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Zero-point excitation of a circularly moving detector in an atomic condensate
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We study a circularly moving impurity in an atomic condensate for the realization of superradiance phenomena
in tabletop experiments. The impurity is coupled to the density fluctuations of the condensate and, in a quantum
field theory language, it serves as an analog of a detector for the quantum phonon field. For sufficiently large
rotation speeds, the zero-point fluctuations of the phonon field induce a sizable excitation rate of the detector
even when the condensate is initially at rest in its ground state. For spatially confined condensates and harmonic
detectors, such a superradiant emission of sound waves provides a dynamical instability mechanism, leading
to a phonon lasing concept. Following an analogy with the theory of rotating black holes, our results suggest
a promising avenue to quantum simulate basic interaction processes involving fast-moving detectors in curved
space-times.
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I. INTRODUCTION

Since Unruh’s pioneering proposal in 1981 [1], the last
decades of research activities have witnessed a surge of a
field where concepts of general relativity and quantum field
theories in curved backgrounds are investigated in the so-
called analog models of gravity [2]. As a most celebrated
example, acoustic analogs of black holes have been studied
in trans-sonically flowing atomic Bose-Einstein condensates:
The acoustic black-hole horizon corresponds to the interface
between regions of, respectively, sub- and supersonic flows,
and was anticipated to emit a thermal radiation of phonons
via Hawking processes [3]. The first experimental observa-
tions of such phenomena [4] were instrumental in triggering
the ongoing explosion of the field, with a revived interest
in using analog models to investigate a variety of different
effects of quantum field theories in curved space-times, from
the dynamical Casimir effect [5] to acceleration radiation [6]
to vacuum friction and Casimir forces [7,8].

The subject of the present Rapid Communication is the
phenomenon of rotational superradiance [9,10], namely, the
amplification of classical waves reflected by a fast rotating
body. In the simplest formulation, superradiance processes
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are efficient whenever the linear velocity of the object (or
parts of it) exceeds the phase velocity of the waves, so the
wave frequency seen in the comoving frame turns negative.
Such negative-energy modes then provide the energy that is
required to amplify positive-energy waves via superradiant
effects. In cylindrical geometries, a mode of frequency ω and
azimuthal quantum number n can be superradiantly amplified
when the angular velocity � of the rotating body satisfies
� > ω/n.

Being a consequence of basic kinematical arguments, su-
perradiance is a ubiquitous phenomenon in physics. Its first
incarnation was the discovery of amplification of acoustic
waves hinging upon a supersonically moving boundary [11]
or the amplification of cylindrical electromagnetic waves in-
teracting with a rotating material [12]. In an astrophysical
rotating black hole, the superradiant amplification of waves
is a consequence of the spacelike character of the generator
of time translations inside the ergosphere [10,13] and is at
the root of the several instability phenomena of Kerr black
holes [14,15]. In the framework of analog models, theoretical
studies have investigated superradiant phenomena in rotating
classical and quantum systems [16], offering interpretations of
basic hydrodynamic phenomena [17]. Experimental evidence
of superradiant scattering of classical surface waves on water
was reported in Ref. [18]. Much less studied are the quan-
tum features when superradiant processes are triggered by
zero-point fluctuations and the even more intriguing quantum
friction effects that result from back-reaction of superradiance
on the rotational motion [19,20].

In this Rapid Communication, we investigate superradiant
phenomena that can occur in ultracold atomic systems. In
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FIG. 1. A two-level detector with internal frequency, ω0, rotates
with uniform angular velocity � at a distance R from its rotational
axis. The impurity couples to the density fluctuations, δρ(r), of a
weakly interacting Bose gas, which is trapped inside a cylindrical
cavity of radius a; the cavity is modeled via Dirichlet boundary
conditions on the density fluctuations, δρ(r)|r=a = 0.

contrast to the conventional case of rotating fluids considered
in superradiance, we study a configuration where the quan-
tum fluid is at rest but a neutral impurity moves (classically)
through the cold gas at sufficiently large speeds, as sketched
in Fig. 1. As has been originally discussed in Refs. [6,8],
the neutral impurity plays the role of a two-level detector in
a canonical quantum field theory setup, and it allows us to
explore superradiant phenomena beyond the usual amplifi-
cation of incident waves [10,16]. Starting from the quantum
vacuum state of the phonon field, we predict the spontaneous
excitation of the internal degrees of freedom of the impurity in
response to zero-point quantum fluctuations in the condensate,
which in turn get amplified into real phonons. In a trapped
geometry, the finite size of the fluid provides a perfectly
reflecting cavity for the phonon modes; in this way, the self-
stimulation of the detector leads to a dynamical instability for
sound waves, which is rooted in superradiance. In contrast to
the usual laser operation which requires an external pumping
of the gain medium, the phonon-lasing mechanism envisioned
here is driven by the mechanical motion of a detector that is
initially prepared in its ground state.

