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Persistence homology of entangled rings
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Topological constraints (TCs) between polymers determine the behavior of complex fluids such as creams,
oils, and plastics. Most of the polymer solutions used in everyday life employ linear chains; their behavior is
accurately captured by the reptation and tube theories which connect microscopic TCs to macroscopic viscoelas-
ticity. On the other hand, polymers with nontrivial topology, such as rings, hold great promise for new technology
but pose a challenging problem as they do not obey standard theories; additionally, topological invariance, i.e.,
the fact that rings must remain unknotted and unlinked if prepared so, precludes any serious analytical treatment.
Here we propose an unambiguous, parameter-free algorithm to characterize TCs in polymeric solutions and show
its power in characterizing TCs of entangled rings. We analyze large-scale molecular dynamics simulations via
persistent homology, a key mathematical tool to extract robust topological information from large datasets. This
method allows us to identify ring-specific TCs which we call “homological threadings” (H-threadings) and to
connect them to polymer behavior. It also allows us to identify, in a physically appealing and unambiguous way,
scale-dependent loops which have eluded precise quantification so far. We discover that while threaded neighbors
slowly grow with ring length, the ensuing TCs are extensive also in the asymptotic limit. Our proposed method
is not restricted to ring polymers and can find broader applications for the study of TCs in generic polymeric
materials.
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I. INTRODUCTION

Ring polymers are the simplest class of topologically non-
trivial polymers that manifestly depart from the predictions
of theoretical cornerstones such as the reptation and tube
models [1]. Over the last three decades there have been several
theoretical and experimental attempts at understanding the
statics and dynamics of rings [2–19] and yet their behavior in
entangled solutions is still poorly understood. Individual ring
polymers in the melt or entangled solutions assume compact
non-Gaussian conformations, which are distinct from the ones
assumed by linear polymers. Understanding the topological
origin of these conformations and their consequence on the
ring entanglements and ensuing dynamics of the bulk is cru-
cial, not only from a fundamental perspective but also for
practical applications such as the rheology of ring polymer
melts [8], the phase behavior of blends [20–23], and even
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the dynamical organization of chromosomes in the cell nu-
cleus [24].

Due to their unconventional conformations in equilibrium,
long nonconcatenated rings in the melt experience topo-
logical constraints (TCs) that are markedly different from
ordinary entanglements between linear chains. Early models
for ring polymers pictured them in crumpled, double-folded
lattice animal conformations [4,7,25,26], which imply self-
similar fractal conformations and dynamics, very different
from the reptation of entangled linear polymers. More re-
cent models relaxed the assumption of strict double-folded
states [12,27,28] and studied the appearance of transient open-
ing of the double-folded structure thereby forming loops [27].
These local openings can themselves accommodate double-
folded contour of the same or other neighboring rings; these
“threadings” do not violate the topological invariance of
the system and have been found to be abundant in entan-
gled solutions of rings [15,29,30]. Threading of rings is an
architecture-specific TC that is not present in systems of linear
chains and gives rise to unique dynamical states; for instance,
interchain threadings can slow down rings in the bulk [5,8,30],
yield a heterogeneous, glasslike dynamics [31–33], and cause
an anomalous response to extensional flow [17,34], while in-
trachain threadings (self-threading) can dramatically increase
the relaxation time of rings in dilute conditions [16,35].
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While it is now clear that threading between rings plays a
crucial role in the dynamics of rings, its unambiguous identi-
fication remains far from trivial. The reason for this is that two
rings that are mutually threaded are topologically equivalent
to nonthreaded ones. At present, three methods have been pro-
posed to detect threading in solutions of rings: (i) using a local
deformation of their contours and a background mesh [29],
(ii) reducing their contours to primitive paths and using ge-
ometrical analysis on these paths [15], and (iii) calculation
of their minimal surface and analysis of intersections [36].
Albeit these methods give qualitatively similar results, they
are cumbersome to implement and require arbitrary choices
of parameters. Additionally, they are ring-specific and cannot
be mapped onto systems of linear chains, thus preventing a
direct comparison between TCs in solutions of ring and linear
polymers.

