biguously expanded into orthogonal components produced by
equivalent elementary point multipoles located at the center
of the particle. The real electromagnetic excitations in the
particle can differ substantially from the charge oscillations
of the obtained multipoles. In most cases, the real excitations
are more complex. As an example, the field radiated by a
toroidal multipole excitation—omitted in the classical mul-
tipole expansion—is the same as that of the corresponding
ordinary multipole [1–3]. Therefore, in the expansion of the
radiated field, a toroidal dipole will show up simply as an
ordinary dipole, even though the total dipole moment of this
excitation (integrated over the volume of the particle) is equal
to zero. If one then superimposes a toroidal dipole with an
ordinary dipole that radiates the same, but the out-of-phase
field in the absence of other multipoles, the overall radiation
disappears, manifesting a completely dark anapole excitation.
The classical multipole expansion of the field in this case
yields zero expansion coefficients for all multipoles. Anapole
excitations based on toroidal multipoles have recently been
intensively studied, and their surprising properties and po-
tential applications have been widely discussed [4–15]. One
of the most intriguing features of anapoles is their ability
to produce zero-energy vector-potential waves [7–9], with
possible implications connected to the Aharonov-Bohm ef-
fect. Electromagnetic anapoles also show a strong near-field
enhancement in the absence of far-field radiation that can be
used, e.g., for near-field imaging and detection with extraor-
dinary sensitivity [11–15].
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Along with the multipole expansion of the radiated field,
one can expand the electric current density in the particle into
the electric-current multipoles [16–18]. In this work, we use
this type of multipole expansion and construct pure and hybrid
electromagnetic anapoles based on it. Pure anapoles consist
of electric-current multipoles of the same order, while hybrid
anapoles are combinations of current multipoles of different
orders. The lowest-order anapole (that can be considered as
a structural unit of higher-order pure anapoles) is highly sym-
metric compared to the anapole that includes a toroidal dipole.
This fundamental anapole represents a pulsating oscillation
of a spherically symmetric charge distribution. If, for exam-
ple, the excited particle is an atom with a spherical electron
cloud (the s orbital), the excitation would appear as a peri-
odic change of the electron-shell radius without breaking the
spherical symmetry. Because this oscillation does not radiate
(see, e.g., [19]), it should not be possible to excite it externally.
However, we show that an equivalent charge oscillation can be
excited in a noncentrosymmetric particle, such as a six-metal-
nanorod scatterer that we have designed for this purpose. As
a figure of merit for such anapole designs we introduce a
ratio of the total electromagnetic power radiated by an electric
dipole to that of the designed anapole with the same integrated
amplitude of the electric current density in the particle. For our
design, the figure of merit (FOM) can reach the level of 103.

In the following, we first briefly introduce the electric-
current multipole expansion. Then we describe the construc-
tion of electromagnetic anapoles and present the design of a
plasmonic particle in which the fundamental anapole can be
excited. The summary of the work is presented at the end of
the Rapid Communication.

In the electric-current multipole expansion, the electric-
current density in a radiating or scattering particle is expanded
into orthogonal Cartesian multipoles composed of elemen-
tary point currents [16]. These currents can be generated
by applying multiple spatial derivatives to the Dirac delta
function δ(r). The first-order point-current density distribu-
tion (corresponding to a classical electric dipole moment D)
is represented by the amplitude J(1)(r) = −iωDδ(r); the
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FIG. 1. Examples of elementary electric-current configurations
(red arrows) in the dipole (D), quadrupole (Q̂), and octupole (Ô)
excitations. Each configuration is labeled with the corresponding
current component (left) and multipole tensor element (right) defined
with respect to the coordinate system shown in the lower left corner.

amplitude of the second-order (quadrupole) point-current den-
sity is J(2)(r) = iωQ̂ · ∇δ(r), where Q̂ is a current quadrupole
dyadic; the octupole current density is given by J(3)(r) =
−iω(Ô · ∇) · ∇δ(r), where Ô is an octupole triadic; and so
on [16–18]. The multipoles are not divided into electric and
magnetic multipoles, but can be related to them if needed.
The electric current configurations of a few lowest-order mul-
tipoles are illustrated in Fig. 1. The multipole tensors M̂(l )

containing the amplitudes of the lth-order multipole moments
are given by

M(l ) = i

(l − 1)!ω

∫
V

J(r)rl−1d3r. (1)

The integral in the above expression contains the outer product
of l vectors, one vector J(r) that is the scattering current
density [16] and l − 1 coordinate vectors r. The integration
is taken over the volume of the particle. The multipole tensors
are written in Cartesian coordinates. The indices of the ten-
sor elements show the directions of the elementary currents
composing the multipole moments and their displacements
with respect to each other. For example, the octupole tensor
element Oyxx stands for a y-directed current element (first
subindex) split and symmetrically displaced along the x di-
rection two times (second and third subindices), each time
flipping the negative-x copy of the current elements (see
Fig. 1). The distance between the current elements in each
point multipole is assumed to approach zero.

