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Cavity formation in deformed amorphous solids on the nanoscale
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Amorphous solids, confined on the nanoscale, are studied using molecular dynamics computer simulation.
Unlike in bulk samples, failure patterns in such systems are strongly affected by the confinement geometry and
interfacial effects in the sample. We study a confined model glass, subjected to uniaxial loading, for varying
aspect ratios of the sample geometry. While for a small aspect ratio, the sample breaks by forming a neck, above
a critical value of the aspect ratio, cavitation is seen. The critical aspect ratio is associated with a strain-rate- and
temperature-dependent critical curvature of the neck, above which the free energy of the system is minimized by
the formation of a cavity. This mechanism of cavity formation is probably a generic mechanism for material’s
failure in small confined systems under mechanical load.
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Introduction. Understanding the failure mechanisms of
amorphous solids under external load is one of the most active
research fields in materials physics and engineering [1–14].
It is experimentally known that amorphous solids have often
much larger failure strengths than their crystalline counter-
parts with similar compositions, but they may also show catas-
trophic failure, which severely limits their applicability as
useful design materials [9,13,15–19]. Bulk materials that ex-
hibit catastrophic failure by forming cracks under an applied
load are generically termed as brittle materials [16,20–22],
as opposed to ductile materials that show significant plastic
deformation before final failure [23,24]. In the past, a lot of
detailed studies have been done to understand the failure and
yielding mechanisms in bulk amorphous solids [5–7,25–40],
but very few studies have focused on the microscopic mecha-
nisms of failure at the nanoscale [41–43].

Recent studies [44–49] suggest that the nature of plasticity
in materials changes significantly with system size. While
typically a bulk metallic glass can sustain only up to 2%
strain before failing via brittle crack formation, uniaxial strain
experiments on metallic glasses with different sample sizes
[46] show that the strain before failure can increase up to
200% when the sample size is reduced to 100 nm. Often,
in nanosized amorphous samples, the material fails via the
formation of necks. These necks can shrink to chainlike struc-
tures as thin as a few atomic layers, indicating a ductile
rather than a brittle response of the material to deformation. A
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similar observation has been also made in uniaxial compres-
sion experiments on pilers made of metallic glasses [44].
While pilers with diameters larger than 100 nm show promi-
nent shear band formation, a hallmark of brittle failure,
pilers that are less than 100 nm in diameter display ho-
mogeneous plastic deformation without shear localization.
Similarly, Greer et al. [47] have demonstrated that the brittle-
to-ductile transition in Zr-based metallic glasses is associated
with a critical sample size. Furthermore, several experiments
and simulations of metallic glasses confirm that size reduction
increases the material ductility due to surface states [45,46]. A
microscopic understanding of all these observations would be
very important for the systematic development of nanomate-
rials with specific mechanical properties.

In this article, the nature of plasticity of two- and three-
dimensional glasses is investigated via uniaxial elongation
simulations at the nanometer length scale. In the x direction,
the samples are bounded by walls, while free boundaries are
assumed in the y direction. The systems are deformed by
moving the two walls in opposite direction. We find two
qualitatively different responses to the external mechanical
load. On the one hand, there is necking corresponding to a
ductile behavior, and on the other hand, there is the occur-
rence of cavities that eventually lead to a brittle failure of the
sample. At a given temperature and strain rate whether the
deformed systems fail via neck formation or via the formation
of cavities is determined by the aspect ratio of the sample
geometry. While below a critical aspect ratio the samples fail
via necking, above this critical ratio the mechanical failure
is due to the formation of cavities. We show that the critical
aspect ratio is related to a critical curvature of the neck.

Simulation details. We have performed nonequilibrium
molecular dynamics simulations of a glass-forming binary
Lennard-Jones (LJ) mixture (see the Supplementary Material
(SM) for further details on the model [50]). We first
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FIG. 1. Variation of maximum strain, �, with increasing aspect
ratio, R, at T = 0.30 and γ̇ = 5 × 10−6. The crossover in failure
mechanism is also shown by plotting the morphologies of the sam-
ples before the complete failure.

equilibrate the systems in the liquid state at a high temperature
and then cool it to a low temperature below the calorimetric
glass transition temperature (Tg � 0.33) of the model (in the
following, units of length, time, and temperature are given
in reduced LJ units; see SM for details). Then, at that low
temperature, we couple the system to a barostat and perform
constant pressure and temperature (NPT ) simulations at zero
pressure, followed by a removal of the periodic boundary
conditions. To this end, we define two side walls at the two
ends of the solid in the x direction by freezing the motion of
the particles in the two end regions; the typical width of the
walls is around three interparticle diameters. The remaining
boundaries are made free.

