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Structured heterosymmetric quantum droplets
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We predict that the Lee-Huang-Yang effect makes it possible to create stable quantum droplets (QDs) in binary
Bose-Einstein condensates with a heterosymmetric or heteromultipole structure, i.e., different vorticities or
multipolarities in their components. The QDs feature flat-top shapes when either chemical potential, μ1,2, of the
droplet approaches an edge of a triangular existence domain in the (μ1, μ2 ) plane. QDs with different vorticities
of their components are stable against azimuthal perturbations, provided that the norm of one component is
large. We also present multipole states in which the interaction with a strong fundamental component balances
the repulsion between poles with opposite signs in the other component, leading to the formation of stable
bound states. Extended stability domains are obtained for dipole QDs; tripole ones exist but are unstable, while
quadrupoles are stable in a narrow region. The results uncover the existence of much richer families of stable
binary QDs in comparison to states with identical components.
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I. INTRODUCTION

Binary Bose-Einstein condensates (BECs) offer a unique
possibility, facilitated by the use of the Feshbach-resonance
technique [1–3], to equilibrate intracomponent repulsion and
intercomponent attraction. It was predicted [4,5] that the bal-
ance of the weak residual attractive mean-field nonlinearity
and additional self-repulsion, induced by the Lee-Huang-
Yang (LHY) effect [6], i.e., a correction to the mean-field
dynamics produced by Bogoliubov fluctuations, makes it pos-
sible to build self-trapped three- and two-dimensional (3D and
2D) states, called quantum droplets (QDs), as they are filled
by a nearly incompressible quantum liquid. A unique asset
of QDs is their stability against the collapse, that destabilizes
2D and 3D solitons of the mean-field type in diverse physical
media [7]. The prediction was followed by experimental cre-
ation of QDs, with both nearly 2D (oblate) [8,9] and isotropic
3D [10,11] shapes, in mixtures of two different atomic states
in 39K and in an attractive mixture of 41K and 87Rb atoms
[12]. Still earlier, it was shown that a similar mechanism
stabilizes QDs in a single-component gas of dipolar atoms
with long-range attraction between them [13–19]. QDs have
been also predicted in Bose-Fermi mixtures [20,21], as well
as in the form of supersolids [22–24].

The LHY effect strongly depends on the density of states
of the Bogoliubov modes, which makes it essentially different
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in different spatial dimensions [5]. As a result, the correspond-
ing nonlinearity in the modified Gross-Pitaevskii equations
(GPEs) is quartic self-repulsion in 3D [4], while in 2D it
amounts to a cubic term multiplied by a logarithmic factor
[5] (in the one-dimensional (1D) limit, it is represented by a
quadratic self-attraction term [5]). The logarithmic multiplier
implies switching of the 2D nonlinearity from self-attraction
to repulsion with the increase of the condensate’s density,
which makes it possible to create stable states. In addition
to the ground-state QDs, interest was drawn to QD vortices.
While they are unstable in the dipolar BEC [18], stability areas
were found for 3D QDs with vorticities m = 1 and m = 2
[25]. The LHY-modified GPE in 2D produces stable QDs, at
least, up to m = 5 [26–28].

To date, studies of QDs with an intrinsic topological struc-
ture were focused on binary states with equal vorticities, m1 =
m2 (states with m1 = −m2 are possible too, but they feature
a strongly reduced stability area [27]). Identical components
were also assumed in the recently introduced ring-shaped
droplet clusters, which may be quasistable states too [29,30].
Admitting heterosymmetric states, with m1 �= m2 or different
symmetries in the components, may essentially expand the
variety of modes existing in the system; cf. 1D states with
unequal components [31]. In the experiment, different vortic-
ities can be imprinted onto different components of the binary
condensate by laser beams which carry the respective vortici-
ties, coupled to different atomic states which represent the two
components [32–38]. In nonlinear optics, a similar method
made it possible to create two-component vortex solitons with
m1 �= m2 in photorefractive media [39].

Another possibility to create stable states with unequal
vorticities in the two components is to use a trapping potential
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in cubic nonlinear media [40]. It is relevant, too, to mention
states composed of more than two components with different
vorticities [41].

Also predicted [42] and observed in photorefractive me-
dia [43,44] were binary heterosymmetric solitons with one
fundamental component and another one carrying a dipolar
structure, as well as “propellers” with a rotating dipolar struc-
ture [45]. Similar to what is mentioned above for binary states
with different vorticities, such complexes can be created in
BEC by means of a pair of laser beams coupling to different
atomic states, one beam being structureless, and the other one
carrying a dipole or quadrupole transverse profile.