In the expansion, all possible electromagnetic excitations
are represented by electric currents and any dynamic mag-
netization effects are replaced by current loop excitations
or neglected, as can be done at optical and higher frequen-
cies [20]. This makes the classical magnetic dipole (a current
loop) and electric quadrupole belong to excitations of the
same order. The two classical multipoles are given by combi-
nations of electric-current quadrupole elements. For example,
a magnetic dipole moment pointing in the z direction is com-
posed of two current quadrupoles in such a way that its current
configuration is J(2)

yx − J(2)
xy . A classical electric quadrupole

with orthogonal currents oscillating in the xy plane is given
by J(2)

yx + J(2)
xy [17]. The electric-current multipoles provide a
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FIG. 2. Examples of anapole excitations. The fundamental
anapole shown in (a) represents a radial harmonic oscillation of a
spherical electron shell (σ is the charge density shown schemati-
cally by a dark circle and J is the current density shown by thick
red arrows in the left picture). This excitation has three nonzero
(quadrupole) moments with Qxx = Qyy = Qzz. Another anapole com-
posed of three octupoles is shown in (b). The octupole currents
are equal, J (3)

xxz = J (3)
yyz = J (3)

zzz , for which the octupole moments must
satisfy Oxxz = Oyyz = Ozzz/2.

complete orthogonal basis for expansion of localized electric
currents, including also toroidal multipoles. The complexity
of the electric-current configuration in the expansion increases
with the multipole order. A toroidal dipole, for example, is a
particular case of an electric-current octupole excitation, as
will be shown later. The classical electric and magnetic mul-
tipole coefficients can be obtained from the electric-current
multipole moments using a set of equations given in [16] for
the coefficients up to the electric octupole.

Let us proceed to construct electromagnetic anapoles. The
most symmetric (fundamental) anapole is a harmonic radial
oscillation of a spherical shell of electric charge. In the current
multipole expansion, this excitation is of a pure quadrupole
nature, being represented by three orthogonal equal-phase and
equal-amplitude linear quadrupoles Qxx, Qyy, and Qzz [see
Fig. 2(a)]. It is remarkable to note that none of these three
components is dark. Neither do they produce coinciding far-
field profiles. Still the sum of the three fields is equal to zero
at every point in the far-field zone. The anapole, therefore,
differs considerably from the one composed of a toroidal
and an ordinary dipole that have identical radiation patterns.
Note also that the three quadrupole current configurations are
orthogonal (being members of a complete orthogonal basis),
but the fields radiated by them are not orthogonal, leading to
the disappearance of the total radiated field.

It is straightforward to construct the next-order anapole
by combining three octupole excitations, as shown in
Fig. 2(b). The octupole moments in the illustrated example are
Oxxz, Oyyz, and Ozzz with equal current densities, i.e., J (3)

xxz =
J (3)

yyz = J (3)
zzz . For the currents to be equal, the moments must

satisfy Oxxz = Oyyz = Ozzz/2 [see Eq. (28) in [16]]. Other
multipole moments in this excitation are equal to zero. The
excitation is dark, as can be seen from the fact that it is a
sum of two fundamental anapoles shifted symmetrically along
the z axis and oscillating out of phase. There are two more
anapoles of this type, one with Oxxx/2 = Oyyx = Ozzx and the
other with Oxxy = Oyyy/2 = Ozzy, which are just rotations of
the anapole described above. In a similar way one can con-
struct all the higher-order anapoles, but the complexity of the
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FIG. 3. Construction of hybrid anapoles. Case (a) shows a com-
bination of four equal-current octupoles forming a toroidal electric
dipole. The superscript “-” indicates that the multipole moment is
out of phase with the other multipole moments. Adding an ordinary
field-compensating electric dipole to it results in the disappearance
of the total radiation field. By subtracting a three-octupole anapole
(shown in the middle) from the structure of (a), one obtains a com-
bination of three octupoles [case (b)] that also radiates a dipolelike
field. Hence, by adding an electric dipole to it, one can obtain another
hybrid anapole. The octupole and dipole moments in the two hybrid
anapoles obey the relations Oxxz = Oyyz = −Ozxx/2 = −Ozyy/2 =
−Ozzz/2 and Dz = −2Oxxzk2, respectively.

current configurations in them will increase together with the
difficulty to realize them in practice.