Next, the two walls are moved by an increment equal in
size and opposite in sign; i.e., the system is subjected to uniax-
ial strain. To quantify the maximum deformation that a system
can withstand before failure, we define the maximum strain
as � = (L f − L0)/L0, where L0 is the initial length of the
undeformed system along the tension direction (x direction)
and L f is the final length just before the system breaks into
two parts. We have performed simulations for different strain
rates γ̇ , temperatures T , and aspect ratios R = H/L0 (with H
being the lateral dimension of the walls). The strain at any
instance is defined as γ = (L − L0)/L0, where L is the length
of the system at that instance. The aspect ratio R is varied from
0.6 to 5.0, keeping L0 = 30.0.

Necking versus cavity formation. Figure 1 shows the max-
imum deformation � as a function of the aspect ratio, R,
for T = 0.30 and γ̇ = 5 × 10−6. As one decreases the size
of the sample (i.e., the aspect ratio R), the ductility of the
system significantly changes, in agreement with experimental
findings [44–47]. From our data, one can infer the existence of
a critical aspect ratio, Rc, below which one no longer sees an
increase in maximum strain, �. � actually starts to decrease
very rapidly with decreasing aspect ratio below this critical
aspect ratio, Rc. Thus, the � versus R curve shows a peak
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FIG. 2. Maximum strain � as a function of the aspect ratio R =
H/L for different temperature T at strain rates γ̇ = 5 × 10−5 (a) and
10−5 (b). Variation of the critical aspect ratio, Rc, as function of strain
rate (c) and temperature (d).

which signifies the existence of a favored geometric aspect
ratio at which the material will show maximum ductility.

Now we investigate the failure patterns as one increases
the aspect ratio, in order to reveal the origin for the existence
of a critical aspect ratio and a maximum ductility. As shown
in Fig. 1, we found that at very small aspect ratio, R < Rc,
the system always breaks via neck formation and the failure
mechanism changes very sharply at the critical aspect ratio at
which one observes the appearance of a single cavity. With
further loading, the cavity increases in size and eventually
the cavity becomes large enough that the system breaks into
two fragments. As one further increases the aspect ratio, the
number of cavities increases by an integer number and one
observes the appearance of multiple cavities. At these higher
aspect ratios, the system eventually fails by the merger of
cavities into a larger cavity, in complete agreement with ex-
perimental observations [23,25,51–54] (see the SM [50] for
further discussion). We believe that the appearance of cavities
above a critical aspect ratio suggests a sharp ductile-to-brittle
transition in the material with increasing system size.

Effects of γ̇ and T . In Fig. 2, we show the maximum strain,
�, as a function of the aspect ratio for different temperatures
for a given strain rate. We observe that the critical aspect ratio
Rc increases with increasing temperature and the variation of
Rc with temperature is larger as one decreases the strain rate,
γ̇ . As shown in the different panels of Fig. 2, the critical aspect
ratio changes from Rc = 1.2 to 2.2 for the strain rate γ̇ = 5 ×
10−5 [Fig. 2(a)] as the temperature increases from T = 0.15
to 0.30, while with slower strain rate γ̇ = 10−5, the value of
Rc increases from 1.6 to around 3.8 in the same temperature
range. In Fig. 2(c), the critical aspect ratio, Rc(T, γ̇ ), is plotted
as a function of γ̇ for different temperatures. It seems that
the critical aspect ratio has a power law dependence with
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FIG. 3. Map of D2
min as a function of strain for two aspect ratios

corresponding to failure patterns of necking (top) and cavitation (bot-
tom). Blue and red correspond to values of D2

min that are respectively
larger or lower than the average value.

the strain rate, as Rc(T, γ̇ ) ∼ γ̇ η, with exponent η varying
strongly with temperature. At low temperature, η is very small
and approximately close to −0.1 and becomes substantially
larger in magnitude as the temperature is increased towards Tg.
At T = 0.30, the exponent becomes η ≈ −0.27. In Fig. 2(d),
the critical aspect ratio is plotted as a function of temperature
for different strain rates. One clearly sees that the critical
aspect ratio (at which failure happens via cavity formation)
increases to larger values, indicating the expected behavior of
increasing ductility with increasing temperature. The behavior
becomes very pronounced with decreasing strain rate, so un-
der experimental conditions with very slow strain rates [55],
one may expect a stronger dependence on temperature.

