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Remarkable simplicity in the prediction of nonspherical particle segregation
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Size-disperse mixtures of noncohesive particles segregate, or demix, during flow. For spherical particles,
mixture segregation can be predicted based on the relative particle diameters. However, most particle systems
in industry and geophysics involve nonspherical particles. Accounting for the immense range of particle shapes
introduces additional parameters. As a proxy for nonspherical particles in general, we perform discrete element
method simulations of gravity-driven free-surface flows of bidisperse mixtures of mm-sized particles that vary
widely in their size and shape (disks, rods, and spheres). Remarkably, the propensity to segregate, measured in
terms of a segregation length scale that characterizes the segregation velocity of the two species, can be predicted
based on only the volume ratio of the two particle species. The segregation length scale increases linearly with
the log of the volume ratio, as it does for bidisperse mixtures of spherical particles, independent of particle shape.
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Introduction. Segregation, or demixing, in dense flows of
noncohesive particles can occur due to particle size differ-
ences, where small particles percolate between large particles
to lower positions in the flow, or particle density differences,
where heavy particles sink while light particles rise in the
flow, akin to buoyancy in fluids [1,2]. For spherical particles
of equal density, it is trivial to predict which particles will rise
or sink based on the particle diameter alone, even though there
is still significant effort being made to understand the under-
lying physical mechanisms that drive the segregation process
[3-5]. For nonspherical particles, the number of additional
parameters describing particle shape substantially increases
the complexity of the problem. The question is whether it
is possible to capture the propensity for segregation in terms
of a model as simple as Eq. (1) for spherical particles. This
simplified practical model, based on “kinetic sieving” and
“squeeze expulsion” of segregating spherical particles [6],
approximates the segregation, or percolation (hence the p
subscript), velocity of species i relative to the average flow for
size-bidisperse mixtures of species i and j, where j denotes
the other species, as

wy; =Syl —c), (1

where y = du,/dz is the local shear rate (u, is the velocity in
the bulk flow direction and z is in the depthwise direction),
and ¢; is the local concentration of species i. This model
[Eq. (1)] was developed and is accurate for mixtures with
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similar concentrations of the two species [7,8]. For mixtures
with widely varying species concentrations, the segregation
velocity is more accurately described by a model that is sec-
ond order in concentration [9,10].

The segregation length scale for species i, S;, is an empiri-
cal parameter that characterizes the propensity for a bidisperse
mixture of spherical particles to segregate that depends on the
ratio of diameters of the constituent species, Rp = d;/d;, and
the diameter of the small species, d; = min(d;, d;), as [2,7,8]

S;/d; = 0.26 In(Rp). 2)

w)y,; depends on the shear rate, since relative motion of
particles is necessary for segregation to occur, and the con-
centration of the other particle species, ¢; =1 —¢;, since
particles only segregate if they are in the presence of particles
of the other species. The segregation direction, governed by
Rp, is positive (upward) when the ratio is greater than 1 and
vice versa.

While this approach works well for spherical particles,
particles in both geophysical flows and many industrial pro-
cesses are nonspherical. Particles can be rough and faceted in
geophysics, mining, or agricultural processing, or geometric
shapes, such as ellipsoids and pellets, in pharmaceutical or
chemical processing. Given the bewilderingly large parameter
space for particle shapes, predicting the segregation of mix-
tures of arbitrary nonspherical particles is quite challenging.
Previous studies have considered segregation of nonspherical
particles, including ellipsoids [11,12], cuboids and spheres
[13], rods [14], and irregularly shaped particles [15], but
the data are so limited that no universal scaling has been
proposed.

Here, we consider a broad range of particle sizes and
shapes using mm-sized cylindrical particles (rodlike and disk-
like) as well as spherical particles as a proxy for mixtures
of arbitrary nonspherical particles. Accounting for a broad
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FIG. 1. (a) Schematic of 2D bounded heap with periodic bound-
ary conditions in the 7-wide y direction. The coordinate system is
rotated by the angle of repose « and rises at the heap-rise velocity v,.
The flowing layer shape is idealized and its thickness is exaggerated
for purposes of illustration. Inset: Examples of equal-volume rodlike,
spherical, and disklike particles with 0.185 < //d < 4. (b) Nondi-
mensionalized segregation velocity dependence on concentration for
d = 6.35 mm and [/ = 3.175 mm rods (blue o) and d = 3.175 mm
and / =4.75 mm disks (red ¢). Slope of the linear least-squares
fits to Eq. (1) (lines) provides the segregation length-scale value
|Si/ds,cql = 0.17.

range of particle shapes adds several additional parameters
to the problem. Accordingly, we seek to determine if it is
possible to represent the segregation of nonspherical particles
in terms of an equation analogous to Eq. (1) and a parameter
(or parameters) similar to S; having a functional dependence
on the size and shape of the particles comprising the mixture
analogous to Eq. (2).

