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Mobility edge of the two-dimensional Bose-Hubbard model

Andreas Geißler 1,2,* and Guido Pupillo1

1icFRC, ISIS, University of Strasbourg and CNRS, 67000 Strasbourg, France
2Institut für Theoretische Physik, Goethe-Universität, 60438 Frankfurt/Main, Germany

(Received 8 December 2019; revised 29 September 2020; accepted 19 November 2020; published 8 December 2020)

We analyze the disorder-driven localization of the two-dimensional Bose-Hubbard model by evaluating the
full low-energy quasiparticle spectrum via a recently developed fluctuation operator expansion method. For any
strength of the local interaction we find a mobility edge that displays an approximately exponential decay with
increasing disorder strength. We determine the finite-size scaling collapse and exponents at this critical line
finding that the localization of excitations is characterized by weak multifractality and a thermal-like critical gap
ratio. A direct comparison to a recent experiment yields an excellent match of the predicted finite-size transition
point and scaling of single particle correlations.
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Introduction. In the last decade the study of disorder-driven
localization of quantum particles has received considerable
interest, following the suggestion that Anderson localization
for noninteracting models [1–4] can be generalized to interact-
ing ones [5–8] in the framework of the so-called many-body
localization (MBL). One of the most prominent features of
MBL is its incompatibility with the eigenstate thermalization
hypothesis resulting from an extensive number of local inte-
grals of motion [9–13]. A complete demonstration of MBL
would in principle require knowledge of the whole spec-
trum, limiting the use of exact diagonalization techniques
to small system sizes, especially when bosonic particles are
considered [14,15]. The existence of MBL has been rigor-
ously proven in one-dimensional (1D) spin chains [16,17],
while various perturbative arguments [3,5,6,18] and numer-
ical evidence [7,8,19] have also supported its existence in
two dimensions—involving a mobility edge (ME) separating
mobile from localized states in the spectrum. However, recent
theoretical arguments have challenged the existence of MBL
both in 1D [20] and 2D [21–23] in the thermodynamic limit.
Experimental realizations of bosonic systems have already
been achieved in cold atom setups where a disorder potential
can be imprinted onto a confined optical lattice in 1D [24,25]
and 2D [26,27], showing strong signs of high-energy localiza-
tion in confined systems for both cases. Related experiments
[28,29] have also observed evidence for a ground state Bose-
glass (BG) phase compatible with theoretical predictions of a
zero-energy superfluid to BG transition [30–39].

Here, we investigate localization effects in the excita-
tion spectrum of the two-dimensional Bose-Hubbard model
(BHM) in the presence of disorder utilizing a recently devel-
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oped fluctuation operator expansion (FOE) method [40–43],
which gives access to the complete spectrum of quasiparticle
(QP) excitations for system sizes comparable to experiments.
Our results are summarized in Fig. 1. For all interaction
strengths disorder induces (at least) one ME. We determine the
finite-size scaling at the critical points characterized by weak
fractality and a thermal-like critical gap ratio. Importantly,
in the limits of our numerical QP method the low-energy
ME converges onto an exponential decay with disorder. For
the case of particles confined by a harmonic potential, we
compute correlation functions and extract the inverse decay
length, finding excellent agreement with recent experiments
[26] in terms of a finite-size localization transition.

In the following we first introduce the model (Sec. II)
and the fluctuation operator expansion (Sec. III). In Sec. IV
we introduce the observables used to characterize localiza-
tion and discuss their finite-size collapse determining the ME
(Sec. IV). We determine the finite-size localization transition
of a harmonically trapped system (Sec. V) and directly com-
pare to the experimental results of Ref. [26]. In Sec. VI finally,
we end with some concluding remarks.

