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Engineering two-qubit mixed states with weak measurements
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It is known that protocols based on weak measurements can be used to steer quantum systems into pre-
designated pure states. Here we show that weak-measurement-based steering protocols can be harnessed for
on-demand engineering of mixed states. In particular, through a continuous variation of the protocol parameters,
one can guide a classical target state to a discorded one, and further on, toward an entangled target state.
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Introduction. A generalized quantum measurement com-
prises two steps: (i) switching on, and later off, an interaction
Hamiltonian, coupling the quantum system and the quantum
detector, leading to a unitary evolution of the combined setup
over a prescribed time interval; and (ii) performing a pro-
jective measurement of the decoupled detector, which leads
to a probabilistic quantum jump [1–3]. The detector readout
provides information about the system’s state. Measurements
are designated strong (projective) or weak, based on the
system-detector interaction strength. The former collapses the
system to one of the eigenstates of the measured observable.
By contrast, generalized (also known as weak) measurements
may result in a slight nudge to the system state [4–8]. No
matter how weak the measurement is, it always creates an
unavoidable impact on the system state through its backaction
[9,10]. Traditionally, this measurement-induced backaction
was considered an undesirable effect since the primary pur-
pose of a measurement is to extract information about the
system without perturbing it.

Following a disparate paradigm, one may employ the
measurement-induced backaction on the system’s state as a
means to control the system’s evolution, steering [11] it to-
ward a predesignated pure target state [12–16]. A recent work
(cf., Ref. [17] and references therein) analyzed a host of pro-
tocols utilizing blind measurements [18] for engineering pure
target states in single- and many-body systems.

Traditionally, mixed states are not the objective of quantum
steering. In practice, nonpure states may appear due to errors
or noise of steering protocols. In a paradigmatic shift, we put
them here as the target of steering, emphasizing the interest
in and the value of mixed states. Their quantumness can be
expressed through their discord [19–22]. Discorded quantum
states have been proposed as resources for various quan-
tum information tasks: achieving quantum speedup [23,24],
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remote state preparation [25], and quantum purification pro-
tocols [26,27]. Engineering predesignated mixed states is,
therefore, a task of interest.

The present analysis introduces a measurement-based pro-
tocol which can be used to steer a two-qubit system to an
arbitrary predesignated state (pure or mixed), independently
of the system’s initial state (the latter is assumed unknown).
We illustrate our protocol by considering a family of target
states. These, depending on the protocol parameters, may
be (i) nondiscorded and nonentangled (“classical”), (ii) dis-
corded and nonentangled, or (iii) discorded and entangled,
thus providing us with a smooth navigation tool from classical
to fully quantum states.

The guiding principle of our protocol is as follows. Under
sufficiently weak measurement, the system evolution can be
described by a Lindbladian master equation. Such an equa-
tion will have at least one (and in the present case exactly
one) steady state that is approached exponentially quickly. We
design the protocol such that this steady state is the target
state. We first recall a measurement-based protocol whose
steady state is an arbitrarily chosen pure state [17]. In order
to generate a mixed state, we diagonalize the density matrix
of the target state and juxtapose the protocols for stabilizing
each of the density matrix’s pure eigenstates. In the explicit
example we consider, we find that the rate of converging
toward the target state does not significantly depend on its
discord or degree of entanglement, so that our protocol is
equally efficient independently of the target state’s usefulness
for quantum information purposes.

General evolution under repeated blind measurements.
Consider a quantum system in state represented by the density
matrix ρs and a quantum detector prepared in state ρ

(0)
d . Before

they interact, the joint system-detector state can be written as

ρ(t ) = ρs(t ) ⊗ ρ
(0)
d . (1)

In order to perform a measurement, the system interacts with
the detector via an interaction Hamiltonian Hs−d ; the joint
system-detector state evolves as

ρ(t + τ ) = Uρ(t )U †, (2)

where U = exp (−iHs−dτ ), and τ is the interaction time.
Subsequently the detector state is measured projectively,
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disentangling the composite system-detector state and gener-
ating a measurement backaction on the system state. When
discarding (i.e., tracing out) the measurement readouts, a
procedure we denote “blind measurement,” the effect of the
backaction is represented through

ρs(t + τ ) = Trd [ρ(t + τ )]. (3)

Following each measurement step, the detector is reset to its
initial state ρ

(0)
d , and then the same measurement procedure is

repeated. This protocol gives rise to a nontrivial evolution of
the system state.