Simulations. We conduct discrete element method (DEM)
simulations [16-20] of superellipsoid particles in a gravity-
driven free-surface flow [12—14,21-23]. The particle shape is
determined by the inside-outside function for superellipsoids

[24-26]
s\ t/s z
) 2
c

where P(X) = 0 defines the particle surface. The radii a,
b, and c control the particle dimension along the x, y, and
7 axes, respectively, and parameters s and ¢ control corner
sharpness as well as particle shape, which can vary from
octahedral (s =1, t = 1) to cubic (s > 8, r > 8). Here, we
consider two particle shapes: cylinders (s = 2, t = 8) and
spheres (s = 2, + = 2). To survey a broad range of shapes, we
examine both rodlike and disklike cylindrical particles. Noting
that cylinders have two length scales, the range of conditions
for the bidisperse particle mixtures considered here can be ex-
pressed in terms of the diameter ratio, 1/3 < Rp = d;/d; < 1,
the length ratio, 1 < Ry, =1;/l; < 4, and a reference ratio,
1/3 < R, =1;/d; < 3, which together correspond to aspect
ratios, 1/9 < I/d < 9. We also consider mixtures of cylinders
and spheres, varying the diameter ratio, 0.5 < Rp < 2, and a
modified length ratio, 0.5 < Ry < 2, based on the cylinder
length and the sphere diameter. Examples of particle shapes
examined in this study are illustrated in Fig. 1(a) (inset),
which shows equal-volume rodlike, disklike, and spherical
particles.
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Particle contact forces are based on calculating the great-
est overlap of the contacting particle pair, which is found
by Lagrangian optimization [27,28] combined with screen-
ing algorithms of spatial hashing, bounding sphere contact
evaluation, and object oriented bounding box contact de-
tection [14,22] to reduce the number of times the contact
algorithm is applied to noncontacting particles. Particle stift-
ness and damping are based on the restitution coefficient,
0.8, and binary collision time, 1073 s [7,19]. Particle-particle
contacts use a friction coefficient of 0.4. A simulation
time step of 2.5 x 1073 s provides sufficient resolution of
particle deformation during contact [20]. Simulations are
performed using an in-house DEM code that has been vali-
dated against experiments for spherical particles (see Ref. [2]
and references therein), and mixtures of disk- and rodlike
particles [29].

Simulations are performed for flow on a single-sided,
two-dimensional (2D) bounded heap, shown schematically
in Fig. 1(a), by feeding particles vertically on one side of
a spanwise periodic box with spanwise extent 7'/l = 8
and width W/l,.x = 200, where [« is the diameter of the
minimum bounding sphere of the larger particle species in
each simulation. Steady state segregation occurs in a thin
flowing layer of thickness §(x) as particles flow down the
surface of the heap toward the wall opposite the feed zone.
The angled bottom bounding wall reduces the total number of
particles needed in the simulation. Particles fall onto the heap
ata 2D feed rate, 17 < g = Q/T < 130 cm?, where Q is the
volumetric feed rate. For each simulation, the volumetric flow
rate varies from the feed rate at the top of the heap to O at
the downstream end wall. This variation in flow rates creates
a wide range of shear rates of 0.01 < y < 726 s~! across all
simulations. The coordinate system rises with the surface at a
steady rise velocity, v, = g/W, so in its frame of reference
the flow and segregation are steady. To quantify the segre-
gation, particle data are spatially and temporally averaged
in quadrilateral bins oriented parallel to and rising with the
free surface (/. /2 in the depthwise, 2/« in the streamwise
direction, and 7 in the spanwise direction) to find the bulk and
species velocity, u and u;, respectively, the segregation veloc-
ity, w,,; = w — w;, and species concentration ¢; throughout
the flowing layer, as in previous studies [8,10,30,31]. Particles
overlapping multiple bins have their weighted partial volume
applied to each overlapped bin.