Model. The Hamiltonian of the BHM with on-site disorder
and in the grand canonical ensemble reads

Ĥ =
L2∑
�

(
μ�b̂†

�b̂� + U

2
b̂†

�b̂†
�b̂�b̂�

)
︸ ︷︷ ︸

Ĥ�

−t
∑
〈�,�′〉

(b̂†
�b̂�′ + H.c.), (1)

where b̂†
� (b̂�) are bosonic creation (annihilation) operators at

the site �, t is the tunneling rate between nearest neighbor
sites 〈�, �′〉 on a square lattice of spacing a and linear size
L, while U is the local on-site Hubbard interaction. The en-
ergy μ� reads μ� = −μ + ε�, with μ the chemical potential
fixing the particle number and ε� a local energy shift due to
disorder or an external harmonic potential. With Ref. [26]
in mind we choose a Gaussian probability distribution
P(ε�) = (2πW 2)−1/2 exp[−ε2

� /(2W 2)] with the standard de-
viation W [44]. In this work we analyze this model over
a range of interactions U/t ∈ [1, 25] and disorder strengths
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FIG. 1. Quasiparticle localization in the disordered 2D Bose-
Hubbard model (1). (a) Typical structure of the quasiparticle
spectrum at fixed interaction U > 8t . For sufficiently weak disorder
W a band gap persists, while multiple MEs centered at the homoge-
neous bands separate localized from delocalized states. The lowest
ME displays exponential behavior (dashed line) down to the lowest
resolved QP energies. (b) ME Wc(ω) of excitations at a quasiparticle
energy of ω = t as a function of U/t , determined from the fractal
dimension D and the gap ratio r (see legend). Inset: Amplitude ω0

(left-pointing triangles) and decay constant � (right-pointing trian-
gles) characterizing the lowest ME (11).

W/t ∈ [1, 15] at half-filling. We furthermore investigate the
effect of an external trapping potential in order to compare
with the recent experiment [26] for U = 24.4t and W/t ∈
[0.4, 7].

Fluctuation operator expansion. The FOE [40–43] is a
QP method based on a Gutzwiller expansion of (1) in
terms of eigenstates |i〉� of the local mean-field Hamil-
tonians Ĥ (�)

MF = Ĥ� − t
∑

{�′|〈�,�′〉}(b̂
†
�φ�′ + H.c.), where the

fluctuation operators δ̂b� ≡ b̂� − φ� and the fields φ�
!=

�〈0|b̂�|0〉� are determined self-consistently. For N → ∞,
δ̂b� = ∑N

i, j=0 �〈i|δ̂b�| j〉�|i〉��〈 j| constitutes an exact quadratic
map onto a complete basis set of the local Gutzwiller raising
(lowering) operators σ

(i)†

� ≡ |i〉��〈0| (σ (i)
� ≡ |0〉��〈i|). These

generate arbitrary local fluctuations κ� = ∑
i>0 σ

(i)†

� σ
(i)
� of

any self-consistent MF state |ψMF〉 = ∏
� |0〉�. The quality

of the approximation is ascertained for κ = L−2 ∑
�〈κ�〉 	 1

[in this work we always find this criterion to be fulfilled in
the quasiparticle ground state (5) [45]]. Here, we consider
terms of second order in the Gutzwiller operators, which
using σ = (σ (1)

1 , . . . , σ
(N )
L2 )T yields the following approximate

representation of Ĥ [46]:

Ĥ(2)
QP ≡ 1

2

(
σ

σ †

)†(
h �

�∗ h∗

)(
σ

σ †

)
− 1

2
Tr(h). (2)

The scalar term Tr(h)/2 results from reordering normal or-
dered terms to antinormal order, while the matrix entries are
given by the local matrix elements B(�)

i, j ≡ �〈i|b̂�| j〉�,

h(i,�),( j,�′ ) = −t�,�′
(
B(�)∗

0,i B(�′ )
0, j + B(�)

i,0 B(�′ )∗
j,0

)
+ δ�,�′δi, j

(
E (�)

i − E (�)
0

)
, (3)

�(i,�),( j,�′ ) = − t�,�′
(
B(�)∗

0,i B(�′ )
j,0 + B(�)

i,0 B(�′ )∗
0, j

)
. (4)

Here, t�,�′ is the tunneling matrix with nonzero entries only for
neighboring sites, and E (�)

i are the local excitation energies of
the ith Gutzwiller excitation at site �.