To overcome this problem, in this paper we propose an
unambiguous and parameter-free algorithm that employs per-
sistence homology (PH) [37–39]. We apply this algorithm
to datasets from molecular dynamics (MD) simulations of
entangled solutions of rings and show that it allows us to
define a new and broader class of TCs between ring polymers
which we call “homological threadings,” or H-threadings.
Unlike previous definitions of threadings, an H-threading is
defined by the homological property of the system, and its
identification is unique. Persistent homology provides us with
a powerful tool to extract useful information hidden in the big
data obtained from, e.g., large-scale MD simulations of poly-
mer melts [6,40] or x-ray tomography of elastic bands [18].
Additionally, it has several advantages over other methods: (i)
the ability to detect and quantify so-far elusive hierarchical
loops in the folding of rings, (ii) very efficient and stable
numerical (open-source) implementation, (iii) uniqueness of
the analysis result (no free parameters), and (iv) it can be
readily generalized to detect higher-dimensional structures in
data sets.

Importantly, while hierarchical loops are now central in
state-of-the-art models to describe the static and dynamic
properties of ring polymers in dense solutions [12,27], their
characterization remains very poor due to a lack of algorithms
that can detect them. Here we show that the PH analysis is per-
fectly positioned to overcome this current limitation. Finally,
while in this work we focus on entangled ring polymers, our
method may be employed more broadly to characterize TCs
in generic polymeric materials.

II. MATERIALS AND METHODS

A. Molecular dynamics simulations

Here we analyze MD simulations reported in previ-
ous works (the interested reader may find more details in
Refs. [31,32]). Briefly, the polymers are modelled as Kremer-
Grest chains made of beads of size σ . The beads are
connected along the backbone by finite-extension nonlinear-
elastic (FENE) bonds, and interactions between beads are
governed by the Weeks-Chandler-Andersen (WCA) potential
(purely repulsive Lennard-Jones). We also introduce polymer
stiffness by including a Kratky-Porod term acting on triplets
of neighboring beads Ubend = (kBT lp/σ )(1 + cos θ ), where θ

is the angle formed by consecutive bonds and lp = 5σ .

The motion of the beads is evolved via a Langevin equation
that couples the motion of the beads with an implicit sol-
vent. The damping constant is set to γ = τ−1

MD, where τMD =√
mσ 2/ε is the microscopic characteristic time. The thermal

noise satisfies the fluctuation dissipation theorem, and to in-
tegrate the equations of motion we employ a velocity-Verlet
algorithm with time step dt = 0.01τMD.

B. Persistence homology algorithm

Using configurations from MD simulations as an input
data, the PH analysis generates a diagram called the per-
sistent diagram (PD), from which we can extract hidden
topological features [37–39]. For our present purpose, let us
consider the mth ring (m ∈ [1, M]); the input data is {�r (m)

n } =
(�r (m)

1 , �r (m)
2 , . . . , �r (m)

N ), where �r (m)
n is the position of the nth

monomer in the mth ring. Associated to each monomer’s co-
ordinate, we assign a ball of radius r(α) = √

α, which should
not be confused with the real radius σ/2 of the monomers.
Initially we set α = 0, so the input data is regarded as a
collection of volumeless points. This method could be gen-
eralized to the copolymer setting a different initial radius for
different types of monomers. We then gradually inflate the
balls, and for each value of α we connect all the balls that
are even partially overlapping. This algorithm generates sets
of topological structures made of connected balls that evolve
with the balls’ radius r(α).

III. DISCUSSION

A. Persistent homology

Persistent homology is a method to compute the topologi-
cal features of a system at different length scales [37–39]. The
main concepts in this type of analysis are the persistent ho-
mology point, that defines the size at which a certain topology
of the system appears/vanishes (birth/death scale), and the
persistent diagram (PD), a collection of all the PH points of
fixed dimension (see Materials and Methods). Our analysis is
focused on entangled solutions of unknotted, unconcatenated
ring polymers; in order to capture the constraints related with
the ring topology, we consider the homology of dimension 1
that identifies the formation of “loops.” Importantly, here and
in what follows we refer to a “loop” as a one-dimensional
(1D) geometric object detected in the PH analysis, while
the term “ring” is reserved for the full polymer contour
length.