The anapoles in the above examples contain multipole
moments of the same order, which makes the condition for
darkness of the excitation frequency independent. In addition
to these anapoles, however, one can construct hybrid anapoles
that consist of different-order multipoles. The well-known
toroidal-dipole-based anapole is an example of this type of
an anapole (see the hybrid anapole 1 in Fig. 3). It consists of
four current octupoles [forming a toroidal dipole, as seen in
Fig. 3(a)] and one electric dipole. For this multipole combi-
nation to be dark, the following relation for the amplitudes
of the multipole moments must be satisfied: 2Oxxz = 2Oyyz =
−Ozxx = −Ozyy = −Dz/k2, where k = ω/c is the wave num-
ber. Obviously, this condition depends on the frequency of the
excitation.

We can add or subtract any anapole excitation to or from
any multipole current configuration without changing its radi-
ated field. For example, subtracting a three-current-octupole
anapole shown in the middle of Fig. 3 from the multipole
combination shown in Fig. 3(a) results in a structure shown
in Fig. 3(b) that radiates the same dipole field as the toroidal
dipole. The obtained structure, however, consists of three
current octupoles and is simpler and more symmetric than
the toroidal dipole. If the excited particle is an atom, this
three-octupole configuration corresponds to an out-of-phase
oscillation of the charge in a spherically symmetric elec-
tron shell and in the nucleus; since the electron shell and
the nucleus have opposite charges, a translational mechan-
ical oscillation of a neutral atom as a whole must produce
electromagnetic dipolelike radiation. We emphasize that the
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FIG. 4. Design of a silver scatterer exhibiting a fundamental
anapole excitation. The structure composed of three nanorod pairs
is shown in (a). The curves in (b) are the longitudinal excitation
spectra of a single pair of the nanorods with equal lengths of 50 nm,
diameters of 25 and 15 nm, and the gap of 30 nm. The nanorods
are embedded in glass. The magnitude and phase of the dipole
polarizabilities of the thick nanorod (blue lines), thin nanorod (red
lines), and the two nanorods (yellow line) are shown in the upper and
lower plots, respectively.

volume-integrated dipole moment of this excitation is equal
to zero, while its field is exactly the same as that of a dipole.
Hence, this new excitation is similar in properties to a toroidal
dipole. Other hybrid anapoles can also be constructed using
combinations of multipoles and the considered pure or hybrid
anapoles.

To realize a fundamental anapole oscillation in practice we
need to excite three orthogonal linear quadrupoles shown in
Fig. 2(a). If the anapole is designed to be excited optically and
show a significant near-field enhancement, the particle should
be chosen in the form of a plasmonic scatterer. In our design,
the scatterer consists of three orthogonal pairs of cylindrical
silver nanorods [see Fig. 4(a)]. The nanorods in each pair
should have different geometrical parameters, such as diam-
eters, making it possible to obtain opposite currents in them at
a frequency between the two plasmon-resonance frequencies
of the rods. To excite each pair equally, the excitation field
must then have equal projections onto each pair. Therefore,
the scatterer must be excited with a linearly polarized field
that oscillates along the threefold rotational symmetry axis of
the structure, as the field E shown in Fig. 4(a).

We first optimize the geometry of a single nanorod pair.
Figure 4(b) shows the longitudinal excitation spectra of an
optimized nanorod-pair structure, for which the nanorods have
equal lengths of 50 nm, but different diameters of 25 and
15 nm. The gap between the rods is 30 nm. The curves
have been calculated using the COMSOL MULTIPHYSICS soft-
ware. The optical parameters of silver were taken from [21].
The spectra show the normalized absolute value (upper
curves) and phase (lower curves) of the dipole polarizabil-
ity of the thick nanorod (blue lines), thin nanorod (red
lines), and the combination of the two nanorods (yellow
lines). The individual-nanorod curves were calculated for the
two-nanorod structure, so that the interaction between the
nanorods is taken into account. It can be seen that the polar-
izabilities of the nanorods in the pair are equal in magnitude
and phase-shifted from each other approximately by π at a
wavelength of about 717 nm. At this wavelength, the dipole
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FIG. 5. Radiation characteristics of the designed scatterers: (a),
(b), and (c) show the electric-field amplitude distributions in the
near-field zone of a one-, two-, and three-nanorod-pair structure,
respectively (the area shown is 100 × 100 nm2 and the amplitude
is normalized to that of the incident field); (d), (e), and (f) illustrate
the corresponding far-field amplitude distributions magnified in (e)
by a factor of 1.5 and in (f) by a factor of 8; (g), (h), and (i) illustrate
the spectra of the figure of merit FOMi given by Eq. (2) for the three
structures, where i is the number of nanorod pairs in the structure.

polarizability of the pair vanishes, manifesting the electric-
dipole suppression of the structure [17,18,22]. The curves
were calculated in the same way as in [17].