The diagonalization of (2) yields Ĥ ≈ ∑
γ ωγ β†

γ βγ +
�EQP in terms of infinitely lived QP modes γ with cor-
responding energies ωγ and βγ ≡ u(γ )†

σ + v(γ )†
σ† are the

generalized Bogoliubov-type operators, with u(γ ) and v(γ ) the
corresponding eigenvectors. Analogous to standard Bogoli-
ubov theory, these inherit approximately bosonic commuta-
tion relations [βγ , β

†
γ ′ ] ≈ δγ ,γ ′ from the Gutzwiller operators

for |u(γ )|2 − |v(γ )|2 = 1. v(γ ) and u(γ ) can be interpreted as
dual wave functions analogous to particle and hole fluc-
tuations. Normal ordering of operators results in a scalar
correction �EQP, irrelevant to the present discussion [41].
Finally, we implicitly define the QP ground state via

βγ |ψQP〉 = 0 ∀γ , (5)

which also best fulfills the approximation of neglected QP
interactions [40,41].

Drawing from variational concepts [47–50] and based on
a MF description that becomes exact for weak and strong
interactions, the FOE allows for a systematic, nonperturbative
improvement over standard Bogoliubov theory [51] that also
incorporates the effects of many-body entanglement [52–54].
It gives access to the otherwise neglected gapped (amplitude)
Hubbard subbands in the disorder-free limit of Ĥ in Eq. (1)
[40,41]. As we show in the following sections, these modes,
absent in standard Bogolioubov theory, play an important
role in the localization transition at finite energy. We note
that Bogoliubov quasiparticle theory has already been used
to successfully investigate 2D localization at low energy (e.g.,
[37,38,55]), and in particular the existence of a BG phase for
hard-core bosons (i.e., U → ∞) with binary disorder [37].
Numerous works have unambiguously demonstrated the exis-
tence of a direct zero-energy phase transition between a Bose
condensed superfluid and a BG for the 2D BHM with uniform
disorder distribution, similar to Eq. (1) [31–33,35,36,39].
Here we focus on the existence of a finite-energy ME.

Localization characteristics. To characterize the degree of
localization we consider the following two observables: (i)
The gap ratio

rγ ≡
〈

min[�ωγ−1,�ωγ ]

max[�ωγ−1,�ωγ ]

〉
d

(6)

with �ωγ = ωγ+1 − ωγ the quasiparticle energy gaps and
〈·〉d the disorder average. The observable rγ is known
from random matrix theory [7,56] to have the mean value
rG ≈ 0.5307 and rP = 2 ln2 − 1 ≈ 0.3863 in the delocal-
ized and localized phases, respectively, resulting from level
statistics belonging to the Gaussian orthogonal and Poisson
ensembles. The second observable is (ii) the fractal dimension
D(γ )

q=2 of the QP fluctuation wave functions v(γ ). Analogous

to the scaling of q moments Rq = ∑
n |ψn|2q of many-body

eigenstates [57–59] we define

D(γ )
q=2 =

〈
− logL2

∑L2

�

∣∣v(γ )
�

∣∣4∑L2

�

∣∣v(γ )
�

∣∣2

〉
d

, (7)
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FIG. 2. (a) Gap ratio r (left ordinate, inverted) and fractal di-
mension D data (right ordinate) as functions of the QP energy ωγ /t
for U/t = 20, W/t = 5, and L = 32 averaged over 95 realizations.
Black lines are moving averages (of 21 points) as a guide to the
eye and dashed lines mark rP and rG. The crossing point (vertical
arrow) of the data with the critical rc (shaded red, narrow) and
Dc,L (shaded blue, wide) mark the ME. Insets: Exemplary squared
QP wave functions |v(γ )

