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Apparent superballistic dynamics in one-dimensional random walks with biased detachment
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The mean-squared displacement (MSD) is an averaged quantity widely used to assess anomalous diffusion.
In many cases, such as molecular motors with finite processivity, the dynamics of the system of interest produce
trajectories of varying duration. Here, we explore the effects of finite processivity on different measures of the
MSD. We do so by investigating a deceptively simple dynamical system: a one-dimensional random walk (with
equidistant jump lengths, symmetric move probabilities, and constant step duration) with an origin-directed
detachment bias. By tuning the time dependence of the detachment bias, we find through analytical calculations
and trajectory simulations that the system can exhibit a broad range of anomalous diffusion, extending beyond
conventional diffusion to superdiffusion and even superballistic motion. We analytically determine that protocols
with a time-increasing detachment lead to an ensemble-averaged velocity increasing in time, thereby providing
the effective acceleration that is required to push the system above the ballistic threshold. An MSD analysis of
burnt-bridges ratchets similarly reveals superballistic behavior. Because superdiffusive MSDs are often used to
infer biased, motorlike dynamics, these findings provide a cautionary tale for dynamical interpretation.
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I. INTRODUCTION

The mean-squared displacement (MSD) is often used to
assess anomalous diffusion in molecular systems. A system
with an MSD that grows linearly in time is conventionally
diffusive, lacking anomalous effects [1],

MSD = 〈x2(t )〉 = 2Dt . (1)

For processes that obey (1), such as a discrete-time random
walk, the displacement distribution after N steps limits to a
Gaussian distribution. That is, the N individual steps of a
discrete-time random walk are independent and identically
distributed, with their sum governed by the central limit theo-
rem [2].

Anomalous diffusion refers to systems that do not have a
linear time dependence of the MSD. Generally, anomalous
diffusion is thought to emerge in stochastic systems whose
displacement distributions are not Gaussian, and is therefore
intimately connected with the breakdown of the central limit
theorem [2]. The concept of anomalous diffusion was first
introduced in 1926 by Richardson [3] through a thought ex-
periment involving two independent air particles separated by
a sufficiently large distance so as to be caught by two indepen-
dent gusts of wind moving in opposite directions. Richardson
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hypothesized that such a system does not obey Fick’s second
law, and that the MSD of the air particles scales nonlinearly
with time. For an anomalously diffusive system,

MSD ∝ Dgtα, (2)

where Dg is the generalized diffusion coefficient, and α is
the anomalous diffusion exponent that distinguishes the type
of diffusion [2,4,5]. Subdiffusion, conventional diffusion, and
superdiffusion correspond to 0 � α < 1, α = 1, and 1 < α <

2, respectively. The ballistic threshold is at α = 2, describing
a system whose trajectories proceed at constant velocity.

In order for a microscopic system to behave ballistically
over long times an external stimulus is typically required.
For example, ballistic motion is achieved for random walkers
subject to certain forms of external noise [6]. Ballistic motion
can also be achieved without an external stimulus in systems
whose cooperative behavior limits the degrees of freedom
of individual particles [7,8]. To exceed α = 2, reaching the
superballistic regime, it is generally thought an acceleration is
required [9]. Examples include animal movement generated
by muscle contraction [10] and particles optically trapped in
air [11,12], subject to increasing temperatures [13], or subject
to expanding media [14].

In this paper we consider a deceptively simple one-
dimensional discrete random walk with equal-sized and
equal-duration steps. We impose no external forces, particle
thrust, noise typically thought to promote superdiffusive mo-
tion, or cooperative behavior. We instead impose a tunable
detachment probability d that produces finite processivity.
For every step toward its initial position, the random walker
permanently detaches with probability d . We explore two
detachment protocols: constant detachment, and detachment
exponentially increasing at rate kd.
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TABLE I. Probability distributions for the first four time steps of
the ensemble-level model.

Time Displacement

−4 −3 −2 −1 0 1 2 3 4

0 1
1 1

2 0 1
2

2 1
4 0 1

2 r 0 1
4

3 1
8 0 3

8 r 0 3
8 r 0 1

8
4 1

16 0 1
4 r 0 3

8 r2 0 1
4 r 0 1

16

By varying d or kd, we find that the anomalous diffusion
exponent α can be tuned over a wide range of values. Varying
d controls apparent time-dependent dynamics ranging from
diffusive to ballistic, while variations in kd tune α from the dif-
fusive into a transient but long-lasting superballistic regime.
We determine the mechanism for this apparently superballistic
behavior by analytically deriving the ensemble velocity and
find it is dependent on the detachment protocol used, thereby
producing the ensemble acceleration required to breach the
ballistic threshold. We reproduce several of these observations
in a trajectory-resolved model, though find that distinct ap-
proaches to calculating the MSD provide different values of
α and hence distinct inferences about the system’s dynamics.
We additionally show that selecting a subset of especially pro-
cessive trajectories—as is common in single-particle studies
[15–17]—can introduce a large superdiffusive bias into the
MSD. As an example, we demonstrate that this acceleration
by detachment can manifest in a more realistic system by
calculating MSD for burnt-bridges ratchets, which we find
to exhibit apparently superballistic behavior. Our results en-
courage increased transparency regarding selection methods
for single-particle analysis.