An example of this analysis is shown in Fig. 1. Start-
ing from a single snapshot from MD simulations of ring
polymers—made as sterically interacting connected beads—
we associate at each bead position a sphere of size r(α) =√

α. When α < αmin [� 0.3 in the example of Fig. 1(bi)],
there is no loop present because there are no overlapping
spheres. At α = αmin all the balls are connected with the
consecutive along the ring, and therefore the ring itself is
identified as a loop in the PD analysis [Fig. 1(bii)]. It should
be mentioned that the first loop to be identified by the PH
algorithm is not necessarily the full ring contour length and
may instead take up only a fraction of the whole ring, in agree-
ment with previous findings using “contact maps” [27,41]. For
increasing values of α, certain existing loops are annihilated
while others are formed [Figs. 1(c) and 1(d)], and eventually,
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FIG. 1. Persistent diagram of an unknotted and uncatenated polymer ring composed by N = 512 monomers. (a) Snapshot of entangled
solution of unknotted and nonconcatenated rings (N = 512, M = 40). As example, we select an arbitrary ring in this solution. (b) We consider
ball representations of ring conformation with various ball radius r(α) = √

α. (c) Persistent diagram of the ring. Birth and death scales for
five initial loops c(m)

k with k = 1–5 are (b(m)
k , d (m)

k ) = (0.296, 0.331), (0.298, 96.232), (0.305, 7.393), (0.355, 11.480), (0.363, 0.440). Note the
correspondence in numbering between (b) and (c)

at α � 96 for this particular example, the inner space of the
ring is filled in and no loop is detected.

If a loop of connected balls exists for a given α, a small in-
flation may lead to a change of topological structures, yielding
the disappearance of such a loop and the appearance of others.
The sequence of changes in these 1D topological features for
different α is intimately associated to the hierarchical, multi-
scale folding of the rings and is encoded in the PD generated
by the PH algorithm. Below, we explain how to translate the
PD into useful information about the folding and topological
interactions between rings in solution.

For a given (kth) loop on the mth ring, i.e., c(m)
k , its birth

and death scales are denoted as b(m)
k and d (m)

k and capture
the length scales at which the loop first appears and then
disappears, respectively. It should be highlighted that the birth
scale is also related to the maximum spatial distance between
two monomers that generate a certain loop; indeed, when

√
α

is larger than the distance of two monomers, these are then
“in contact” and a loop is created by the connected portion of
contour length between these two monomers. The minimum

length to achieve this is
√

b(m)
k . The death scale is instead

related with the geometric three-dimensional (3D) size of such

a loop. More precisely,
√

d (m)
k corresponds to the radius of the

maximum sphere that can be drawn inside the loop, c(m)
k .

The PD of the mth ring is made by the collection
of all the birth and death scales (b(m)

k , d (m)
k ) of all the

loops generated by ranging α ∈ [0,∞), i.e., PD(m) ≡
{(b(m)

k , d (m)
k ) ∈ R2|k = 1, 2, . . . }. This set of points is typi-

cally represented in the top half triangle of a two-dimensional
plane as in Fig. 1(c).

B. Persistence diagram of crumpled rings

For each point (b(m)
k , d (m)

k ) in the PD (see Materials and
Methods), we define its life-span l (c(m)

k ) ≡ dm
k − bm

k , which
measures the distance from the diagonal line to the point. The

points that lie far from the diagonal, i.e., with large life-span,
are the ones reflecting robust and persistent features of the
system, whereas the ones lying close to the diagonal are
often associated with noise [42]. Among other off-diagonal
points, we call the loop associated to the point with the largest
life-span “primal.” More specifically, for open noncrumpled
conformations, the primal loop may correspond to the ring
itself, and its birth scale is expected to be on the order of
� (σ/2)2 (σ is the size of a simulated bead). In general, the
primal mirrors the presence of a large opening of the double-
folded structure in the ring’s conformation and its life-span
quantifies the size of the opening.