II. A CIRCULARLY MOVING IMPURITY
IN A UNIFORM CONDENSATE

Consider a two-level phonon detector with internal fre-
quency ω0 in circular motion with constant angular velocity
� at distance R from its rotation axis (see Fig. 1 for an
illustration). As originally proposed in Refs. [6,8], the detector
is assumed to be coupled to density fluctuations of a weakly
interacting three-dimensional Bose gas. Such a detector can be
realized by means of an atomic quantum dot [21,22], namely,
an impurity atom immersed in the condensate and collision-
ally coupled to the Bose gas via two channels. The first term
is reminiscent of the interaction of a charged particle to an
external scalar potential and can be canceled via proper tuning
of the interaction constants (e.g., via Feshbach resonances). In
this case, only the second interaction term survives, and we

find the Hamiltonian

H = ω0

2
σz + g−σxδρ(r) + HB, (1)

where σx, σz are quantum operators (proportional to the Pauli
matrices) associated with the two-level detector, while δρ(r)
are the density fluctuations of the BEC which couple to the
detector via the coupling constant g−. It immediately recog-
nizable how this Hamiltonian closely resembles the dipole
coupling between a neutral polarizable object and the elec-
tromagnetic field. Extension of the theory to detectors with
a harmonic oscillator internal structure is straightforward and
will be discussed in the last section.

Under the standard weak interaction limit for Bose gases,
density fluctuations can be treated within Bogolyubov theory
[23]. The Bose gas Hamiltonian is, therefore, given by the
usual expression HB = ∫

dq ωq b†
qbq, where b†

q, bq are the
creation and annihilation operators of Bogolyubov quanta of
momentum q, whose dispersion relation is ωq. As is custom-
ary, we refer with m to the mass of the condensate’s particles,
with μ to the condensate’s chemical potential, with c to its
speed of sound, and with ξ to its healing length.

III. VACUUM EXCITATION RATE

Since the motion of the detector is noninertial, we can
expect a nonvanishing transition probability A↑ for the detec-
tor to jump from the ground to the excited state even for a
condensate initially in its ground state. This effect is due to the
zero-point quantum fluctuations in the phonon quantum vac-
uum and is associated with the emission of a phonon. Related
excitation mechanisms have been discussed for a detector
in uniform supersonic motion along a rectilinear trajectory
in standard electromagnetism, the so-called Ginzburg effect
[24], as well as in a BEC analog model of the latter [8].

While the emission from circularly moving detectors with
relativistic accelerations shares analogies with the Unruh ef-
fect [25], it is important to highlight a crucial difference. For
circular motion, the detector is not expected to emit radiation
thermally equilibrated at the Unruh temperature [26–30], con-
trary to its linearly accelerating counterpart: attempts to define
an effective temperature become problematic in the spatial
region r > cl/� (where cl is the speed of light), since incon-
sistencies related to causality prevent defining unambiguously
a concept of a rotating vacuum and to build excitations on top
of it [31].

The transition probability A↑ can be calculated making
use of second-order perturbation theory (see Ref. [32]). As
sketched in Fig. 1, the condensate is assumed to be radially
confined in a cylinder of radius a and to extend indefinitely
along z. The cylindrical confinement is modeled by imposing
Dirichlet boundary conditions, δρ(r)|r=a = 0, on the density
perturbation (see Refs. [31,32] for further details) and im-
plies quantization of the Bogolyubov cylindrical waves, with
spatial mode profiles proportional to Jn(ξnνr/a) einθ eikz: for
each value n of the angular momentum, the radial momenta
qnν ≡ ξnν/a are determined by the νth zero ξnν of the Bessel
function Jn(·). Given the infinite size of the BEC along z, the
linear momentum k can have arbitrary values.