Denoting the system-detector interaction time τ and taking
the continuous time limit τ → dt , one arrives at the following
differential equation for the system state evolution under blind
measurements

dρs

dt
= L[ρs] = iTrd ([ρ(t ), Hs−d ])

− 1

2
Trd ([Hs−d , [Hs−d , ρ(t )]]τ ). (4)

Here L is the Liouvillian superoperator acting on the system
state, and we dropped the terms O(τ 2) on the right-hand side.
The first term on the right-hand side of the above equation
generates unitary evolution of ρs, while the second term rep-
resents dissipative evolution and can be cast in the form of a
Lindbladian. In other words, the above equation can be written
as

dρs

dt
= L[ρs] = i[ρs(t ), Hs]

− 1

2

∑
j

({L†
j L j, ρs(t )} − 2Ljρs(t )L†

j

)
, (5)

where {·, ·} represents the anticommutator, Hs is the effective
system Hamiltonian, and Lj are the Lindblad jump operators
acting on the system state. This way, the sequence of measure-
ments influences the system state in a quasicontinuous manner
and ultimately steers it to a steady state determined by the
condition

dρ (T )
s

dt
= L

[
ρ (T )

s

] = 0. (6)

Steering towards a pure target state. We now recall the prin-
ciples of measurement-based steering protocol of Ref. [17],
focusing on the two-qubit case, at the center of our analysis.
The protocol facilitates stabilizing the system in an arbitrary
pure target state |B1〉, corresponding to ρ (T )

s = |B1〉〈B1|.
To implement the protocol, we first select three arbi-

trary states |B2〉, |B3〉, and |B4〉, such that together with
|B1〉 they form an orthonormal basis in the four-dimensional
Hilbert space of the two-qubit system. Three steps now
follow: In the kth step, k = 1, 2, 3, a measurement is per-
formed with a system-detector coupling that is designed
such that the measurement backaction steers the system
away from |Bk+1〉. This is accomplished by choosing Hk

s−d =
J (|B1〉〈Bk+1| ⊗ σ− + H.c.), where the detector is a single
qubit acted upon by the Pauli matrices σ± = (σ (d )

x ± iσ (d )
y )/2,

and J is the coupling strength (for simplicity it is the same
in all the three steps). Before each measurement, the detector
is initialized in ρ

(0)
d = |↑〉〈↑|. With the duration of each step

being τ , the density matrix evolution over dt = 3τ is given by

dρs

dt
= − g

2

4∑
j=1

({L†
j L j, ρs} − 2LjρsL

†
j

)
, (7)

where g = J2τ/3, and the jump operators Lj =
(1 − δ1 j )|B1〉〈Bj | (we introduced L1 = 0 for completeness).
It follows from Eq. (7) that

dρs

dt
= 0 ⇔ ρs = ρ (T )

s = |B1〉〈B1|, (8)

i.e., the system is steered toward the desired pure state.
It is instructive to understand the mechanism by which

the above steering works. In each step, the system-detector
interaction Hamiltonian Hk

s−d steers the system in a two-
dimensional subspace spanned by |B1〉 and |Bk+1〉 from the
state |Bk+1〉 to |B1〉 without affecting the rest of |Bi〉 (i �=
k + 1). Since Hk