The scattering properties of two and three orthogonal
nanorod pairs were studied using COMSOL MULTIPHYSICS as
well. We have found that the scattering suppression effect is
present in these structures at slightly different wavelengths,
which is explained by the nanorod interaction. For the two-
pair structure, the excitation field was chosen to propagate
normally to the plane of the four rods and to be polarized
symmetrically with respect to the two nanorod pairs, i.e.,
at 45◦ to the nanorod axes. The scattering was suppressed
at λ = 670 nm. For the six-nanorod structure, we used a
two-beam excitation, with one beam exciting two nanorod
pairs exactly as in the above example and the second beam
propagating perpendicularly to the first beam and polarized
longitudinally with respect to the third nanorod pair. The
fields were made to oscillate in phase at the center of the
structure and their amplitudes were selected for the total field
to be polarized symmetrically with respect to the three pairs
of the nanorods. The scattering in this case was suppressed
at λ = 640 nm. Figure 5 shows the calculation results for
the three structure types. In (a), (b), and (c) we show the
electric-field amplitude distribution in the structures at the
radiation-suppression wavelengths. The near-field enhance-

ment reaches approximately the same level in the three cases.
The xy, xz, and yz cross sections of the field distribution in
the six-rod structure are very similar to each other and there-
fore we show only one of them here. The far-field amplitude
profiles in Figs. 5(d)–5(f), illustrated respectively for the three
structures, differ considerably. These profiles were calculated
from the fields at 300 nm distance from the center of the
structure by using the Stratton-Chu formula [23]. Already the
single pair provides a significant suppression of scattering.
The far-field profile [Fig. 5(d)] shows a slightly asymmetric
radiation pattern of a vertically aligned current quadrupole
Qxx. Figure 5(e) shows the radiation pattern of the structure
illustrated in Fig. 5(b). The profile is magnified (zoomed
in) by a factor of 1.5 compared to the profile of Fig. 5(d).
It also exhibits a small asymmetry caused by the near-field
interaction of the nanorod pairs. Finally, the radiation pattern
of the six-rod structure is shown in Fig. 5(f) (with the x, y,
and z axes pointing from a thinner to a thicker nanorod in
each pair). It is magnified by a factor of 8 compared to the
one in Fig. 5(d), because of further significant suppression of
scattering.

To quantify the scattering suppression effect, we introduce
the following figure of merit:

FOM = Ceqv
D /Ctot, (2)

where Ctot is the total scattering cross section of the designed
particle (proportional to the total optical power radiated by the
electric current density excited in the particle) and Ceqv

D is the
equivalent scattering cross section of a point dipole with the
same integrated magnitude of the electric current density. In
other words, FOM is a scattering suppression factor relative
to a pure dipole excitation. Figures 5(g)–5(i) show the spectra
of FOM calculated for one, two, and three nanorod pairs, re-
spectively. The scattering suppression factor reaches the value
of 19 for a single nanorod pair, 56 for the two pairs, and 970
for the three nanorod pairs designed to realize the anapole.
The obtained suppression factor is rather high, considering
that we did not reoptimize the geometry of each nanorod pair
in order to compensate for the effect of near-field interaction
between them. This implies that the scattering by the three-
pair anapole structure will be very dark even if some design
and/or fabrication errors will be present in its experimental
realization.

In summary, we applied multipole expansion of localized
electric currents in Cartesian coordinates to construct elec-
tromagnetic anapoles. Some of the anapoles are pure in a
sense that they include only current multipole moments of
the same order. The simplest of them is a centrosymmetric
anapole that can be decomposed into three orthogonal current
quadrupoles with tensor elements Qxx = Qyy = Qzz. This fun-
damental anapole can be seen as a building block for other
pure anapoles. We have proposed a plasmonic realization
of this anapole and studied its properties. We have found
that, using an anapole excitation in a six-nanorod scatterer,
the scattering can easily be suppressed by three orders of
magnitude. We have also demonstrated the construction of
hybrid anapoles that include current multipoles of different
orders. One of such anapoles includes four octupoles and one
dipole. It coincides with a well-known anapole based on a
toroidal dipole. We have also obtained another, simpler and
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more symmetric hybrid anapole composed of three octupoles
and one dipole. The three-octupole structure has the same
scattering properties as the toroidal-dipole configuration. The
new excitation represents an out-of-phase oscillation of charge
in a fixed-radius spherical shell and an equal charge at the
shell center. The considered anapole oscillations can be real-
ized and tested in practice, especially at low frequencies, and
possibly also found in nature. We believe that the study and
use of the introduced anapoles can in the future bring about

new possibilities for electromagnetic sensing, detection, and
communication.
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