In this work we aim to introduce and explore heterosym-
metric QDs with different vorticities or different multipolar-
ities (fundamental/dipole or fundamental/quadrupole) in the
two components. We identify stability domains of such com-
plexes in the plane (μ1, μ2) of chemical potentials of the
components. Quite naturally, the domain shrinks with the
increase of the vorticity or multipole’s order.

The model, based on coupled two-dimensional GPEs with
the LHY corrections, is introduced in Sec. II. Results demon-
strating the existence and stability of the heterosymmetric
QDs, obtained by means of numerical and analytical methods,
are summarized in Sec. III. The paper is concluded by Sec IV.

II. MODEL

As mentioned above, in two dimensions the evolution of
the two-component wave function ψ1,2(x, y, t ) of a binary
BEC is governed by coupled GPEs [5,26] with the cubic terms
multiplied by logarithmic factors that represent the LHY cor-
rections:

i
∂ψ1,2

∂t
= −1

2

(
∂2

∂x2
+ ∂2

∂y2

)
ψ1,2 + (|ψ1,2|2 − |ψ2,1|2)ψ1,2

+ α(|ψ1|2 + |ψ2|2)ψ1,2 ln(|ψ1|2 + |ψ2|2). (1)

Here the wave functions and coordinates (x, y) are mea-
sured in units of n1/2

0 and (n0|as|/a⊥)−1/2, respectively, where
n0 is the equilibrium density of the 2D QD [5], as and a⊥
being the scattering length of atomic collisions and the trans-
verse confinement scale. Here the strength of the difference
nonlinearity, (|ψ1,2|2 − |ψ2,1|2)ψ1,2, is scaled to be 1, while
the relative strength α of the LHY terms is kept as a free pa-
rameter, which takes generic values ∼1, in the scaled notation.
In is found that increase of α leads to practically linear growth
of the size of the existence and stability domains; therefore we
hereafter fix α = 1.

The system conserves total U and partial norms U1,2

(which are proportional to numbers of atoms in the two com-
ponents):

U =
∫∫

dxdy(|ψ1|2 + |ψ2|2) ≡ U1 + U2, (2)

as well as linear and angular momenta and the Hamiltonian,

H = 1

2

∫∫
{|∂ψ1/∂x|2+|∂ψ1/∂y|2+|∂ψ2/∂x|2+|∂ψ2/∂y|2

+ (|ψ1|2 − |ψ2|2)
2 + α(|ψ1|2 + |ψ2|2)

× ln[(|ψ1|2 + |ψ2|2)/e]}dxdy, (3)

in which the last term represents the LHY-modified interac-
tion.

To produce stationary droplet solutions of Eq. (1), we used
the Newton iterative method. The evolution of QDs in time
was simulated by means of the split-step fast Fourier method
applied to Eq. (1).

III. RESULTS

First, we address axisymmetric QDs with different vortic-
ities m1,2 and chemical potentials μ1,2 < 0 of their compo-
nents. In polar coordinates (r, ϕ), the corresponding solutions
are sought for as

ψ1,2 = w1,2(r)eim1,2ϕ−iμ1,2t ,

where w1,2(r) are real radial profiles of the wave function.
The stability of the stationary solutions is analyzed below by
considering perturbed solutions,

ψ1,2 = (w1,2 + u1,2eδt+inϕ + v∗
1,2eδ∗t−inϕ )e−iμ1,2t+imϕ, (4)

with azimuthal index n and growth rate δ. The substitu-
tion of this in Eq. (1) and derivation of the corresponding
Bogoliubov–de Gennes equations, by linearization of the
GPEs for small perturbations ∼u1,2, v1,2, leads to an eigen-
value problem for the growth rate:

iδu1,2 = −(1/2)[u′′
1,2 + r−1u′

1,2 − (m1,2 + n)2r−2u1,2]

− μ1,2u1,2 + w2
1,2(2u1,2 + v1,2) − w2

2,1u1,2

− w1w2(u2,1 + v2,1) + αu1,2
(
w2

1 + w2
2

)
L

+ αw1,2(1 + L)[w1(u1 + v1) + w2(u2 + v2)],

iδv1,2 = +(1/2)[v′′
1,2 + r−1v′

1,2 − (m1,2 − n)2r−2v1,2]

