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Topologically quantized current in quasiperiodic Thouless pumps
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Thouless pumps are topologically nontrivial states of matter with quantized charge transport, which can be
realized in atomic gases loaded into an optical lattice. This topological state is analogous to the quantum Hall
state. However, contrarily to the exact, extremely precise, and robust quantization of the Hall conductance, the
pumped charge is strictly quantized only when the pumping time is a multiple of a characteristic timescale,
i.e., the pumping cycle duration. Here, we show instead that the pumped current becomes exactly quantized,
independently from the pumping time, if the system is led into a quasiperiodic, incommensurate regime. In this
quasiperiodic and topologically nontrivial state, the Bloch bands and the Berry curvature become flat, the pumped
charge becomes linear in time, while the current becomes steady, topologically quantized, and proportional to
the Chern number. The quantization of the current is exact up to exponentially small corrections. This has to be
contrasted with the case of the commensurate (nonquasiperiodic) regime, where the current is not constant, and
the pumped charge is quantized only at integer multiples of the pumping cycle.
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The hallmark of topological states of matter is the exact
quantization of a physical observable in terms of a conserved
quantity, the topological invariant [1,2]. A paradigmatic ex-
ample is the quantum Hall conductance, which is quantized
as integer (or fractional) multiples of e2/h with a precision
exceeding one part in a billion [3,4]. Moreover, this quan-
tization is robust against perturbations, i.e., it persists in the
presence of disorder, defects, impurities, or imperfections of
the experimental sample. This led to an extremely precise def-
inition of the electrical resistance standard and experimental
determination of the finite-structure constant [5].

A topologically equivalent state is the Thouless pump
[2,6–14], which can be engineered, e.g., with ultracold atoms
[15–18] in a superlattice created by the superposition of two
optical lattices with different wavelengths [19–22]. When the
superlattice is adiabatically and periodically varied in time t ,
the charge pumped through the atomic cloud is quantized in
terms of the topological invariant, i.e., the Chern number [2].
However, the charge is quantized only when the duration of
the pumping process is an integer multiple of the full adiabatic
cycle, and deviations from the quantized value are linear in
time. In this sense, the quantization of the pumped charge
is not exact: This constitutes a fundamental hindrance to the
realization of metrological standards.
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In this Rapid Communication, we will show that the quan-
tization of the pumped current can be indeed realized by
Thouless pumps in the quasiperiodic regime and, most im-
portantly, that this quantization is exact. In ultracold atomic
systems, quasiperiodicity [23–29] is realized using a super-
position of two optical lattices with incommensurate lattice
constants, i.e., their ratio α is an irrational number. In this
regime, the translational symmetry is completely broken,
the familiar concept of Brillouin zone (BZ) becomes ill-
defined, and the usual definition of the Chern number as
an integral of the Berry curvature breaks down. In order to
consider a realistic experimental setup, we will derive an
effective tight-binding (TB) model describing an atomic gas
in a bichromatic potential [10,22], which coincides with a
generalized Aubry-André-Harper-Hofstadter (AAHH) model
[30–36] with an extra spatially dependent tunneling term.
Furthermore, we will operatively define the Chern number by
taking the limit of an ensemble of periodic and topologically
equivalent states which progressively approximate quasiperi-
odicity. In this limit, the Bloch bands and Berry curvatures
become asymptotically flat, as already known [23,37]. Finally,
we describe the experimental fingerprint of the quasiperiodic
topological state, which reveals itself in the charge transport
and adiabatic evolution of the center of mass of the atomic
cloud. Whereas in the commensurate (nonquasiperiodic) case
the current is not constant and the pumped charge is quantized
only at exact multiples of the pumping cycle, we find that the
quasiperiodic nontrivial state is characterized by a steady and
topologically quantized pumping current, independently from
the duration of the pumping process. Most importantly, we
find that this quantization is exact up to exponentially small
corrections, it is robust against perturbations which do not
break the symmetries of the system, and does not depend on
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FIG. 1. The superposition of two stationary lattices in a tilted
direction produces a quasiperiodic one-dimensional lattice when α =
λS/(λL cos θ ) is an irrational number.

the details of the model considered. This exact quantization is
a direct consequence of quasiperiodicity, and may contribute
to a more accurate definition of current standards [38].