In several studies, it has been suggested that the change
from a brittle to a ductile response with decreasing system
size is related to an enhanced relaxation on surface layers
[7,8,20,45,47,56]. To characterize the surface relaxation, we
have computed the nonaffine deformation of the particles
quantified by D2

min [57] and found that indeed relaxation at the
surface is enhanced compared to the bulk (Fig. 3; see SM for
the definition of D2

min and further details). Blue and red in the
map correspond to values of D2

min that are respectively larger
or lower than the average value. Clustering of fast particle
(blue) near the open surfaces clearly suggests that relaxation
is faster in the vicinity of the free surface.

Curvature of the open surface. To understand the origin
of the crossover in the failure mechanism from necking to
cavitation, we now analyze the curvature of the open surfaces
with increasing strain. To this end, we fit the average mor-
phology of each of the free surfaces to an ellipse and obtain
the radius of curvature (K = a2/b) at the center of the surface
(vertex of the minor axis of the ellipse). Figure 4(a) shows
a typical snapshot of the surface particles and a fit to it with
the equation of an ellipse. As the fitting of the morphology
of the open surface is observed to be very good, the estimate
of the curvature is expected to be reliable.
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FIG. 4. (a) Schematic diagram of a surface fitting with an ellipse,
(b) curvature of open surface at a constant strain for different aspect
ratios, and (c) radius of curvature K as a function of strain for dif-
ferent aspect ratios R at T = 0.25 and γ̇ = 10−5. (d) The same as in
panel (c) but now for γ̇ = 10−6 (e) K vs R for different temperatures
T at γ̇ = 10−5. Circles in panels (e) represent the critical aspect
ratio obtained from � vs R curves. (f) Corresponding comparisons
of critical aspect ratio obtained from curvature analysis and � vs R
curves as a function of T are shown for strain rates γ̇ = 5 × 10−5.

In Fig. 4(b), we show the curvature of the free boundary
at T = 0.20 and γ̇ = 5 × 10−6 for different aspect ratios. It
is clear that the radius of curvature (K) is decreasing up to
a certain value as the aspect ratio R is increased. The radius
of curvature then starts to saturate at R � 2.0, which is close
to the critical aspect ratio Rc at T = 0.20 and γ̇ = 5 × 10−6.
This observation indicates that once R reaches Rc, the curva-
ture of the surface can no longer increase. Thus, the system
gets constrained to generate more surface area by increasing
the curvature via necking and it leads to cavity formation in
the bulk. Figures 4(c) and 4(d) show the evolution of curvature
as a function of strain, γ , for different aspect ratios R at a par-
ticular temperature T = 0.25 and strain rates γ̇ = 5 × 10−5

[Fig. 4(c)] and 10−6 [Fig. 4(d)]. The radius of curvature ini-
tially decreases monotonically and then reaches a plateau with
increasing strain for each aspect ratio. Beyond the critical
aspect ratio, the curvature saturates to the same value for all
aspect ratios. The aspect ratio at which this happens tends to
increase with decreasing strain as can be observed from the
data shown in Figs. 4(c) and 4(d). In Fig. 4(e), we show the
radius of curvature K at γ = 0.236 as a function of aspect
ratio R for different temperatures T and strain rate γ̇ = 10−5.
For all the studied cases, the radius of curvature starts to
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FIG. 5. Results in 3d: (a) The schematic presentation of the ge-
ometry of the uniaxial extensional simulation. The arrows represent
the pulling directions and the cross section shows the middle plane
where the cavity analyses are done. (b) The maximum strain, �, as a
function of the aspect ratio. (c) Snapshots of single cavity formation.
(d) Snapshots that show the formation of multiple cavities. (e) Varia-
tion of free surface profile for different aspect ratios R. (f) Variation
of the curvature of open surface as a function of strain for different R.
Inset: The change in K as a function of R for T = 0.25 and γ̇ = 10−6.
The red circle shows the critical aspect ratio, as obtained from the �

vs R curve.

saturate after values of R that are close to the critical aspect
ratio, Rc, at that T and γ̇ . In Fig. 4(f), we compare the value
of the Rc computed from curvature analysis with the one
computed earlier from the variation of � with R. The corre-
spondence is indeed very good (see the SM [50] for details).