For example, in Fig. 2 we show two typical conformations
and their respective PDs in red (ring 17) and blue (ring 18).
The primal loop of the red ring has a large death scale and its
life-span is much longer than that of the blue ring (notice the
logarithmic scale in the plot). This difference reflects the fact
that while ring 17 displays a large opening, ring 18 assumes
a more crumpled and double-folded conformation entailing a
much shorter primal life-span [see the snapshot in Fig. 2(a)].
Another notable feature of Fig. 2(a) is that ring 18 displays
more points away from the diagonal than ring 17 (compare,
e.g., the interval [0.5, 5] ∈ birth scale). This feature of the PD
reflects the crumpled nature of the conformation: the more
crumpled a ring is, the more balls of a certain radius form
bridges between two distal segments of the ring contour, in
turn generating moderately robust loops.

Focusing our attention on the primal loop, it is possible to
study the average linear size

√
dPL of the loop at different ring

lengths, where dPL is the death scale of the primal loop. In
Fig. 2(b), we show that this quantity follows a power-law de-
pendence similar to the radius of gyration. This result agrees
with existing theories [9,12–14,24,43] that predict an expo-
nent 1/2 � ν � 1/3, with ν = 1/2 for the short ring length,
an intermediate regime with ν = 0.4 [43], and a compact
long ring regime ν = 1/3 [44]. In the inset is reported the
probability distribution of

√
dPL for different ring sizes to

show that not only the average but also the peak value of the

033529-3



FABIO LANDUZZI et al. PHYSICAL REVIEW RESEARCH 2, 033529 (2020)

FIG. 2. Primal loop. (a) Comparison of PDs obtained from different ring conformations with N = 256, in this case, ring no. 17 (red)
and ring no. 18 (blue). The largest loop (highlighted) in the red ring has a PD point with life-span much larger than all the other loops. The
crumpled conformation of the blue ring has a primal loop whose life-span is much shorter than the red one. (b) Dependence of the primal loop
size (measured as the square root of its death scale

√
dPL) on ring length. The data for the ring lengths N = 256, 512, 1024, 1512, 2048 (blue

dots) are fitted with a power-law curve (green curve) with exponent ν = 0.40 ± 0.11. The inset shows the probability distribution for each ring
length; notice that the peak values also show an analogous power-law dependence with N .

distribution is shifted towards larger sizes. For comparison,
we show the probability distribution of the radius of gyration
Rg and its correlation with

√
dPL in Appendix A.

Having identified features of the PH analysis that charac-
terize the conformation of single rings, we now aim to employ
this tool to detect and quantify inter-ring interactions called
threadings [29], for which an unambiguous and unique (i.e.,
without arbitrary and free parameters) identification algorithm
is needed.

C. Topological interactions: Homological threading

Let us consider two unconcatenated and unlinked rings
in 3D space; it is natural to define the arrangement of the
two rings depicted in Fig. 3(a) as one in which the black
ring is “threading” the other by crossing twice the surface
spanned by the closed blue curve. Bending the blue ring into
a baseball seam-like shape [Fig. 3(b)], the black ring still
seems to pierce twice through the surface. In contrast, one
may argue that there is no threading in Fig. 3(c), where the
arrangements of the curves is the same but the spanned surface
is forming a gulf that is not pierced by the former curve.
Given the symmetry of the baseball seam curve, which side
is selected as a spanning surface is a subtle matter. Such
a subtlety would be even more enhanced for 3D crumpled
rings. Additionally, while the situations in Figs. 3(b) and 3(d)
appear different, they can be continuously mapped to the same
three-dimensional arrangement [as Fig. 3(d)]; furthermore,
the physical hindering of the black curve on the dynamics of
the blue may be similar. Finally, in both cases the obstacle
can be removed by a continuous deformation, for instance,
by sliding it to left direction, as threadings are not conserved
under isotopy. Note that Figs. 3(a)–3(d) are a typical example
of isotopic change, and there can be other examples with
similar ambiguity when we define threading in an intuitive
way.