Experimentally, Thouless pumps are realized by ultracold
Fermi gases loaded into dynamically controlled bichromatic
lattices [19,20]. Using a tilted setup [14,39] as in Fig. 1, two
sets of counterpropagating laser beams produce two standing
waves with wavelengths λS and λL > λS which intersect at an
angle θ . For an atomic cloud confined in the x direction, the
total dipole potential is

V (x, φ) = VS cos2
(πx

dS

)
+ VL cos2

(
πx

dL
− φ

2

)
, (1)

where dS = λS and dL = λL cos θ are respectively the short
and long lattice constants, VS,L the lattice depths, and φ the
phase difference between the two lattices, which varies in
time as φ = νt with instantaneous frequency ν. The commen-
suration α = dS/dL = λS/(λL cos θ ) between the two lattices
is controlled by the tilting angle θ . We assume a deep lat-
tice regime VS > Er [here, Er = h2/(8Md2

S ) is the recoil
energy of the short lattice [16]]. If VS > VL, the continuum
Hamiltonian H = p2/2M + V (x, φ) can be discretized using
localized states at the short lattice minima and treating the
long lattice as a perturbation [10]. This leads to an effective
low-energy TB Hamiltonian corresponding to a generalized
Harper equation which reads

[−J + 2Kα sin (πα) cos(2πα(n + 1) − φ)](ψn−1 + ψn+1)

+2V cos(2πα(n + 1/2) − φ)ψn = Eψn. (2)

This is a generalization of the AAHH model, which includes
an extra site-dependent tunneling term K ∝ VL. Moreover, for
α = 1/2 (staggered field), Eq. (2) reduces to the Rice-Mele
(RM) model [40,41]

[−J − K (−1)n cos φ](ψn−1 + ψn+1)

+2V (−1)n sin φ ψn = Eψn, (3)

which has an energy gap 	ERM = 4 min(|J|, |V |, |K|).
In the commensurate case, i.e., α = p/q with p, q integer

coprimes, one can verify that Eqs. (1) and (2) are invariant up

FIG. 2. Energy spectra of the TB Hamiltonian (4) calculated for
V = J and K = 0.25J . The large central gap has a Chern number
C = 1 and is topologically equivalent to the RM model (α = 1/2).
For K → 0 (not shown) the central gaps close at α = p/q for q even.
Different color shades correspond to different Chern numbers.

to translations n → n + q, and consequently the superlattice
unit cell has length qdS. In momentum space,

H =
∑

k

−2J cos k c†
kck + ei(πα−φ)[V + 2Kα sin (πα)

× cos (k + πα)]c†
kck+2πα + H.c., (4)

where k is restricted to the first BZ [0, 2π/q]. Figure 2 shows
the energy spectra of the TB model, which are a deformed
version of the Hofstadter butterfly [31,42]. Indeed, whereas
the Hofstadter butterfly (K = 0) is symmetric with respect to
the transformations α → 1 − α and E → −E (correspond-
ing to k → k + π ), the spatially dependent tunneling term
breaks these symmetries. For small K , one can assume that
the intraband gaps remain open for K → 0 and are thus home-
omorphic to the gaps of the Hofstadter butterfly. Thus, the
intraband gaps are topologically nontrivial with a Chern num-
ber C �= 0 satisfying the diophantine equation pC ≡ j mod q
(analogously to the Hofstadter butterfly K = 0). Unlike the
original Hofstadter butterfly, the energy spectra is gapped at
E = 0 for α = p/q with q even. Intraband gaps with low
Chern numbers are generally wide and remain open for a
broad range of the commensuration α. In particular, the large
central gap in Fig. 2 is open for any value of α and is topo-
logically equivalent to the RM model: It can be continuously
deformed into α → 1/2, where Eq. (2) reduces to Eq. (3).

In the commensurate case, assuming homogeneously pop-
ulated bands below the Fermi level EF and at zero temperature,
the total charge pumped during an adiabatic evolution φ →
φ + 2π is quantized and equal to the Chern number C of the
filled Bloch bands [2] Q = C = (1/2π )

∫ φ+2π

φ
dφ

∫ 2π/q
0 dk
.

Here, 
 = ∑
i �(EF − Ei )ωi is the total Berry curvature at

the Fermi level EF, with �(E ) the Heaviside step func-
tion and ωi = 2�〈∂φui|∂kui〉 the Berry curvature of the
ith band, defined in terms of the Bloch wave functions
|ψi(k, x)〉 = eikx|ui(k, x)〉. Moreover, the current I = ∂φQ =
(1/2π )

∫ 2π/q
0 dk
 is not quantized and not constant during the
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pumping process, oscillating around an average value 〈I〉 =
〈
〉/q with maximum variation δI � δ
/q where δ
 =
max 
 − min 
.

Due to translational invariance, Hamiltonian (4) is periodic
in the momentum k → k + 2π/q, but not in the phase since
H (φ + 2π/q) �= H (φ). One can show that a phase shift φ →
φ + 2πm/q in Eqs. (1) and (2) is equivalent to a translation
n → n − c, where c satisfies the diophantine equation pc ≡ m
mod q. Thus, the Hamiltonian is “unitarily” periodic [12,13]
in the phase φ up to lattice translations, i.e., it is periodic up
to unitary transformations (translations),

H (φ + 2πm/q) = T −cH (φ)T c, (5)

where T is defined by TV (x, φ)T −1 = V (x + dS, φ). Con-
sequently, energies and Berry curvatures are periodic in the
phase φ → φ + 2π/q, and the pumped charge at well-defined
fractions of the pumping cycle 	φ = 2πm/q is quantized
as fractions of the Chern number [12,13] Q = mC/q =
(1/2π )

∫ φ+2πm/q
φ

dφ
∫ 2π/q

0 dk 
. Moreover, the energy bands,
Berry curvatures, and total Berry curvature become flat in the
limit of large denominators q.