A plot of the dimensionless ground-state excitation rate,

↑, as a function of the rescaled detector speed v̄ = �a/c, is
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FIG. 2. The dimensionless excitation rate, 
↑ = A↑ ω0/P(ω0, R)
[with P(ω0, R) = g2

−ρ0/(2mω0R5)], evaluated for ȳ = ξ/a = 0.4,
R̄ = R/a = 0.6, and ω0/� = 0.3, as function of the rescaled rota-
tion speed v̄ = (�a)/c of the detector. For these specific values of
parameters, the rate drops to zero for v̄ � 3.73. The first threshold
corresponds to setting n = 4 and ν = 1 in Eq. (3) and is indicated
by a dotted green line in the main panel. Each peak represents the
resonant contribution associated to the excitation of one eigenmode
of the cylindrical cavity. In the figure, we indicate some of the res-
onance channels that open upon increasing v̄, labeled by the pair of
quantum numbers (n, ν ). The inset shows that the minimal velocity
for the onset of spontaneous excitation of the ground state occurs
at n = 4 for ν = 1 (green dotted line), in agreement with the main
panel. Higher values of ν yield resonances falling outside the range
of v̄ plotted in the main panel [for instance, v̄(n=1,ν=2) � 17 and
v̄(n=2,ν=2) � 9.64].

reported in Fig. 2. For the Bogolyubov mode of azymuthal
and radial quantum numbers (n, ν), such excitation rate is
nonvanishing only for

n� > qnνc

√
1 +

(
qnνξ

2

)2

+ ω0, (2)

which provides a generalized superradiant condition on the
angular velocity to excite a phonon with a given angular
momentum n. This condition involves the frequency ω0 of
the detector and the cutoff frequency ωnν,k=0 of the branch
of Bogolyubov modes propagating along the axis of the cylin-
der in the nν radial-azymuthal mode; in our case, ωnν,k=0 =
qnνc[1 + (qnνξ/2)2]1/2.

A further trend in the strength of the emission is due to the
Bessel factor Jn(ξnνR/a) appearing in the mode profile that
suppresses the coupling of the detector to the high angular
momentum phonon modes. This Bessel factor and, in partic-
ular, its strong suppression at short radii R (for n > 0), puts
on rigorous grounds the usual qualitative reasoning based on
the local dispersion relation of the waves in the rotating frame
and on the necessity of a local supersonic motion [19].

In the geometry under consideration here, 
↑ displays
peaks whenever the condition Eq. (2) holds as an equality
for a given n, ν > 0 pair; this indicates the opening of a new
emission channel occurring at

v̄n,ν = ξnν

√
4 + (ξnνy)2

2|n − ω0/�| . (3)

The excitation rate can be then be rewritten as (see Ref. [32])


↑ ∝
∞∑

n=1

∞∑
ν=1

γnν (v̄)θ (n − ω0/�)θ (v̄ − v̄n,ν ), (4)

where the square-root divergence γnν (v̄) ∝ [v̄ − v̄n,ν]1/2, vis-
ible in Fig. 2, follows from the effective one-dimensional
density of states of each radial-azymuthal branch of Bo-
golyubov eigenmodes in the cylindrically shaped condensate.
Interestingly, the dependence of v̄n,ν on n is nonmonotonous
for a fixed value of ν as illustrated in the inset of Fig. 2: This
feature explains the nonmonotonous labeling of the peaks
visible in the main panel of Fig. 2.

Even though we have restricted our attention to the exci-
tation of the detector, it is useful to recall that this process
is always strictly associated with the emission of phonons
propagating away from the detector along the BEC axis ẑ
(which may be detected following, for instance, Ref. [4]).
In passing, we notice that stimulation of the process by an
external incident field would lead to a superfluid analog of
Zeldovich amplification of electromagnetic waves by a rotat-
ing dielectric [12].

As a final remark, it is worth highlighting that the emis-
sion processes studied in this Rapid Communication have a
spontaneous nature. They are thus very different from syn-
chrotron radiation emitted by circularly moving charges in
classical electrodynamics [33], in exactly the same way as
Ginzburg emission from superluminally moving polarizable
objects [24] is conceptually different from the Cherenkov
radiation emitted by moving charges or static dipoles [34].
Analogs of such Cherenkov and synchrotron processes might
occur if the tuning of the Feshbach resonance mentioned in
the paragraph before Eq. (1) was not perfect; nevertheless, the
statistical properties of the phonon radiation emitted would be
drastically different in this case and, more importantly, such
processes could not lead to the dynamical instabilities which
we discuss in the following, and which represent one of the
salient features of our study.

IV. DYNAMICAL INSTABILITIES

In the astrophysical context, rotational superradiance can
give rise to different kinds of dynamical instabilities de-
pending on the specific geometry, from black-hole bombs to
ergoregion instabilities [10]. Analog effects are also at play
in rotating superfluids [17]. In this final section, we explore
dynamical instability mechanisms induced by the circularly
moving detector considered in this Rapid Communication.