Nevertheless, here we aim to propose a definition for which
all arrangements [Figs. 3(a)–3(e)] are identified as threadings,
and because here they are discovered through a persistence
homology analysis, we will dub them “homological thread-
ings” (H-threadings).

In order to characterize the topological interaction between
two rings, say i and j, we construct four PDs from the con-
figuration data of the two rings. Two of them are the PDs of
each ring, which we write PD(i) and PD( j). The third one is
the PD obtained from the union of the configurations of these
two rings PD(i ∪ j), and the last one is the union of PD(i) and
PD( j), which we denote as uPD(i, j) ≡ PD(i) ∪ PD( j). From
these, we create the following PDs as a set difference:

PD( j → i) ≡ PD(i) \ PD(i ∪ j) ,

nPD(i, j) ≡ PD(i ∪ j) \ uPD(i, j) ,

where PD( j → i) represents PD points which are associated
to a loop in ring i that is however lost in the PD in which
both configurations are included. Such a loop, identified as
a lost point of ring i, should be interpreted as a loop being
threaded by ring j. Indeed, if any segment of ring j is passing
through an area that was identified as an opening in ring i’s
conformation, then it must represent an obstacle for the ring
i in the sense described in Fig. 3. By symmetry, the same
applies to PD(i → j), with the interchange between i and
j. These relations constitute our definition of H-threading
events. At the same time, nPD(i, j) represents new points
created by considering both conformations and that are absent
in the union of the PDs obtained using isolated conformations;
these points represent new loops that are formed when balls of
a certain radius bridge segments belonging to different rings
and therefore may also be considered as obstacles, restricting
the conformational freedom of the individual rings i and j.

Our definition of H-threading respects the directionality of
this interaction: points in PD(i → j) identify arrangements
in which ring i is actively H-threading j, while points in
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FIG. 3. Homological threading. Schematic illustrations of homological threading (left): (a) Elongated black ring is passing twice through
a planar disk. (b) One side of the black rectangular ring is passing through the curved surface spanned over the baseball seam edge. (c)
Configurations of bar and the baseball seam edge are the same as those in (b), but now the curved surface is spanned in a different way. (d)
A side of the black ring is passing through a gulf formed by a double-folded ring. PD-based H-threading analysis (right): PDs of two rings
PD(i) (red), PD( j) (blue), and PD obtained from the union of two rings, i.e., twin configuration PD(i ∪ j) (green). Plot E shows the PDs of
two rings (i = 17 and j = 18) that have no H-threading between them; this is evident in the PD since all the red and blue points are overlapped
by green points, i.e., there are no lost points. In the lower part of the graph are shown the new and the lost PH points, but for what was said
before, no lost point and only a few new points at large scale are present (the two axis are exchanged). Snapshot at bottom right provides a
visible inspection of the spatial position of the two rings. Plot F instead shows the ring j = 43 that is H-threading into i = 17 as mirrored by
the presence of lost points, i.e., the red point in the top left (primal loop of ring i) is not overlapped by a green one (the snapshot confirm this
H-threading event). The red point in the lower side corresponds to this H-threading, and with them a cloud of new points is formed.

PD( j → i) find ones in which i is passively H-threaded by
j. To quantify these events, we can count the number n(A)

of rings through which a reference ring is threading (active
threading) and the number n(P) of rings threading into a
reference ring (passive threading); their statistics are shown
in Figs. 4(a) and 4(b). Due to symmetry, 〈n〉 = 〈n(A)〉 =
〈n(P)〉, and we find that it grows with ring length as 〈n〉 ∝
N1/6 [or 〈n〉 = ln N , see Fig. 4(c) and discussion below]. To
motivate such a scaling law, let us count the number of sur-
rounding rings which have contacts with the reference ring.
This quantity, i.e., the coordination number, is estimated as
∼R3M/V = ρR3/N ∼ Nα , with α = 3ν − 1, where R ∼ Nν

is the ring spatial size. With the use of effective exponents
ν = 2/5, valid in the intermediate crossover N regime, we find
α = 1/6. On the other hand, the compact scaling exponent
ν = 1/3 is expected for asymptotically long rings; then we
get α = 0, implying a logarithmic dependence on N . Smrek
and Grosberg observed a similar chain length dependence
for the number of rings penetrated by a single ring in their
minimal surface analysis [36]. The distinction between n(A)

and n(P) shows up in their distributions, with larger width
for n(P). This may reflect the fact that passive threadings are
more sensitive to the opening of loops, i.e., larger n(P) for
rings having a primal loop with longer life-span and vice
versa.