+ μ1,2v1,2 − w2
1,2(2v1,2 + u1,2) + w2

2,1v1,2

+ w1w2(u2,1 + v2,1) − αv1,2
(
w2

1 + w2
2

)
L

− αw1,2(1 + L)[w1(u1 + v1) + w2(u2 + v2)], (5)

with L ≡ ln(w2
1 + w2

2 ).
Representative profiles of QDs with (m1, m2) = (2, 0) and

(2, 1) are shown in Figs. 1(a) and 1(b) (the complex of the
former type, with vorticity carried by a single component,
may be naturally called a half vortex [46] or semivortex [47]).
The increase of either |μ1| or |μ2| typically leads to growth of
amplitudes of both components, which feature broad shapes
(solid lines in the plots), due to the effect of the LHY-induced
logarithmic factor in the nonlinearity in Eq. (1). Even if one
component has zero vorticity, it develops a ring shape with
a pronounced minimum at the center. Decrease of |μ1,2| at
fixed μ2,1 leads to gradual vanishing of ψ2,1. However, the
limit case in which one component vanishes is not adequately
modeled by Eq. (1) [31].
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FIG. 1. Examples of axisymmetric QDs with vorticities
(m1, m2) = (2, 0) (a) and (2, 1) (b) in components with
μ1,2 = (−0.08, −0.02) (dashed lines, unstable states) and
μ1,2 = (−0.37, −0.20) (solid lines, stable states). The total
norm of QDs vs μ1 at fixed μ2 = −0.08, −0.1, −0.15, −0.2,
−0.25, −0.3, and −0.35, from the bottom to top, is shown for QDs
with (m1, m2) = (1, 0) and (m1, m2) = (2, 0) in (c),(d), respectively.
Blue solid lines are U (μ1) curves for the single-component states
with w1 �= 0, w2 = 0, and m1 = 1 (c) or m1 = 2 (d). Dots in (d)
represent QDs shown in (a).

In contrast to the case of QDs with identical components
[5,27], in our case total norm U is a nonmonotonous function
of the chemical potentials, as shown in Figs. 1(c) and 1(d)
for U (μ1) which pertains to (m1, m2) = (1, 0) and (2, 0). For
sufficiently large |μ2|, the total norm diverges when the QDs
get broad as |μ1| increases. In contrast, when |μ1| decreases,
U (μ1) merges into the blue line representing a scalar solution
of Eq. (1) with ψ1 �= 0, ψ2 ≡ 0. Stable branches [i.e., parts of
U (μ1) dependence corresponding to dynamically stable states
shown by black in Figs. 1(c) and 1(d)] start above a certain
critical norm. Similar results were obtained for other sets
of m1,2.

Existence domains for QDs and the results of the corre-
sponding linear-stability analysis, based on numerical solution
of Eq. (5), are summarized in Figs. 2(a)–2(c). Vortex QDs
exist in triangular regions in the (μ2, μ1) plane. Close to
the top and right edges of the triangles, ψ2 and ψ1 vanish,
respectively, for any combination of m1 and m2. At the left
edge of the triangular regions, both components acquire flat-
top shapes, with different amplitudes for μ1 �= μ2; hence one
expects to find a stability region close to this border of the
existence domain.

In addition to the numerical results, the left edge of the
triangular existence area, identical for all combinations of
m1,2, can be found in an exact analytical form. To this end,
in the flat-top regime, with derivatives of ψ1,2 neglected in
the lowest approximation, Eq. (1) is combined with the con-

FIG. 2. Stability and existence domains for QDs with different
vorticities in the two components (a)–(c) and (semi-) dipole QDs
(d) in the (μ2, μ1) plane. QDs exist in triangular regions bounded
by lines with black dots [the analytical form of the left edge is
given by Eq. (6)]. Color lines with dots in (a)–(c) are borders of
domains where the instability with azimuthal indices n for vortex
QDs disappear upon the increase of |μ1| (n = 1: red; n = 2: green;
n = 3: blue; n = 4: cyan; n = 5: magenta). QDs are fully stable in
domains marked by s, located close to the left edge of the triangle.
For dipoles, the stability domain s in (d) is bounded by the red line
with dots.

dition of the conservation of the formal Hamiltonian, h, in
the stationary version of Eq. (1) in the same flat-top limit
[h is given by the last two terms in the Hamiltonian density
corresponding to Eq. (3)]; cf. Ref. [25]. A straightforward cal-
culation, based on the latter principle, yields an exact result,
viz., a parametric form of the left edge of the triangle, which
completely coincides with its numerically found counterpart
displayed in Fig. 2:

μ1,2 = ±α1/2n[ln(1/e1/2n)]1/2 + αn ln n, (6)

where total density n ≡ w2
1 + w2

2 varies in the range of
nmin = e−(1/2+1/α) < n < nmax = e−1/2. Positions of the left
and bottom vertices of the triangle, at which the density of
either component vanishes, can be obtained from Eq. (6).
In particular, the coordinates of the left vertex are μ1 =
−(α/2)e−1/2−1/α and μ2(α = 1) ≈ −0.612 (the latter value
is a numerical solution of an algebraic equation). While in
Figs. 2(a) and 2(c) it is possible to produce numerical data
close to the triangle’s vertex at μ1,2 = 0, in Fig. 2(b) this is
challenging because the existence domain strongly shrinks.