We now study the incommensurate quasiperiodic case
α ∈ R − Q. Every irrational number α can be writ-
ten uniquely as an infinite continued fraction [43] α =
[a0; a1, a2, . . .] = a0 + 1/[a1 + 1/(a2 + · · · )] with ai inte-
gers. Successive approximations obtained by truncating the
continued fraction representation αn = [a0; a1, a2, . . . , an]
are rational numbers, and converge to α. We thus consider
the ensemble of Hamiltonians H (αn ) describing commensurate
systems with αn = pn/qn = [a0; a1, a2, . . . , an]. We assume
that the insulating gap at the Fermi level remains open, such
that the Hamiltonians H (αn ) are topologically equivalent. As
the denominator qn increases for n → ∞, the BZ [0, 2π/qn]
shrinks and becomes ill-defined in the quasiperiodic limit.
Thus, the usual definition of the Chern number as an integral
of the Berry curvature in the BZ needs to be reformulated.
However, energy bands and Berry curvatures become con-
stant in the quasiperiodic limit (qn → ∞). Hence, if the gap
remains open for αn → α, the Berry integral converges for
n → ∞, and we can define the Chern number in the quasiperi-
odic limit as

Cα = lim
αn→α

1

2π

∫ 2π

0
dφ

∫ 2π/qn

0
dk 
(αn ) = lim

αn→α

2π

qn

(αn ).

(6)
In this limit, the Chern number is simply proportional to
the total Berry curvature, which diverges asymptotically as

(αn ) ∼ qC/2π . Moreover, since the total Berry curvature
is flat, the charge pumped during adiabatic transformations,
for any initial and final values of the phase φ → φ + 	φ,
becomes

Qα = lim
αn→α

1

2π

∫ φ+	φ

φ

dφ

∫ 2π/qn

0
dk 
(αn ) = 	φ

2π
Cα, (7)

whereas the instantaneous charge current becomes

Iα = lim
αn→α

1

2π

∫ 2π/qn

0
dk 
(αn ) = C

2π
. (8)

In the quasiperiodic limit, the pumped charge becomes linear
in the phase difference 	φ, whereas the current I = ∂φQ

becomes constant and proportional to the Chern number. No-
tice that, in order to observe the effects of quasiperiodicity,
the system size L must be larger than the unit cell qdS. In
this sense, the limit αn → α corresponds to the infinite-size
limit L → ∞.

These effects are robust against perturbations which do not
break translational symmetry. In fact, adding a perturbation
λV in Eq. (5), one can verify that the perturbed Hamiltonian
satisfies

H ′(φ + 2πm/q) = T −c{H ′(φ) + cλ[T,V ]T −1}T c. (9)

If translational symmetry is unbroken, this equation reduces
to Eq. (5). In this case, energy levels and Berry curvatures are
still periodic and become flat in the quasiperiodic limit, and
the current remains quantized. However, if [V, T ] �= 0, from
Eq. (9) one can expect polynomial corrections O(λ) to the
energy levels and Berry curvatures. Thus, spatial disorder is
expected to break down the exact quantization of the current.
However, disorder is usually negligible in optical lattices,
contrarily to solid state systems.

We now consider the continuous Hamiltonian H =
p2/2M + V (x, t ) + VTx2 describing an ultracold atomic cloud
in a bichromatic potential, confined by a shallow harmonic
trap ∝VT. The pumped current I = ∂φQ = ∂t Q/ν is related to
a simple physical observable, i.e., the center of mass of the
atomic cloud. The variation of the center of mass 〈x(t )〉 =
(1/N )

∑ j
i=1

∫ ∞
−∞ |�i(x, t )|2xdx is proportional to the pumped

charge [11,12], i.e., Q = ρ[〈x(t + 	t )〉 − 〈x(t )〉], where ρ =
j/(qdS) is the number of atoms j per unit cell. Assuming
the number of filled bands to be j ≡ pC mod q, the total
length of a cloud of N atoms is given by N/ j unit cells (of
length qdS). Hence the number of atoms N must be multiple
of the filling factor j, and the system length L must be tuned
such that

dS
N

L
≡ αC mod q. (10)

Moreover, in order to minimize thermal and nonadiabatic ef-
fects, one should consider a filling factor j = p corresponding
to the large central gap in Fig. 2 with Chern number C = 1.
This gap 	E has the same order of magnitude for a wide range
of values of the commensuration α, including α = 1/2 where
the system is equivalent to the RM model, i.e., 	E ≈ 	ERM.
This fixes the temperature and timescales to T < 	ERM/kB

and ν < 	ERM/h̄. Note that the RM quantum pump has been
already realized experimentally [19,20]. Note also that the
experimental errors in measuring the center of mass can be
reduced by averaging over a large number of cycles [19,20].