We finally stress that since 〈n〉 is the average number of
H-threadings per ring, our findings strongly suggest that our
systems of rings are percolating, in the sense that all rings are
connected to each other through H-threadings.

D. Betti number

So far, we have analyzed the H-threading statistics per ring
as a function of ring length. However, it is natural to explore
the statistics of H-threadings as a function of the loop size into

which the H-threading takes place. To this end, we define the
Betti number

β (m)(α; N ) ≡
∫ ∞

α

dd
∫ α

0
db

∑
k

δ
(
b − b(m)

k

)
δ
(
d − d (m)

k

)

for a given configuration of the mth ring {�r (m)
n } with monomer

index n ∈ [1, N].
The Betti number β (m)(α; N ) counts the number of loops

in the mth ring if observed at the spatial resolution
√

α. In
Fig. 4(d), we compare the average Betti number per ring,

β(α; N ) = M−1
M∑

m=1

β (m)(α; N ) , (1)

with the quantity

β̃(α; N ) ≡ M−1
∫ ∞

α

dd
∫ α

0
db

∑
k

δ(b − b̃k )δ(d − d̃k ) , (2)

where (b̃k, d̃k ) are the birth and death scales of the loops
associated with all H-threading events, i.e.,

(b̃k, d̃k ) ∈
⋃
i �= j

{(bl , dl ) ∈ PD( j → i)}. (3)

Therefore, while Eq. (1) represents the total number of
loops per ring (averaged over rings) if observed at the spatial
resolution

√
α, Eq. (2) counts only loops which are associated

with an H-threading event.
Mathematically, the set of elements (b̃k, d̃k ) is no longer

strictly a PD because the right-hand side of Eq. (3) is now
an union rather than a disjoint union as in the traditional
definition of PD. For our analysis this distinction is practically
unimportant, as we numerically checked that the multiplicity
of PD points are unity for any ring.
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FIG. 4. Threading statistics. Probability distributions of active (a) n(A) and passive (b) n(P) threadings for various ring lengths N . In (c),
the average of these distributions. 〈n〉 = 〈n(A)〉 = 〈n(P)〉, are shown as a function of ring length. The data are fitted with 〈n〉 ∝ N1/6 (crossover
ν � 0.4) and 〈n〉 ∝ log N (compact ν = 1/3). Notice that these values are computed as number of H-threadings per single ring, meaning
that every one of our longest rings are H-threading more than half other rings in the box. (d) The Betti number is another measure to obtain
information on TCs. In the main plot we show the Betti number for isolated rings (solid curves) β(α; N ) as calculated from the PD of ring
conformations for various ring lengths N and we compare it with the quantity β̃(α; N ) calculated from Eq. (2) (dashed lines, see text for
details). The inset shows a log-linear plot of the same curves rescaled by the factor (N/N0)κ . After the peak, all the data are well described by

the fit β(α; N ) = ( N
N0

)
κ

exp (−
√

α

α0
) (black dashed line) with κ = 1.2 ± 0.1, N0 = 12 ± 3, and α0 = 1.4 ± 0.2. The collapse of these curves

suggests that (H-threaded) loops display a superlinear dependence on N and an exponential decay with α. Also shown is a power-law function
f (α) ∼ √

α
−3(gray dotted curve); see a discussion in Appendix B for the loop size statistics.