s−d commutes with |B1〉〈B1| ⊗ ρ
(0)
d , the mea-

surement does not disturb the system if it is in state |B1〉, and
the detector then remains in its initial state, |↑〉. This makes
|B1〉 not just a steady state of the evolution, but a dark state
in the terminology of Ref. [28]: Once the system is in |B1〉,
it is not affected by the detectors. If the system is in |Bk+1〉,
a transition to |B1〉 (accompanied by the detector state flip-
ping to |↓〉) happens with probability sin2 Jτ . Likewise, with
probability cos2 Jτ , the detector does not flip the state and the
system remains in |Bk+1〉. Note that if the system is initially
in a (coherent or incoherent) superposition of |B1〉 and |Bk+1〉,
both detector readouts affect the system state: |↓〉 state of the
detector implies the system has jumped from |Bk+1〉 to |B1〉,
while |↑〉 implies a change of the weights of the superposition
due to different probabilities of the ↑ readout depending on the
system state (this is referred in the literature as a “null weak
measurement” [29–32] or by a number of different names
[33–35]). Averaging over the possible detector readouts and
taking the limit Jτ 
 1, one obtains the master equation (7).

Steering toward a mixed target state. We now focus on
the key result of the paper: steering the two-qubit system to a
desired mixed state. Any mixed target state ρ (T )

s has a spectral
decomposition [36]

ρ (T )
s =

4∑
i=1

pi|Bi〉〈Bi|, (9)

where |Bi=1,...,4〉 form an orthonormal basis in the two-qubit
Hilbert space, and pi � 0 is the probability of the system
being in the corresponding |Bi〉 state, so that

∑4
i=1 pi = 1.

The protocol described in the previous section can be used
to steer the system to |B1〉. Furthermore, by exchanging the
roles of |B1〉 and one of |Bi �=1〉, the protocol steers the system
to the corresponding |Bi〉. We now show that combining the
four protocols, each steering the system to one of |Bi〉, with
appropriate coupling strengths, J → Ji, allows us to stabilize
the mixed state in Eq. (9).

A schematic experimental setup for this complex protocol
is presented in Fig. 1. Each part of the protocol, steering the
system toward one of the |Bi〉 lasts 3τ . Consequently, the
density matrix evolution for dt = 4 × 3τ = 12τ is described
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FIG. 1. Setup for steering a two-qubit system to an arbitrary
mixed state. Four detectors are coupled to the system, and couplings
J1, J2, J3, and J4 are switched on and off in turns such that only
one of them is nonzero at any given time. Repeated measurement
by any single detector would steer the system toward a pure state
|Bi〉〈Bi|, i = 1, . . . , 4. With all the detectors operating alternatingly,
the system is steered toward a mixed state of the form (9).

by

dρs

dt
= L[ρs] =

4∑
i=1

Li[ρs]

= −1

2

4∑
i=1

gi

4∑
j=1

({
L(i)†

j L(i)
j , ρs

} − 2L(i)
j ρsL

(i)†
j

)
, (10)

where gi = J2
i τ/12 and L(i)

j = (1 − δi j )|Bi〉〈Bj |. Equation (10)
has a unique steady state,

ρs = ρ (T )
s = 1∑4

i=1 gi

(
4∑

j=1

g j |Bj〉〈Bj |
)

. (11)

We note that choosing

g j = ḡ p j , (12)

where j = 1, 2, 3, 4 and ḡ = ∑4
i=1 gi, stabilizes the desired

target state in Eq. (9). Therefore, measurement-based steering
toward an arbitrary mixed state requires diagonalizing the
density matrix of the latter, bringing the state to the form (9),
and concurrent utilization of the four protocols, each stabiliz-
ing one of the pure eigenstates which make up the mixed-state
density matrix.

We emphasize that the simple-looking result of Eq. (12)
is highly nontrivial. Indeed, for arbitrary four Lindbla-
dians L̃i such that L̃i[|Bi〉〈Bi|] = 0, one cannot guaran-
tee that

∑
i giL̃i[

∑
j g j |Bj〉〈Bj |] = ∑

i, j gig jL̃i[|Bj〉〈Bj |] =
0. The fact that this holds in our case is a special feature of
the measurements we employ here (i.e., of the Lindbladians
describing the measurement-induced evolution). Employing
other types of measurements may also allow for stabilizing
arbitrary states; however, the relation between gj and p j may
not be as simple as Eq. (12).