� |2 with maxima normalized to 1. (b)–(e)
Separation of the QP spectra by the ME for U/t = 3 [(b), (c)] and
U/t = 20 [(d), (e)]. Dashed lines mark band edges, dash-dotted
lines signify lowest resolved energies for N = 5 (dashed regions;
see Supplemental Material [52]), while data points mark the ME
with the respective FOE truncation given in the legend of (d). Panels
(c) and (e) are contour plots of r [color scale in (e)] binned under the
condition r > 0.3 (see text). Inset (e) shows remnants of a ME for
the upper bands, while large boxes in (d) and (e) mark the region for
which finite-size scaling has been performed, yielding the filled data
points. Thick black lines in (b)–(e) are fits of Eq. (11) (see text).

for the local amplitudes |v(γ )
� |2 = ∑

i>0 |v(γ )
�,i |2 of the wave

function, which naturally characterize the spatial extension of
each QP mode [see examples in Fig. 2(a)]. For our purposes
we consider q = 2, while one obtains the multifractality spec-
trum by also taking all other values q > 0 into account.

Delocalized states with r ≈ rG [60] appear primarily at low
QP energies ωγ /t and for weak disorder W/t , as shown in the
contour plots Figs. 2(c) and 2(e) for weak (U = 3t) and strong
(U = 20t) interactions, respectively. We note that values of
r < rP for weak disorder and small QP energies [e.g., for
ωγ � t in Fig. 2(a)] result from symmetry related finite-size
effects irrelevant to our discussion.

For U/t � 20 and W/t � 1 we find a band of additional
delocalized states for energies ωγ ∼ U reflecting the presence
of typical Hubbard subbands which overlap for U � t [dashed
lines in Figs. 2(b)–2(e)]. In all cases, increasing W/t spreads
the bands so they overlap and drives a transition to localized
states with rG � r � rP, implying the existence of (multiple)
MEs. For the same cases we find similar behavior for the
fractal dimension D down to the truncation limit [compare

FIG. 3. Exemplary scaling collapse of D (a) and r (b). For
the finite-size scaling every data set is binned for 30 equal
spaced energies [within the region shown in Figs. 2(d) and 2(e)],
while L ∈ [10, 20, 24, 32, 40] [legend in (a)] with bins containing
[4, 8, 12, 20, 32] disorder averaged data values closest in ωγ to ω,
respectively, and W/t = 7. In (b) the horizontal dashed line marks
rG − rP, the solid line is an exponential fit as a guide for the eye,
and data within the gray shaded regions is used to determine rc and
〈D̃W (0)〉ME . Insets show unscaled data.

Figs. 2(b) and 2(d)]. Data points in Figs. 2(b)–2(d) mark the
MEs determined via a finite-size scaling as discussed in the
next section.

Finite-size scaling analysis. We determine the position of
the (lowest energy) ME via finite-size scaling for the case U =
20t , with linear sizes L ∈ {10, 20, 24, 32, 40} and correspond-
ing numbers of realizations Nr ∈ {480, 240, 240, 95, 48} for
N = 3 which we find to be sufficient here [52]. We find the
data to be consistent with the scaling relations

rL,W (ω) = r̃W ([ω − ωc(W )]L1/ν ), (8)

DL,W (ω) − Dc = L−β/νD̃W ([ω − ωc(W )]L1/ν ). (9)

Here, r̃W (·) and D̃W (·) are the scaling functions, while the
universal scaling exponents {β, ν} and the critical fractal
dimension Dc are to be determined self-consistently in com-
bination with the critical energies ωc(W ) corresponding to the
ME. Figure 3 shows exemplary data collapses of D [panel (a)]
and r [panel (b)] over the QP energies, W/t = 7 and all system
sizes L, where collapses have been performed for all the data
in the region within the large black boxes in Figs. 2(d) and
2(e) with filled symbols marking the scaling result [52]. As a
result of all collapses we find