By and large, vortex QDs are prone to azimuthal insta-
bilities with low azimuthal perturbation indices n, which,
however, may be suppressed by the LHY effect [26–28]. Lines
of different colors in Figs. 2(a)–2(c) indicate borders at which
the instabilities with different values of the perturbation az-
imuthal index n in Eq. (4) disappear (n = 0 does not produce
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FIG. 3. Instability growth rates, i.e., real parts of eigenvalues δ,
for several fixed values of the perturbation azimuthal index n, vs
μ1 for QDs with (m1, m2 ) = (1, 0) (a), (2, 0) (b), and (2, 1) (c). In
(a),(b) μ2 = −0.25, and in (c) μ2 = −0.26. Vertical dashed lines de-
note borders of the existence domain. The QDs are stable in regions
where δre = 0 for all values of n.

instability). Dependencies of the real part of the perturbation
growth rates, δre, on μ1 for fixed μ2 are presented in Fig. 3,
using the same color coding for n as in Fig. 2. These results
predict a possibility to observe different dynamical scenarios
by applying specific perturbation modes, corresponding to the
respective values of n, to unstable QDs. In addition to the
prediction of the exact border of the stability domain, the de-
pendencies δre(μ1) allow us to clearly identify the azimuthal
index of the fastest growing perturbation mode. A final con-
clusion is that QDs are stable in crescent-shaped domains s in
Fig. 2, where δre = 0 for all n.

We thus find that QDs with larger vorticities are vulner-
able to a broader set of azimuthal perturbations. While the
mode with (m1, m2) = (1, 0) is subject to instabilities with
1 � n � 3, its counterpart with (m1, m2) = (2, 1) is destabi-
lized by 1 � n � 5. The most destructive perturbation for the
QD modes shown here has n = 2. Nevertheless, for QDs of
all the types considered here a stability domain s is identified
in Figs. 2(a)–2(c), getting narrower for higher vorticities; see
Figs. 2(a) and 2(c). Note that the stability domains cover a
variety of QDs with all values of shares of the components’
norms, U1,2/U , as they extend from the left vertex (with
w2 → 0) to the bottom one (with w1 → 0).

This result substantially expands the class of stable 2D
QDs found in previous works. We have found similar but nar-
rower stability domains for QDs with vorticities m1, m2 up to 5
and m1 �= m2. Generally, the possibility of having narrow but
nonvanishing stability areas for vortex solitons with m > 1 is
a known feature of 2D models with competing nonlinearities
[48]. We have also found that QDs with component vorticities
of opposite signs, such as (m1, m2) = (2,−1), are always
unstable.

FIG. 4. (a)–(d) The evolution of an unstable QD with (m1, m2) =
(2, 1) and μ1,2 = (−0.118,−0.200) is illustrated by profiles |ψ1,2|
taken at different times, with insets depicting the phase of the wave
function. The instability is induced by perturbations with azimuthal
indices [see Eq. (4)] n = 2 (b), n = 3 (c), and n = 4 (d). Examples of
stable QDs with (m1, m2) = (2, 0) (a semivortex) in (e) and (2, 1) in
(f), surviving long evolution at μ1,2 = (−0.375, −0.200). Here and
in Fig. 5, all patterns are displayed in domain 0 < |x|, |y| < 22.

Stable and unstable evolution of QDs, produced by direct
simulations of Eq. (1), is displayed in Fig. 4. Unstable modes
break into sets of fundamental (zero-vorticity) QDs, whose
components typically carry different norms and fly away in
tangential directions, to conserve the angular momentum.
The breakup, induced by different perturbation eigenmodes,
is shown in Figs. 4(a)–4(d). Further, examples of the stable
evolution of QDs with (m1, m2) = (2, 0) (semivortex) and
(m1, m2) = (2, 1) are displayed in Figs. 4(e) and 4(f). Even
in the presence of considerable perturbations, such QDs keep
their original shape over indefinitely long times.