Segregation of cylindrical particles. Figure 1(b) shows an
example of the segregation velocity w,; scaled by y and
a particle-based length scale that will be explained shortly,
dyeq, as in previous studies [8,10], versus concentration for
a bidisperse mixture of rods and disks. The data are sampled
throughout the entire flowing layer, resulting in a wide range
of values for w,;, ¥, and ¢;. The data fall along two lines, one
for the rising species (disk) and one for the sinking species
(rod), that both intersect the origin. This result is consistent
with Eq. (1) for spherical particles, where the segregation
length scale S; is the slope of the least-squares linear fit of
the data. Similar results to those shown in Fig. 1(b) occur for
all other particle mixtures considered here, thereby demon-
strating the validity of Eq. (1) for nonspherical particles in
addition to spherical particles for which it was originally
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FIG. 2. Absolute value of the nondimensionalized segregation
length scale of the longer species i, |S;/dcql, vs length ratio R
and diameter ratio Rp for R, = 1. Data symbol (o) diameter is pro-
portional to |S;/d; cq| and color contours are interpolated from data
points. The equal volume ratio dashed line, Ry, = 1, aligns with the
region where S;/d; 4 is near zero. Representative particles of both
species, with purple representing the rising species, are shown at each
corner and the top of the equal-volume line.
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validated. The linear dependence of w,; for a range of ¢;
confirms similar results for a more limited study of cylindrical
particles [14].

The challenge now is to determine an appropriate length
scale to normalize S; and then to determine the dependence of
S; on particle shape and size. Previous studies for mixtures
of spheres have shown that S;, which has units of length,
when normalized by the small particle diameter d;, can be
represented solely as a function of a relevant ratio of a particle
property, such as the diameter or density ratio [8,10,31] [for
example, Eq. (2)]. Although the appropriate length scale to
nondimensionalize S; is not obvious for nonspherical parti-
cles, it should be on the order of the particle size as it is
for spherical particles (as opposed to a length scale based on
the dimensions of the experimental apparatus). Here, we use
the diameter of the volume equivalent sphere of the smaller
volume species d; q as the characteristic particle length scale.
Using other characteristic particle length scales (e.g., radius
of gyration) does not improve, and in some cases makes much
worse, the collapse of the data for the results discussed below.

To determine the dependence of the propensity for segre-
gation, characterized by S;/d; ¢, on particle shape and size,
we consider a broad range of bidisperse cylindrical particle
mixtures. Figure 2 shows the dependence of |S;/d; ¢q| for the
longer species (i) on the length ratio R;, and the diameter ratio
Rp for 65 simulations with reference ratio R, =1;/d; =1,
which corresponds to the aspect ratio for the monodisperse
mixture (lower right-hand corner of the figure). The longer
species rises in the upper right-hand portion of the figure and
sinks in the lower left-hand side of the figure. The segregation

length scale of the shorter species j, S;/d;q, Which is not
shown, is of opposite sign and of nearly equal magnitude to
S;/d;,eq, having an rms deviation from —S;/d; q of 7% across
all 65 measurements.

Figure 2 demonstrates that longer rods rise in the presence
of shorter rods (upper right), and larger diameter disks rise
in the presence of smaller diameter disks (lower left). The
segregation is strongest when the volume of the two particles
differs substantially (upper right and lower left). A region
exists between these two extremes where the particles remain
mixed (S; &~ §; A 0) that corresponds to a volume ratio, Ry =
Vi/V; =1, shown as a dashed line in Fig. 2.

The dependence of segregation on the relative volumes of
the two particle species is further explored by changing the
reference ratio, 1/3 < R, <3, with 1 <Ry <4 and 1/3 <
Rp < 1. R, = 1/3 corresponds to mixtures of disklike parti-
cles, and R, = 3 corresponds to mixtures of rodlike particles.
Although these data are omitted for brevity, in all cases w),;
follows the form of Eq. (1), and mixtures with particles having
a larger difference in volume segregate more, while particles
of approximately equal volume do not segregate.

Much as the segregation of rodlike and disklike particles,
DEM simulations for mixtures of spheres and cylinders (rods
or disks) demonstrate that the particle species with the greater
volume rises, and the particle species with the smaller volume
sinks. And again, when the particles have equal volumes, there
is negligible segregation.

The observation that higher volume particles always segre-
gate upward while smaller volume particles sink downward,
and the related observation that particles of equal volume
remain mixed strongly suggest that the segregation length
scale §;/d;.q depends on the volume ratio Ry. To test
this hypothesis, Fig. 3 plots S;/dscq vs Ry for all of the

0.3

o:cylinder/cylinder

o:cylinder/sphere 0
0.2 r x:sphere/sphere 8%
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0.1 0.5 1.0 5.0 10
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FIG. 3. Nondimensional segregation length scale S;/dj.q for the
longer species vs volume ratio Ry for bidisperse mixtures of cylin-
ders (black o), cylinders and spheres (blue [J), and spheres (red x)
[8]. Symbols are semitransparent so overlapping points are more
intense in color. The linear least-squares fit to the data (line) for all
mixtures to S;/dy.q = CIn(Ry) has a slope C = 0.082.
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parameter combinations considered: 325 simulations of bidis-
perse mixtures of cylinders (1 < Ry, <4,1/3 < Rp < 1,and
1/3 < R, < 3, corresponding to 1/9 < [/d < 9) and 54 sim-
ulations of bidisperse mixtures of spheres and cylinders
(1/2 < Ry < 2and 1/2 < Rp < 2). In addition, data for 146
simulations of size-bidisperse mixtures of spherical particles
(1/2.2 < Rp < 2.2) from previous work [8] are also included
in the figure. There are two data points for each simulation:
one for one species at a particular value of Ry and another for
the other species at 1/Ry.