If we record the detector’s readouts, the dynamics of the
system subject to our protocol can be understood as follows:

The limit of weak measurement addressed here, Jiτ 
 1, im-
plies that a detector click (one of the detectors flipping its state
to |↓〉 during the measurement) is a rare event. It follows that
the system, initially prepared in a possibly coherent superpo-
sition of different |Bi〉, will experience coherence-preserving
dynamics induced by a “no-click” backaction for a long time
≈ ḡ−1 (this is akin to “null weak measurements” [29–32]).
Eventually, a click will register, bringing the system to one
of the |Bi〉 states and destroying coherence between different
|Bi〉 components. From this point on, the no-click dynamics
does not affect the system state, while rare clicks make it
jump between different |Bi〉 states. The system spending ran-
dom amounts of time in different |Bi〉 results in the average
state given by Eq. (9). Notably, the system, while being on
average in the target state, probabilistically jumps among the
constituent pure states |Bi〉, which is manifested by occasional
detector clicks. In other words, a mixed target state in our
protocol is a steady state but not a dark state.

Steering to “classical” versus “quantum” states. We now
illustrate our protocol with an example where the system can
be steered into a family of states which can be classical or
quantum depending on the measurement couplings employed.
Consider the following two-qubit state,

ρ̃ = p1|↑↑〉〈↑↑| + p2|ψ+〉〈ψ+| + p3|ψ−〉〈ψ−|
+ p4|↓↓〉〈↓↓|, (13)

where |ψ±〉 = 1√
2
(|↑↓〉 ± |↓↑〉), and

p1 = [1 − β + α(1 + β )]

4
, p2 = (1 − α)(1 − β )

4
,

p3 = (1 − α)(1 + 3β )

4
, p4 = [1 − β + α(1 + β )]

4
. (14)

Here α and β are two independent parameters such that
0 � α, β � 1, and the coefficients pi correspond to the pi in
Eq. (9). This state may or may not have quantum correlations
depending on α and β. For example, using Peres-Horodecki
criterion [37,38], one shows that ρ̃ is separable (not entangled)
if and only if α � 3β−1

3β+1 .
Quantum correlations are commonly quantified via con-

currence (a measure of entanglement) [21,39] and quantum
discord [19–22]. Calculating discord Q and concurrence C
for an arbitrary state is a challenging task, but for the state
in Eq. (13) both of them can be calculated analytically
[21,39–41]. They are respectively given by

Q(ρ̃) = 1 − α

4

{
(1 − β ) log2[(1 − α)(1 − β )]

− 2(1 + β ) log2[(1 − α)(1 + β )]

+ (1 + 3β ) log2[(1 − α)(1 + 3β )]
}

(15)

and

C(ρ̃) =
{ 3β(1−α)−(1+α)

2 for α <
3β−1
3β+1 ,

0 otherwise.
(16)

Note that the discord Q(ρ̃) is only zero when (i) α = 1 or (ii)
β = 0, while the concurrence C(ρ̃) exhibits a sharp change of
behavior at finite α and β; cf., Fig. 2. The state ρ̃ can thus
be purely classical (both discord and concurrence vanish),
discorded (concurrence vanishes), or entangled (concurrence
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FIG. 2. Quantum discord (15) and concurrence (16) for the two-
qubit state ρ̃ of Eq. (13) as a function of the parameters α and β.
The black dashed line, α = 3β−1

3β+1 , separates the regions of zero and
nonzero concurrence. The discord is nonzero everywhere except for
the lines α = 1 and β = 0.

and discord are both nonzero) depending on the parameters α

and β.
We may generate ρ̃ using the protocol described above.