β/ν = 0.26(5), 1/ν = 0.91(4), Dc = 0.51(3), (10)

implying weak fractal behavior at the critical point. We
note that these exponents are consistent with the Harris
criterion [61–63] and those of the universality class for one-
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dimensional directed percolation [64,65]. While we get a
good collapse for each individual disorder value (Fig. 3 and
Supplemental Material [52]) deviations from a single line
imply a weak dependency of D̃W and r̃W on W . Also, the
decay of r towards rP is always nearly exponential [black
line in Fig. 2(c), and Supplemental Material]. From the col-
lapsed data at the critical point we extract a thermal-like rc =
〈r̃W (0)〉W = 0.527(3) ≈ rG consistent with the weak fractality
of the critical QP states and 〈D̃W (0)〉W = 0.35(3). Here, 〈·〉W

is the average over W inside the large boxes in Figs. 2(d) and
2(e).

Next, we determine two independent estimates of ωc(W )
for other U/t at fixed L = 32 and up to N = 5, which is
necessary to determine the low-energy ME at strong disorder.
We take the crossing points of (i) D data with the finite-size
critical dimension Dc,L=32 = 0.657(16) [Fig. 2(a), black ar-
row], as well as of (ii) exponential fits to r data with the
critical gap ratio rc [see black line in Figs. 3(b) and 2(a), black
arrow] [66]. For U/t ∈ {3, 20}, respectively, Fig. 2 shows the
Dc,L=32 MEs [empty symbols, panels (b) and (d)] and binned
r data [six values per bin, panels (c) and (e)] close to the
critical rc. We note that L = 40 for N = 5 in panels (d) and
(e) is necessary to resolve the low-energy ME as we discuss in
the Supplemental Material. Excitingly, this procedure leads to
consistent values for ωc(W ) for all considered values of W and
U . Interestingly, we find that for all data sets and sufficiently
small ω, the dependence of ωc(W ) on W is consistent with the
empirical ansatz

ωc(W ) = ω0 exp(−W/�), (11)

except for small U where the gap to the upper band already
vanishes at small W . Corresponding exponential fits to the
N = 3 data, shown as thick black lines in Figs. 2(b)–2(e),
work well in a large part of the spectrum, while additional
data obtained by increasing N and L matches up perfectly
for disorder values beyond the N = 3 truncation limit [52].
Panel (b) of Fig. 1(b) summarizes these findings, showing
the extension of delocalized QP states up to the ME Wc(ω)
as a function of interaction at fixed energy ω = t with its
greatest extension at U/t ≈ 15, while the parameters of (11)
are given in the inset of Fig. 1(b) depicting amplitudes ω0

and decay constants � as functions of U/t . We note that the
perfect match of (11) for increased truncation and system sizes
implies the absence of a thermal to fully QP localized phase,
if extended to the thermodynamic limit [21–23].

Trapped system. We end our discussion with the analysis of
the added effect of a harmonic trap as realized in [26] approxi-
mating the skewed Gaussian disorder used therein by an exact
Gaussian with the full width at half maximum � =
2
√

2 ln2W . All other parameters of (1) are taken from
the reference so U = 24.4t , the total particle number is 133,
and we set L = 32 with Nr = 95. In Fig. 4(a) we show the gap
ratio of the QP spectrum related to a mean-field ground state
with a central density of 1 surrounded by a condensate ring,
contrary to the experiment which used a purely Mott-type
initial state. The considered QP states localize at roughly the
same energy scale as in the experiment, which we quantify
by an exponential fit of r for the least localized states at
ωγ /t ≈ 0.1 [see Fig. 4(b)] resulting in a finite-size transition
at �(r)

c /t = 7.9(1.5) [67].