To favor self-stimulation of the superradiant process, it
is convenient to focus on a fully confined, pancake-shaped
condensate with discrete Bogolyubov modes. To avoid the
instability being disturbed by saturation of the two-level de-
tector, we must extend our model by assuming that the internal
structure of the detector is well approximated by a harmonic
oscillator coupled to the density fluctuations of the conden-
sate. To this purpose, one can consider a large number N of
two-level atoms whose average distance is smaller than the
magnitude of the inverse wave-vector undergoing the dynam-
ical instability: analogously to the Dicke model [35], all the
atoms can then be grouped into a large collective spin of
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size proportional to N , with the consequence that saturation
effects will start to become relevant only when an equally
large number of phonons is emitted. Technically, this corre-
sponds to approximate a large spin of size N with harmonic
oscillator creation and annihilation operators using a Holstein-
Primakoff transformation [35] and to introduce a cutoff on the
number of excitations in the detector proportional to N .

Restricting for simplicity our attention to the lowest exci-
tation mode along the ẑ direction, the total Hamiltonian in the
frame comoving with the rotating detector is then given by

H = ω0d†d +
∑
n,ν

ω̄nν b̄†
nν b̄nν + G

N x δρ(rD), (5)

where d, d† are the harmonic oscillator destruction and cre-
ation operators for the impurity and we have defined x =
(d + d†)/

√
2ω0. Furthermore, we have set ω̄nν = ωnν − n�

equal to the Bogolyubov mode frequency in the rotating frame
and we indicate with rD the radial position of the detec-
tor. In practical calculations, the sums will be restricted to
−n0 � n � n0 and 0 � ν � ν0. For convenience, a factor of
N ≡ (2n0 + 1)ν0 has been included to count the number of
cylindrical Bogolyubov modes to ensure a proper scaling
of the coupling in the multimode limit N � 1.

To identify dynamical instabilities, we consider the corre-
sponding equations of motion,

ḋ = −i

[(ω0

�

)
d +

n0∑
n=−n0

ν0∑
ν=1

gnν (b̄nν + b̄†
nν )

]
,

(6)
˙̄bnν = −i[ω̃nν b̄nν + gnν (d + d†)],

where we have introduced the dimensionless coupling be-
tween modes and impurities,

gnν ≡ ḡ

N
ξnν

v̄2

Jn(ξnνR̄)

Jn+1(ξnν )

(
�

2ω0(ω̃nν + n)

)1/2

, (7)

with ḡ = G
√

ρ0/m/c2, and ω̃nν = ω̄nν/�. Furthermore, in the
Heisenberg Eqs. (6), time has been rescaled by �−1.

The different kinds of dynamical instabilities that this
Hamiltonian can display are physically understood consider-
ing the simplified two-mode bosonic model Hamiltonian:

H = ω0a†a + ω̄b†b + g(a†b + a†b† + H.c.). (8)

The eigenvalues of the associated set of linear Heisenberg
equations of motion,

λ = ± i√
2

√
ω2

0 + ω̄2 −
√(

ω2
0 − ω̄2

)2 + 16g2ω0ω̄, (9)

allow for direct inspection for the conditions of stability. If
ω0 and ω̄ are both positive, the onset of the first type of
dynamical instability occurs for g >

√
ω0ω̄/2, therefore a tiny

value of g can induce unstable dynamics near ω̄ � 0. On the
other hand, exactly on the parametric resonance ω̄ + ω0 = 0,
imaginary values of λ can be found for any value of g. In the
two-dimensional many-mode problem defined by Eq. (5), this
latter condition is satisfied when Eq. (2) holds as an equality—
a circumstance made possible by the rotational Doppler shift
experienced by the Bogolyubov modes.

FIG. 3. Positive imaginary parts of the eigenvalues of Eq. (6)
as a function of v̄, evaluated for ȳ = 0.4, R̄ = 0.6, ω0/� = 0.3,
ḡ/N � 1.53; a numerical cutoff at n0 = 9 and ν0 = 1 has been
used (N = 19). The nonvanishing imaginary parts visible in the v̄

interval plotted in the figure correspond to the parametric resonances
ω̄n,ν + ω0 = 0 for, respectively, n = 4, 5, 6. The parametric reso-
nance for n = 3 triggers a small imaginary part of order 10−3 (not
visible in the figure) around v̄ � 3.82. The dynamical instabilities
corresponding to the other peaks of Fig. 2 fall at larger v̄ values.
Other types of instabilities arise when the conditions ω̄n,ν � 0 are
satisfied; the one occurring at n = 3 and ν = 1 is illustrated in the
inset.