By comparing these two quantities [see Fig. 4(d), solid and
dashed lines, respectively] one can notice the following: (i)
The number of threaded loops approaches the total number of
loops from below, and these two quantities converge at large
enough α. (ii) The scaling function f (α) ∼ e−√

α/α0 well cap-
tures the scale dependence of the Betti number except within
an uninteresting small α ∼ monomer scale. There is a small
deviation from the exponential behavior at

√
α � 7. This may

be a signal to a self-similar loop statistics as conjectured in
the loopy-globule model [12] (see also Appendix). (iii) The
Betti number follows a superlinear scaling with ring length
β(α; N ) = Nκ f (α) with exponent κ � 1.2 ± 0.1, indicating
that the number of (threaded) loops grows at least extensively
with the rings’ contour length [see Fig. 4(d), inset].

We note that this finding is compelling evidence for
the argument that even if the number of neighboring rings
H-threaded at any one time is bounded to plateau in the
asymptotic limit [Fig. 4(c)] the number of H-threaded loops
(and hence of the induced TCs) increases at least linearly with
the rings’ contour length.

IV. CONCLUSIONS AND PERSPECTIVES

The notion of “loop” is often invoked as a structural motif
in solutions of ring polymers [10,12,28], but its precise defi-
nition is far from evident. We have proposed an operational
definition of “loop” and associated topological constraints,
here dubbed H-threadings, based on a persistent homology
(PH) algorithm, which allows us to unambiguously quantify
the statistics of loops in an entangled solution of nonconcate-
nated rings. We have discovered that our PH analysis naturally
yields (i) a sublinear scaling

√
dPL ∼ N0.4 of the primal loop’s

death scale, reflecting the known scaling statistics of rings’
size Rg ∼ N2/5 in the crossover regime [43] (Fig. 2); (ii) a slow

increase of H-threaded neighbors [Fig. 4(c)]; and (iii) a super-
linear scaling of the Betti number—β(α; N ) = Nκ f (α) with
κ � 1.12—which quantifies the number of loops at length
scale

√
α [Fig. 4(d), see also Appendix B].

It is important to stress that quantifying the statistics of
loops in folded rings is not trivial [7,27,28]; recent theories
rely on the notion that loops are formed on multiple scales
in crumpled rings [12] but lack a precise way to quantify
their abundance and length-scale dependence. Here we pro-
vide both via a physically appealing and unambiguous method
[Fig. 4(d)].

The key point of the present work is that the number of
rings that are H-threaded by any one ring increases slowly
(as N1/6 in the crossover regime and as log N in the asymp-
totic limit) with contour length [Fig. 4(c)]. This is likely
because the number of neighbors is itself conjectured to
saturate around the so-called Kavassalis-Noolandi number,
i.e., 10–20 [7,12–14]. Indeed, we note that 〈n〉 follows a
similar molecular weight dependence to that of the effective
“coordination number” that has been studied in numerical
simulations [7] and plays an important role in phenomenolog-
ical mean-field theories [13,14,19,23]. On the other hand, by
analyzing the behavior of the Betti number we discovered that
the number of (H-threaded) loops increases at least linearly
with the rings’ length, in turn implying an extensive growth of
threading TCs also in the asymptotic limit [Fig. 4(d), inset].
We argue that this observation is related to the fact that crum-
pled ring polymers, unlike the ordinary compact globules,
display a very “rough” surface whereby an extensive number
of the segments are exposed and prone to be in contact with
the neighboring rings [9].

In closing, we list some perspectives for the proposed
method. The most natural is to investigate the relation be-
tween the present results and the rheological properties of
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FIG. 5. Ring size. (a) Distribution of the radius of gyration (Rg) for various ring lengths N (red: N = 256, yellow: N = 512, green:
N = 1024, purple: N = 1512, and blue: N = 2048). (b) The average ring size scale with the same power law 〈Rg〉 ∼ N0.4 as in the case of the
primal loop size (see Fig. 2). (c) Primal loop size of each ring is plotted against the radius of gyration (same color code as a). The plot shows
that while these two quantities are correlated on average, they represent distinct aspects of the ring shape.

the system. One way to proceed in this direction is to trace
the time evolution of PDs. For instance, the time evolution
of lost and new points in PDs would allow us to analyze the
temporal persistence of TCs between pairs of rings and relate
it to the size of the involved H-threadings and loops. Second,
our definitions of loop and H-threading can be applied to
linear polymer systems too. It would be interesting to analyze
entangled linear polymer solutions and see how the results
compare to the present ones for ring polymers. In fact, the

portability of our method to systems of polymers with other
topologies is an advantage of our approach over others that
are only tailored for ring polymers. Third, this method can
be readily generalized to solutions of copolymers by setting a
different initial radius for different types of monomers.