(a) (b)

(c) (d)

FIG. 4. Localization in a harmonically trapped lattice. (a) Binned
(every six gap pairs) gap ratio contours of the QP spectra as function
of �/t . Circles mark the ME obtained from the crossing of an
exponential fit to each r(ωγ ) with rc and the dashed line marks the
lowest resolved QP excitation. (b) Circles are binned data for the
11 r values closest to ωγ /t = 0.1 [between solid lines in (a)]. The
crossing of the exponential fit (dashed line) with rc yields �(r)

c [verti-
cal arrow in (a)], both shown as black lines together with associated
errors. (c) Exemplary fits of (12) to the numerical Gc for various �.
(d) Inverse decay length λ of (12) in comparison to experimental data
[26]. The black solid line marks the theoretical prediction of �(λ)

c

together with one standard deviation.

To get further insight we consider the scaling of con-
nected single particle correlations as given by Gc(�, �′) ≡
〈〈b̂†

�b̂�′ 〉QP − φ∗
� φ�′ 〉d . Here 〈·〉QP is the QP ground state ex-

pectation value implicitly defined via βγ |ψQP〉 = 0 for all
γ [40–43], thus best fulfilling the original approximation of
neglected QP interactions. We then consider the radial cor-
relations of the four central sites averaged for each unique
distance from the trap center [see Fig. 4(c)]. Due to the vicin-
ity to a localization transition and the inhomogeneous nature
of the system we expect an interplay of algebraic and expo-
nential correlations which we summarize in the fit function
[52,68]

Gc(d ) = a1 exp(−λd ) + a2d−b. (12)

In Fig. 4(d) we show the various obtained inverse localization
lengths λ of these fits together with one standard deviation of
the fitting error. Below a certain disorder strength we find no
exponential contribution. A linear fit for all nonzero λ yields
the theoretical critical disorder strength �(λ)

c /t = 6.4(6) com-
paring well to the experimental value �c/t = 5.3(2), which,
to our knowledge, is the first theoretical prediction. The dif-
ferent slope compared to experiment likely stems from the
slightly different nature of the considered observables. We
note that the localization happens at a much smaller disorder
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strength than predicted for the unconfined system. This is
most likely due to the trap enhanced variance of the local
potential.

Conclusion. In conclusion, we have performed a detailed
analysis of the two-dimensional BHM with Gaussian disorder
at half filling by discussing gap ratios and fractal dimensions
of generalized (beyond Bogoliubov) QP eigenstates. We find
a strongly localized spectrum with at least one mobility edge
separating a small fraction of delocalized noninteracting QP
modes at low energies from high lying localized ones. For
all converged results this critical line follows an exponential
decay with disorder down to quasiparticle energies of order
0.1t . Finite-size scaling in the vicinity of these critical lines
yields relevant critical exponents and parameters for a spectral
transition characterized by a thermal-like gap ratio and weak
multifractality. Furthermore, the MEs are strongly affected by
the structure of QP bands in the clean system. Our method
predicts a scaling of correlations almost identical to that ob-
served in experiment [26] and the finite-size transition point
without requiring any empirical fit parameter.

As we show in this work, the FOE is a very promising tool
for the analysis of extended systems with strong correlations,
which can also be used to clarify the interplay between MBL
and the BG [69]. As the FOE can easily be extended to the
time domain, it furthermore opens up an exciting direction of
future research into disorder-driven dynamical effects.
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[36] Ş. G. Söyler, M. Kiselev, N. V. Prokof’ev, and B. V. Svistunov,
Phase Diagram of the Commensurate Two-Dimensional Dis-
ordered Bose-Hubbard Model, Phys. Rev. Lett. 107, 185301
(2011).

[37] Juan Pablo Álvarez Zúñiga and N. Laflorencie, Bose-Glass
Transition and Spin-Wave Localization for 2D Bosons in a
Random Potential, Phys. Rev. Lett. 111, 160403 (2013).

[38] J. Saliba, P. Lugan, and V. Savona, Superfluid-insulator transi-
tion of two-dimensional disordered Bose gases, Phys. Rev. A
90, 031603(R) (2014).