Another basic finding is that stable heterosymmetric QDs
can be built with different multipolarities, rather than vor-
ticities, in the two components. In such complexes one
component is a set of several poles with opposite signs
(local QDs), which do not escape under the action of mu-
tual repulsion, as they are nonlinearly coupled to the other
(structureless) component, whose wave function does not fea-
ture a sign-changing pattern. The simplest representative of
this class of composite QDs is the (semi-) dipole shown in
Fig. 5(a). It is produced by Eq. (1) in the form of ψ1,2 =
w1,2(x, y)e−iμ1,2t with real functions w1,2. The corresponding
initial guess for the dipole component was taken as ψ1 ∼
x exp(−βr2), β > 0. Dependences of the norm on chemical
potentials for such QDs are qualitatively similar to those for
the vortices; see Figs. 1(c) and 1(d). The existence domain
for the semidipole QDs is shown in Fig. 2(d). The domain is
substantially narrower than its counterpart for the axisymmet-
ric vortex droplets. The dipole component of this composite
mode vanishes at the right edge of the triangular existence
domain, while the structureless component vanishes at the
upper edge. The left edge corresponds to the structure in
which both components develop broad shapes. In the latter
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FIG. 5. (a) Stable evolution of a semidipole with
μ1,2 = −(0.39, 0.14). (b) An unstable semidipole with
μ1,2 = (−0.448, −0.15). (c) Stable evolution of a semiquadrupole,
with μ1,2 = (−0.366, −0.1). (d) Evolution of an unstable
semiquadrupole with μ1,2 = (−0.4,−0.17).

case, the distance between poles of the dipole component, ψ1,
substantially increases, while component ψ2 transforms into
two weakly overlapping in-phase fragments. Therefore, such
QDs may be considered as a bound state of two fundamental
QDs, whose ψ1 and ψ2 components are juxtaposed so as to be
out of phase and in phase, respectively.

Dipole QDs are stable in a limited part of their existence
domain with a complex shape, labeled s in Fig. 2(d), which
is bounded by the red line. It is close to the bottom vertex of
the existence triangle, in contrast to the stability domains for
the vortices displayed above. The cause of the instability of
the broad modes is elongation of the nodal line between the
poles and emergence of a pattern resembling a quasi-1D dark
soliton. When the nodal line becomes long enough, a snake
instability sets in (which is typical for such states [49,50]),
accompanied by oscillations of amplitudes of the two poles of
the dipole. An example of such instability, which is actually
rather weak, is presented in Fig. 5(b), while the evolution of
a stable semidipole is shown in Fig. 5(a). Note also that an
additional, very narrow, stability domain for semidipoles is
stretched along the entire right edge of the existence triangle
in Fig. 2(d). In the latter case, a weak dipole component is
stabilized by the stronger structureless one.

We have also found QDs with a more complex structure.
These are unstable tripoles, with one component built of three
poles with alternating signs, set along a line, and (semi-)
quadrupoles, with the quadrupole structure carried by a single

component; see an example in Fig. 5(c). The existence domain
for the semiquadrupoles practically coincides with that for
dipoles [see Fig. 2(d) above], while the stability takes place
in a narrow area adjacent to the right edge of the existence
triangle. The evolution of a stable semiquadrupole is shown
in Fig. 5(c), while Fig. 5(d) illustrates the decay of an unsta-
ble solution, in which four separate poles fuse into a broad
pattern.

IV. CONCLUSION

In this work, we have uncovered a ramified variety of struc-
tured heterosymmetric QDs in binary BECs, with different
vorticities or multipolarities of the two components. In par-
ticular, these states include semivortices and semimultipoles,
with the respective structure carried by a single component,
as well as heterovortical complexes, with unequal nonzero
vorticities in both components. The stability of these states
against azimuthal and symmetry-breaking perturbations is
an example of novel phenomena maintained by the LHY
(Lee-Hung-Yang) corrections to the mean-field dynamics. In
two-dimensional settings, the LHY effect adds the logarithmic
factor to the cubic self- and cross interactions. Undoing rescal-
ing that led to Eq. (1), an estimate for the number of atoms in
the QD with relevant physical parameters is ∼ 104 − 105; cf.
Refs. [26,27].

Challenging extensions of this work may be the explo-
ration of three-dimensional composite modes, including more
complex topologically organized ones, such as skyrmions
[51–55]. Another challenging extension may be investigation
of the heterosymmetric and heteromultipole modes, both two-
and three-dimensional ones, in the framework of the full
multibody quantum theory, rather than reducing the quantum
effects to the LHY corrections; cf. Ref. [56]. We also antici-
pate the relevance of the application of the heterosymmetry
concept to complexes created in in trapping potentials; cf.
Refs. [46,57].
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