Figure 3 shows the pumped charge Q and the current
I = ∂φQ obtained by calculating the center of mass of the con-
tinuous system in the adiabatic limit and, alternatively, using
the effective TB Hamiltonian (4). Different curves correspond
to successive rational approximations of α = 1/�2 ∈ R − Q,
where � is the golden ratio. We tune the trapping potential
such that the length L satisfies Eq. (10). The pumped charge is
quantized as integer fractions of the Chern number (m/q)C for
well-defined fractions of the pumping period 	φ = 2πm/q.
For increasing denominators q, the pumped charge is approx-
imately Q = 	φCα/2π , whereas the current approaches its
quantized value Iα = Cα/2π for αn → α.
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FIG. 3. Pumped charge and current for the central gap with
Chern number C = 1 calculated with (a), (b) the continuous model
and (c), (d) the effective TB model, respectively. Different curves
correspond to successive rational approximations of α = 1/�2,
corresponding to tilting angles θ = arccos (1/(4α)) in the range
between 60◦ and 49◦ for typical laser wavelengths λS = 266 nm
and λL = 1064 nm. The pumped charge is quantized as mC/q for
pumping periods 	φ = 2πm/q. In the limit αn → α, the charge has
a linear dependence Q = 	φCα/2π . The current shows large fluc-
tuations but becomes steady for large denominators q, reaching its
quantized value Iα = C/2π . We use VS = 2Er , VL = 0.5Er . (e) The
current approaches its quantized value exponentially as δI = |I −
Iα| ∝ exp(−q/ξ ). Different data sets correspond to V = J, 1.25J and
K = 0.25J, 0.375J, 0.5J .

Hence, the pumped current Iα in the quasiperiodic limit
is quantized and equal to the Chern number (in elementary
units). We will now determine the asymptotic behavior of
the current approaching the quasiperiodic limit. For K = 0,
Eq. (4) reduces to the AAHH model: In this case, it has been
shown numerically and perturbatively [37] that the total Berry
curvature takes the form 
(p/q) ≈ F + Ge−q/ξ [cos (qk) +
cos (qφ)]. It is reasonable to extrapolate this result also to
K �= 0. Equation (6) gives F = qC/2π , whereas G ∝ q2 [37].
Hence, the flattening of the total Berry curvature is exponen-
tial, and δ
(q) ≈ gq2e−q/ξ asymptotically for large q, where
g > 0 is a constant. Thus, the current approaches its quantized
value as

δI = |I − Iα| � gq e−qn/ξ ≈ ge− 1
ξ

√
D|α−αn|

√
D|α − αn|

, (11)

where |α − αn| ∼ 1/Dq2
n with D <

√
5, due to the Dirichlet’s

approximation theorem and Hurwitz’s theorem [43]. Thus,
Eq. (11) describes the scaling behavior of the current in
the quasiperiodic limit, in terms of the difference |α − αn|
between the irrational commensuration α and its succes-
sive rational approximations αn = pn/qn. The denominator
qn determines the length scale Ln = qndS where the effects
of quasiperiodicity become relevant. Consequently, Eq. (11)
mandates that corrections to the quantized value of the current
are exponentially small in the system size L. This is a distinc-
tive fingerprint of topological quantization, and is analogous
to the case of, e.g., the quantum Hall effect, where correc-
tions to the quantized conductance are exponentially small
in the linear dimensions of the system [44,45]. Figure 3(e)
shows the variations δI calculated numerically via Eq. (8)
using the effective TB Hamiltonian (4). As expected, the cur-
rent approaches its quantized value Iα = Cα/2π exponentially
for αn → α.

In summary, we have shown how a quasiperiodic and
topologically nontrivial Thouless pump can be realized by an
atomic gas confined in a quasiperiodic optical lattice, which
is a superposition of two harmonic potentials with incommen-
surate periodicities. This system is characterized by a topo-
logical invariant defined as the limit of the Chern numbers of
an ensemble of topologically equivalent and periodic Hamil-
tonians. The distinctive fingerprint of this quasiperiodic and
topologically nontrivial state is the exact quantization of the
current, which is a consequence of the flattening of the Bloch
bands and of the Berry curvatures. This exact quantization
is measurable in a typical experimental setting of ultracold
atomic gases in optical lattices, and may open new perspec-
tives for a more accurate definition of current standards.
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