This physics is illustrated in Fig. 3 where the imaginary
parts of the eigenvalues of the linear system Eqs. (6) for the
fully multimode problem are evaluated for the same param-
eters employed in the plot of Fig. 2. The resonant condition
underlying each instability window is specified in the caption.
Different strengths are found for instabilities of the two types.
For those of the second kind (akin to parametric instabilities),
a crucial contribution is due to the spatial profile of the mode
via the Jn(ξnνR̄) factor. Physically, the onset of instabilities
will be observable as an exponential growth of the amplitude
of some Bogolyubov mode at a rate set by the imaginary
part of the eigenvalue, in concomitance with an analogous
exponential growth of the internal oscillation amplitude of
the detector. Even though this instability mechanism would
be quickly saturated for a single two-level impurity after the
emission of the first phonon, it can lead to sizable excitations
if several impurities are used to mimic a harmonic oscillator,
as discussed at the beginning of this section.

As compared to the notoriously elusive nature of the
superradiance effect in the electromagnetic context, we an-
ticipate that the phonon instabilities discussed here can be
employed as a way to reinforce the signature of superradiance
by inspecting the quick exponential growth of the detector
excitation. Further insight into the underlying process can
be provided by the spectral selective and velocity-dependent
nature of the amplification mechanism (recall that the unstable
modes are those satisfying the resonance condition ω̄n,ν � 0).
Experimentally, information on the emitted phonons can in
fact be retrieved from the density profile of the BEC and its
noise properties. To give a concrete estimate on the timescales
required to observe the lasing instability, one can consider the
largest real positive eigenvalue λ∗ � 0.03 of Fig. 3, and eval-
uate the associated timescales in units of �−1 [cf. Eqs. (6)],
which yields t∗ � 1/(λ∗�) � 0.3s, if � � 100 Hz as in typi-
cal experiments for rotating BECs [36]. Since the lifetime of

042009-4



ZERO-POINT EXCITATION OF A CIRCULARLY MOVING … PHYSICAL REVIEW RESEARCH 2, 042009(R) (2020)

cold atoms is of the order of many seconds, we expect that
the lasing instability discussed in this Rapid Communication
should be within reach of state-of-the-art experiments in the
field.

In addition to their intrinsic interest as a novel manifes-
tation of superradiance, dynamical instabilities triggered by
moving detectors are also of great interest as a concept of
phonon lasing, where the amplification mechanism is pro-
vided by the mechanical motion of a detector and not by some
external pumping. Even though self-supported oscillations are
a common feature in classical acoustics as well as in laser
operations, nontrivial mechanisms for mechanical oscillation
accompanied by the onset of quantum fluctuations are cur-
rently of high interest in a broad range of platforms, e.g.,
driven-dissipative coupled microcavities [37], ion-traps [38],
nanomagnets [39], and optically driven quantum dots [40].

V. PERSPECTIVES

To summarize, we have shown in this Rapid Commu-
nication that a circularly moving impurity immersed in an
atomic condensate at rest constitutes a promising avenue to
investigate quantum features of rotational superradiance in a
novel context. If the interaction of the impurity is tuned in a
way to serve as a phonon detector, signatures of superradiance
include the excitation of the impurity by zero-point quantum
fluctuations of the phonon field in the condensate, and the
onset of dynamical instabilities for the Bogolyubov modes
which can serve as a new avenue for phonon lasing.

Beyond the specific configurations investigated in this
Rapid Communication, our results suggest that moving

impurities in condensates can be employed as a platform to
investigate basic interaction processes between fields in intri-
cate curved space-time geometries, with emitters that move
at speeds comparable to the wave velocity. Different cosmo-
logical scenarios and new aspects of trans-Planckian physics
with cold atoms can be addressed by tuning the microscopic
properties of the BEC, e.g., introducing dipolar interactions
as suggested in Ref. [41]. Another intriguing future direction
consists of analyzing the impact of superradiant effects on
higher order quantum vacuum processes such as the Casimir-
Polder forces between a pair of circularly rotating impurities.
Finally, an exciting challenge is to extend our proposal to
photonic quantum simulators, in particular to identify a viable
implementation of the moving detector concept in quantum
fluids of light [42].
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