Results in three dimensions. In three dimensions (3d), a
larger variety of different confined geometries than in 2d is
possible. Here, we consider a bar geometry in which the
length along the elongation axis is chosen as L0 with a
quadratic cross section of the bar of area H × H [cf. Fig. 5(a)].
Similarly to the 2d case, the aspect ratio is defined as R =
H/L0 and we investigate the behavior of the maximum strain
� as a function of R. In Fig. 5(b), we show � versus. R at
T = 0.20 and strain rate γ̇ = 1 × 10−5. With increasing R, �

reaches a peak at a critical aspect ratio, Rc, and then decreases
quite sharply with further increase in aspect ratio. Note the
undulation in � versus R curve after the first peak. This seems

to be related to stepwise increase in number of cavities around
that particular aspect ratio (see the SM [50] for a detailed
discussion). The results are very similar to the ones obtained
for the 2d systems. While for R < Rc, necking is observed, for
R > Rc, cavities form. Again, for large aspect ratios, multiple
cavities are seen, followed by a subsequent merger before the
final failure. Thus, the existence of a critical aspect ratio above
which cavitation dominates the failure mechanisms under uni-
axial elongation tests seems to be very generic and does not
depend on the dimensionality.

Next, we do a similar curvature analysis of the open sur-
faces as in the 2d case to see whether similar mechanisms hold
also in 3d. Figures 5(c) and 5(d) display snapshots of cavity
formation at different strains for the aspect ratios R = 1.6
and R = 2.4, respectively. These snapshots show the middle
plane between the two walls where, due to the symmetry,
the first nucleation of a cavity is expected. In Fig. 5(c), i.e.,
for R = 1.6 just after the critical aspect ratio, a single cavity
forms, whereas for R = 2.4 multiple cavities are expected; cf.
Fig. 5(d). As there are four equivalent open surfaces, multiple
cavities also appear in a symmetrical manner. Therefore, one
obtains first a single cavity and then four cavities with increas-
ing aspect ratios in accordance with the quadratic cross section
of the bar. This suggests that one can tune the cavity formation
and their patterns by choosing an appropriate aspect ratio in
combination with the cross-sectional geometry of the sample,
indicating that the failure mechanism in a 3d nanosized sam-
ple can be tuned, too. The systematic variation of geometrical
shapes will be an interesting issue for forthcoming studies.

Figures 5(e) and 5(f) show the results of our curvature
analysis. For this, we have taken a cross-sectional cut along
the pulling axis and computed the radius of curvature for
varying aspect ratio and strain. As the sample has symmetry
perpendicular to the pulling axis, a cross-sectional cut along
the pulling axis will capture the variation of the curvature of
the open surface without any ambiguity. In Fig. 5(e), the shape
of the open surface is shown at a fixed strain (γ = 0.5163) for
different aspect ratios. One clearly sees that with increasing
R, the shape of the open surface becomes independent of R.
In Fig. 5(f), the radius of curvature, K is shown as a function
of strain for different R. In the inset of Fig. 5(f), the radius
of curvature, K, at large strain, is plotted as a function of
R. The red circle shows the critical aspect ratio Rc obtained
from the � versus R plots. The value of Rc is very close to the
aspect ratio at which the large strain radius of curvature also
saturates as a function of R. These analyses indicate that for
the bar geometry the failure mechanisms at the nanoscale is
very similar to that for the 2d system.

Summary and conclusions. We have performed uniaxial
extensile deformation simulations of confined two- and three-
dimensional model glasses at different temperatures, T , strain
rates, γ̇ , and aspect ratios of the system’s geometry, R. For
sufficiently low values of R, the systems fail via necking.
For R > Rc, however, failure is associated with the occur-
rence of one or more cavities. Cavities form because there is
a maximum strain-rate-dependent radius of curvature of the
neck, Kmax. The formation of cavities provides an effective
minimization of a nonequilibrium free energy of the system
in the presence of a finite strain rate. The change in the
failure mechanism around a critical aspect ratio Rc resembles
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the ductile-to-brittle transition in bulk systems, with cavities
leading to a brittle-like response of the confined glass systems.
Thereby, we have revealed an interesting mechanism of failure
in small confined systems under mechanical load.
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