Figure 3 demonstrates that particle segregation character-
ized by S;/d; eq is, to first order (coefficient of determination,
R? = 0.894), linear with In(Ry),

Si/ds,eq =C ln(RV )v (4)

where C = 0.082, a form that is surprisingly consistent with
Eq. (2) for spherical particles. Again, the segregation direction
is governed by Ry to be positive (upward) when the ratio is
greater than 1 and vice versa. While there is some scatter in the
data, it is remarkable that the segregation of particles having
such widely varying shapes and sizes, a range broader than
even the extremes shown in Fig. 1(a) (inset), can be condensed
to this simple correlation. In addition to the volume ratio Ry,
we considered several other ways to characterize the two par-
ticle species including surface area, projected surface area in
the direction of segregation, and sphericity, but none collapse
the data better than Ry .

While the dependence of segregation on the volume ratio
is clear, the physics associated with this result is not. Nev-
ertheless, the volume-based dependence for the segregation
of nonspherical particles found here may open up different
perspectives. In previous studies of a single spherical intruder
in a bed of sheared spherical particles [3-5], the direction
of segregation is consistent with the results presented here.
However, at much larger volume ratios than those studied
here (greater than about 64), a larger intruder sinks due to
its increased weight relative to the upward contact forces
from the smaller bed particles [5]. Further demonstrating the
complexity of the physics associated with segregation, in
bidisperse mixtures of spherical particles that vary in both
volume and density, the segregation depends not only on the
volume ratio and density ratio [32] but also on the species
concentration [33-35]. Therefore, the physics of segregation
is, at least in part, dependent on both the relative size, here
characterized by the volume ratio, and the mass (or density)
ratio between particle species. This complex interaction is not
fully understood even in the dilute limit of a single intruder
in spherical particle systems, although it appears to be related
to both particle contact anisotropy and flow kinematics [5].
The physics is likely even more challenging for the more

complicated particle contact interactions and kinematics as-
sociated with nonspherical particles, but the volume-based
segregation dependence found here is in accord with recent re-
sults suggesting a segregation force based on a size-corrected
buoyancy [5].

Conclusions. In the end, characterizing the propensity for
segregation is quite simple, even for particle shapes and sizes
varying even more widely than those shown in Fig. 1(a)
(inset). First, just as with spherical particles, the segregation
velocity is to first order a function of only the shear rate and
the concentration of the particle species [Eq. (1)]. Second, the
segregation length scale S; that characterizes the propensity
for segregation depends only on the volume ratio of the two
particles via the simple relation S;/d;.q = CIn(Ry), where
C = 0.082 is constant across a wide range of cylindrical
and spherical particle mixtures. A more detailed presentation
of the simulations and conclusions, including data omit-
ted for brevity above, will be presented in an upcoming
publication.

The similarity in segregation for mixtures of particle
species as different as those in Fig. 1(a) (inset) suggests that
predicting segregation between differently shaped particles
may be as simple as determining Ry, at least to first or-
der. That is, generally spheroidal particles, including particles
with faceted surfaces, ellipsoids, tablet- or capsule-shaped
particles, and seed-or grain-shaped particles, would likely
follow the same volume-ratio-based dependence for segrega-
tion, given that these particle shapes rarely differ from one
another as much as the extreme examples of disks and rods
differ in Fig. 1(a) (inset). Further study is needed to confirm
this prediction, but the simple relationship S;/d; .q = C In(Ry)
is of great benefit in modeling segregation. Of course, this
relationship is unlikely to hold for extreme particle shapes,
e.g., concave shapes that interact through interlocking be-
havior or large aspect ratio rods (fibers) that strongly align
with the flow or locally jam.! Likewise, particles differing
appreciably in density would not follow this relation. Nev-
ertheless, Fig. 3 demonstrates that the segregation of a large
and important subset of all nonspherical particle mixtures,
namely cylinder-cylinder mixtures, cylinder-sphere mixtures,
and sphere-sphere mixtures, can be simply predicted based
on the relative volumes of the particles, regardless of particle
shape.
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'Note that the model may also be somewhat less accurate when
particle orientation is evolving, such as the upstream flowing layer in
rotating tumblers or near the feed zone in heaps. However, once the
particle orientation is established, the model should apply to a wide
range of gravity-driven free-surface flows just as it does for spherical
particles [2].
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