First, the target state density matrix should be diagonalized.
It is evident from Eq. (13) that the eigenbasis of ρ̃ is

|B1〉 = |↑↑〉, |B2〉 = |ψ+〉, |B3〉 = |ψ−〉, |B4〉 = |↓↓〉. (17)

Using Eq. (12), one obtains that the couplings gi in Eq. (10)
are gi = ḡ pi, where ḡ = ∑

i gi characterizes the total strength
of all measurements employed. Figure 3 illustrates the time
evolution of the two-qubit system as it is steered from an ini-
tial state to the target state ρ̃. Deviations from the target state
decay exponentially in time; the decay rates are determined
by the real parts of the nonzero eigenvalues of the Liouvillian
superoperator L; cf., Eq. (10). The smallest of the decay rates
is referred to as the convergence rate; it is determined by
the inverse of the Liouvillian gap—the smallest in magnitude
real part of all nonzero eigenvalues. The dependence of the
convergence rate on the target state is presented in Fig. 4. Note
that the dependence on α and β is not too strong, implying
that our protocol works equally well for both entangled and

FIG. 3. The density matrix of the two-qubit system as it is
steered toward a target state, ρ̃, of Eq. (13). The magnitudes of the
density matrix entries in the basis |Bi〉 (17) are represented by a
color scale. The initial state can be pure (ρs(0) = 1

4

∑
i, j |Bi〉〈Bj |,

top) or mixed (ρs(0) = 1
2 (|B1〉〈B1| + |B4〉〈B4|), bottom). F̄ = 1 −

(Tr
√√

ρ(t )ρ (T )
√

ρ(t ))
2

is the deviation from perfect fidelity of the
target state preparation. Irrespective of the initial state, the system has
essentially converged to the target state with α = β = 1

2 at ḡt = 5.

FIG. 4. The convergence rate in units of ḡ as a function of pa-
rameters α and β. The black dashed line separates the regions of
zero and nonzero concurrence; cf., Fig. 2. The convergence rate does
not depend significantly on the target state. In particular, it does
not depend on whether the target state is classical, discorded, or
entangled.

nonentangled states, as well as for states in the vicinity of the
transition between the two regions.

Discussion. We have proposed a measurement-based pro-
tocol that can generate any two-qubit state by design (pure
or mixed), starting from an arbitrary unknown initial state.
We illustrate the protocol with an example, in which the tar-
get state can be classical, discorded, or entangled, depending
on relative strengths of the measurements employed in the
protocol.

Note that conventional studies of open system evolution
(e.g., Refs. [42–44]) are concerned with finding the steady
state of a given Liouvillian. By contrast, here we are
concerned with stabilizing a predesignated state (“target
state”), i.e., finding the evolution protocol (Liouvillian) for
which our target state is the steady state. We also note that
our approach is distinct from drive-and-dissipation schemes
[28,45–56], where environment is employed to relax the
system to a desired state. The two crucial distinctions here are
that (a) the relaxation is induced by measurements, implying
the possibility to use the measurement readouts to confirm
the system’s desired behavior (and, possibly, hasten the
convergence toward the target state), and (b) our system does
not have a Hamiltonian (no “drive”).

Our protocol can be implemented in a variety of
experimental platforms. The main ingredient of our protocol,
blind measurement stabilizing the system at a specific pure
state, is particularly natural for implementation in cold-ion
systems [57]. The nature of cold-ion experiments does not
allow for registering individual measurement readouts in order
to verify the protocol behavior. This can, however, be done
by working with superconducting “artificial atoms” [58,59].

An interesting future direction concerns stabilizing N-qubit
mixed states. Stabilizing N-qubit pure states in an efficient
manner is already a challenging problem, which, however, has
been solved for the restricted class of tensor-network states
[17,46,60]. Stabilizing N-qubit mixed states turns out to be an
even more challenging problem still under research [61]. Our
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two-qubit protocol may be a useful block in future N-qubit
protocols.
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