[39] Juan Pablo Álvarez Zúñiga, D. J. Luitz, G. Lemarié, and N.
Laflorencie, Critical Properties of the Superfluid-Bose-Glass
Transition in Two Dimensions, Phys. Rev. Lett. 114, 155301
(2015).

[40] Ulf Bissbort, M. Buchhold, and W. Hofstetter, Quasi-particle
theory for the Higgs amplitude mode, arXiv:1401.4466.

[41] A. Geißler, Ulf Bissbort, and W. Hofstetter, Quasiparticle spec-
tra of supersolid lattice gases at near-resonant Rydberg dressing,
Phys. Rev. A 98, 063635 (2018).

[42] Ulf Bissbort, Dynamical effects and disorder in ultracold
bosonic matter, Ph.D. thesis, Johann Wolfgang Goethe-
Universität, 2012.

[43] A. Geißler, Lattice-supersolids in bosonic quantum gases with
Rydberg excitations, Ph.D. thesis, Johann Wolfgang Goethe-
Universität, 2018.

[44] A crucial difference compared to the commonly considered box
disorder is the presence of rare extreme peaks or wells in the
potential.

[45] We refer the interested reader to our follow-up work [69] for
a detailed discussion of the FOE method in the context of
disordered systems.

[46] We note that the MF self-consistency condition guarantees the
absence of first order terms.

[47] S. D. Huber, E. Altman, H. P. Büchler, and G. Blatter, Dynam-
ical properties of ultracold bosons in an optical lattice, Phys.
Rev. B 75, 085106 (2007).

[48] S. D. Huber, B. Theiler, E. Altman, and G. Blatter, Amplitude
Mode in the Quantum Phase Model, Phys. Rev. Lett. 100,
050404 (2008).

[49] Ulf Bissbort, S. Götze, Y. Li, J. Heinze, J. S. Krauser, M.
Weinberg, C. Becker, K. Sengstock, and W. Hofstetter, De-
tecting the Amplitude Mode of Strongly Interacting Lattice
Bosons by Bragg Scattering, Phys. Rev. Lett. 106, 205303
(2011).

[50] M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauß, C.
Gross, E. Demler, S. Kuhr, and I. Bloch, The ‘Higgs’ amplitude
mode at the two-dimensional superfluid/Mott insulator transi-
tion, Nature (London) 487, 454 (2012).

[51] N. N. Bogolyubov, On the theory of superfluidity, J. Phys.
(USSR) 11, 23 (1947) [Izv. Akad. Nauk Ser. Fiz. 11, 77 (1947)].

[52] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.2.042037 for a discussion of details
of the finite-size scaling analysis for the excitations and the
ground state, a comparison of scenarios for the decay of correla-
tions in a trapped system, and a discussion of the entanglement
captured by the FOE method.

[53] I. Frérot and T. Roscilde, Area law and its violation: A mi-
croscopic inspection into the structure of entanglement and
fluctuations, Phys. Rev. B 92, 115129 (2015).

[54] I. Frérot and T. Roscilde, Entanglement Entropy Across the
Superfluid-Insulator Transition: A Signature of Bosonic Criti-
cality, Phys. Rev. Lett. 116, 190401 (2016).

[55] C. Gaul, P. Lugan, and C. A. Müller, Anderson localization of
Bogoliubov excitations on quasi-1D strips, Ann. Phys. 527, 531
(2015).

[56] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribution
of the Ratio of Consecutive Level Spacings in Random Matrix
Ensembles, Phys. Rev. Lett. 110, 084101 (2013).

[57] H. G. E. Hentschel and I. Procaccia, The infinite number of
generalized dimensions of fractals and strange attractors, Phys.
D (Amsterdam, Neth.) 8, 435 (1983).