Finally, we would like to emphasize that the proposed
method of analysis relies on the construction of PDs, such as
PD( j → i) and nPD(i, j) from a pair of original PDs. This is
not a standard procedure in PH analysis of datasets and it is

FIG. 6. Loop size distribution ñd (r) at different ring lengths (red: N = 256, yellow: N = 512, green: N = 1024, purple: N = 1512, and
blue: N = 2048). Using the square root of the death scale as a measure of the size of a single loop, we observe that the probability to form a

loop of size
√

d follows the well-known gamma distribution with a shift p(
√

d ) = 
[(
√

d
−3 − 0.54)/0.46, 1.81, 1.68], where 0.5 is half the

average distance between single monomers. The fit captures the peak shape and the subsequent exponential decay for all the ring sizes. In
the tails, the fit seems to correctly describe the short ring behavior while the longer rings experience a deviation that tend to the power-law

behavior ∼r−4. The cyan and purple lines represent a power-law fit with exponents
√

d
−4

and
√

d
−3

, respectively.
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one of the key original contributions of this work. We expect
that this idea has a significant potential in the broader appli-
cation of persistent homology analysis, not only in polymer
systems but also in other problems, e.g., to study the glass
transition [39].
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APPENDIX A: COMPARISON OF PRIMAL LOOP SIZE
AND RADIUS OF GYRATION

In Fig. 5 we show the probability distribution of the gy-
ration radius Rg for various ring lengths. The overall trends,
including the shape of distribution and its chain length depen-
dence, are similar to those for the primal loop size [Fig. 2(b)].
This does not mean, however, the a large ring always has a
large primal loop, as shown in the correlation plot in Fig. 5(c).

APPENDIX B: LOOP SIZE DISTRIBUTION

In the main text we have analyzed the loop size distribution
by means of the Betti number [Fig. 4(d)],

nβ (r) ≡ β(α = r2), (B1)

and suggested that the large-scale part may be described by
a power-law decay nβ (r) ∼ r−3. Another way to quantify the

loop size distribution is to count the number of loops based
on their death scale r = √

d . This is because when loops
with 3D size r are filled up by the balls of size

√
d they

disappear (or die). This quantity can be readily computed from
the persistence diagrams as

ñd (r) ≡
M∑

m=1

∑
k

δ
(
r −

√
d (m)

k

)
. (B2)

As shown in Fig. 6, while the short-scale part of ñd (r) is
well-fitted by a 
 distribution—which indicates the random
distribution of the loop size—at longer scales the apparent
deviation from the exponential decay shows up, and the tail
seems to be better fitted by a power law with exponent ∼−4.
This leads to a cumulative distribution

nd (r) ≡
∫ Rg

r
ñd (r)dr ∼ r−3 . (B3)

Therefore although more statistics and larger systems are nec-
essary, our tentative conclusion is that both quantities nβ (r)
and nd (r) point to a self-similar loop size distribution conjec-
tured in a loopy-globule model [12], i.e., decaying with the 3D
size of the loop as r−3. This should not be confused with the
better-known decay of the number of loops as a function of the
1D separation as ∼l−γ , with γ � 1.1 for ring polymers [9].
We again emphasize that although the term “loop” is often
invoked in systems of ring polymers as a crucial statistical
structural element, its precise definition is far from trivial (and
is hence usually not made). Through PD analysis, we have
here proposed two definitions for the loop size distribution.
To clarify which one is better suited for a particular purpose
requires further investigation.
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