[58] N. Macé, F. Alet, and N. Laflorencie, Multifractal Scalings
Across the Many-Body Localization Transition, Phys. Rev.
Lett. 123, 180601 (2019).

[59] J. Lindinger, A. Buchleitner, and A. Rodríguez, Many-Body
Multifractality throughout Bosonic Superfluid and Mott Insu-
lator Phases, Phys. Rev. Lett. 122, 106603 (2019).

[60] From here on we omit the indices of the observables unless they
are necessary.

[61] A. B. Harris, Effect of random defects on the critical behaviour
of Ising models, J. Phys. C 7, 1671 (1974).

042037-6

https://doi.org/10.1038/s41586-019-1527-2
https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1103/PhysRevX.9.041014
https://doi.org/10.1103/PhysRevLett.98.130404
https://doi.org/10.1038/nphys3695
https://doi.org/10.1103/PhysRevLett.61.1847
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevLett.71.2307
https://doi.org/10.1103/PhysRevLett.74.1500
https://doi.org/10.1103/PhysRevLett.79.3502
https://doi.org/10.1103/PhysRevLett.97.115703
https://doi.org/10.1103/PhysRevLett.107.185301
https://doi.org/10.1103/PhysRevLett.111.160403
https://doi.org/10.1103/PhysRevA.90.031603
https://doi.org/10.1103/PhysRevLett.114.155301
http://arxiv.org/abs/arXiv:1401.4466
https://doi.org/10.1103/PhysRevA.98.063635
https://doi.org/10.1103/PhysRevB.75.085106
https://doi.org/10.1103/PhysRevLett.100.050404
https://doi.org/10.1103/PhysRevLett.106.205303
https://doi.org/10.1038/nature11255
https://inspirehep.net/literature/45477
http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.042037
https://doi.org/10.1103/PhysRevB.92.115129
https://doi.org/10.1103/PhysRevLett.116.190401
https://doi.org/10.1002/andp.201500106
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1103/PhysRevLett.123.180601
https://doi.org/10.1103/PhysRevLett.122.106603
https://doi.org/10.1088/0022-3719/7/9/009


MOBILITY EDGE OF THE TWO-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 2, 042037(R) (2020)

[62] J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Finite-
Size Scaling and Correlation Lengths for Disordered Systems,
Phys. Rev. Lett. 57, 2999 (1986).

[63] T. Vojta and J. A. Hoyos, Criticality and Quenched Disorder:
Harris Criterion Versus Rare Regions, Phys. Rev. Lett. 112,
075702 (2014).

[64] I. Jensen, Low-density series expansions for directed percola-
tion: I. A new efficient algorithm with applications to the square
lattice, J. Phys. A: Math. Gen. 32, 5233 (1999).

[65] J. Wang, Z. Zhou, Q. Liu, T. M. Garoni, and Y. Deng, High-
precision Monte Carlo study of directed percolation in (d + 1)
dimensions, Phys. Rev. E 88, 042102 (2013).

[66] Most of the time the exponential gap ratio fits slightly overesti-
mate the critical energy, but always well within the errorbars.

[67] Extremely small values of r at small � and ω in Fig. 2(a) result
from nearly degenerate low-energy pairs due to an approximate
discrete rotational symmetry.

[68] K. S. Tikhonov and A. D. Mirlin, Statistics of eigenstates near
the localization transition on random regular graphs, Phys. Rev.
B 99, 024202 (2019).

[69] A. Geißler, Finite-size scaling analysis of localization tran-
sitions in the disordered two-dimensional Bose-Hubbard
model within the fluctuation operator expansion method,
arXiv:2011.10104.

042037-7

https://doi.org/10.1103/PhysRevLett.57.2999
https://doi.org/10.1103/PhysRevLett.112.075702
https://doi.org/10.1088/0305-4470/32/28/304
https://doi.org/10.1103/PhysRevE.88.042102
https://doi.org/10.1103/PhysRevB.99.024202
http://arxiv.org/abs/arXiv:2011.10104