II. MODELING RANDOM WALKS WITH DETACHMENT

A. Ensemble-level model

First, we study a discrete-time diffusion scheme where we
track the probability flow of an ensemble of independent one-
dimensional random walkers. At time intervals �t = 1, each
walker moves a distance �x = 1, with equal probability of
going left or right. A step towards the initial position at the
origin incurs a probability of detachment, either with constant
or with exponential probability. For constant detachment, the
probability d of detaching is independent of time. Exponential
detachment probability is given by

d (t ) = 1 − e−kdt , (3)

increasing over time as determined by the rate kd. [Thus the
probability of remaining attached at each origin-directed step
is r(t ) = 1 − d (t ).] Detachment events of individual walkers
are independent. Table I shows such a system’s initial evo-
lution. For the results shown in this work, the probability
distribution was evolved for n = 1000 time steps.

B. Trajectory-resolved model

We model a one-dimensional discrete-time random walk
by sampling step lengths from a Gaussian distribution with
zero mean and unit standard deviation. Steps toward the origin
lead to detachment with probability described by (3). As a
control, we compare to a random walk with no detachment,
which produces conventional diffusion.

III. ANALYSIS METHODS

A. Mean-squared displacement and α(t ) for
ensemble-level model

We define the MSD for the ensemble-level model as

MSDEA = 〈x2〉rem ≡
∑

pix2
i

Prem
, (4)

where xi is the ith position, pi is the probability of having a
walker at the ith site, and Prem is the total remaining probabil-
ity. MSDEA denotes an ensemble-averaged MSD, discussed
more in the following section.

The time dependence of the anomalous diffusion exponent
α is sometimes calculated through a quantity called either the
dynamic functional [18] or the local MSD scaling exponent
[19], which is the derivative of the logarithm of the MSD with
respect to the logarithm of time [20],

αψ ≡ d (log MSD)

d (log �t )
. (5)

It has been noted that the numerical derivative of (5) can
become especially noisy at long times because of compression
of linear sampling by logarithmic scaling, thereby introducing
uncertainty into estimates of the time dependence of α [21].

Alternatively, we introduce a two-point estimator αn
n−b for

α using time points n and n − b. In one dimension and for no
average drift (〈x〉 = 0),

αn
n−b ≡ logn

( 〈x2(n)〉
〈x2(n − b)〉

)(
1 − 1

logn−b n

)−1

. (6)

(Appendix A provides a general derivation.) To the best of
our knowledge, (6) has not been used before, and we find it
useful for characterizing transient anomalous diffusion with
the MSD. It is important to note that b must be kept small
in order to extract information about the local slope; for this
reason we use b = 2 in this work when estimating the time
dependence of α with (6).

As an example of its utility, in Appendix B we compare
αn

n−b to αψ when the MSD undergoes an abrupt change in
slope. Figure 8 shows that the numerical derivative from (5)
produces a noisy approximation to αψ , whereas αn

n−b (6) is
smooth throughout.

Table II in Appendix C presents Prem,
∑

pix2
i , 〈x2〉rem, and

αn
n−2 for the first four time steps.

B. Mean-squared displacement and α(t ) for
trajectory-resolved model

There are many ways to compute the MSD of trajectories;
we start by defining the squared displacement as

�x2
j (t, τ ) ≡ [x j (t + τ ) − x j (t )]2, (7)
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where x j denotes the position of the jth trajectory, t is time,
and τ is the time lag. The mean-squared displacement for an
ensemble of N independent walkers is

〈�x2(t, τ )〉 ≡ 1

N

N∑
j=1

�x2
j (t, τ ). (8)

We define the ensemble-averaged (EA) MSD as the MSD
at time τ , relative to the initial time zero,

MSDEA ≡ 〈�x2(0, τ )〉 = 1

N

N∑
j=1

�x2
j (0, τ ). (9)

This is equivalent to (4), above. By contrast, the trajectory-
averaged (TA) MSD is computed independently for each
trajectory,

MSDTA ≡ �x2
j (τ ) = �t

Tj − τ + �t

Tj−τ∑
t=0

�x2
j (t, τ ), (10)

where Tj is the total duration of the jth trajectory, and �t = 1
is the time step.

The van Hove correlation function or displacement distri-
bution G(x, τ ) collects all the displacements for a particular
time lag τ across all the observed trajectories [19,22–24].
G(x, τ ) describes the probability of a particular displacement
for a time lag τ . The variance of G(x, τ ) is the ensemble
MSDTA (i.e., the MSDETA) for τ ,

MSDETA ≡ 〈�x2(τ )〉 = 1

N

N∑
j=1

�x2
j (τ ). (11)

The MSDETA is particularly useful for many independent but
short trajectories.

MSDs calculated from Eqs. (9)–(11) are asymptotically
equal for an ergodic process: The time average converges to
the ensemble average at a sufficiently long time. By contrast,
differing MSDs may imply nonergodicity; examples of such
systems include tracer particles in mucus [25] or the plasma
membrane [26], as well as the continuous-time random walk
with diverging average waiting times [27].

Here, we estimate α through a linear fit of log MSD as
a function of log time. For visual aid we fit over local re-
gions of approximate linearity and report the range of times
used in the fit. Because this logarithmic scaling produces a
non-normal distribution of errors, we use a generalized least-
squares (GLS) approach to estimate αGLS from the MSD [28],
employing the function gls from the R library nlme.

C. Shape of probability distributions

Deviation of the displacement distribution G(x, τ ) from a
Gaussian can be quantified by the standardized fourth moment
(the kurtosis),

β2(x) ≡ 〈(x − 〈x〉)4〉
(〈(x − 〈x〉)2〉)2

. (12)
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FIG. 1. Ensemble-level analysis with constant detachment.
(a) Evolution of the displacement distribution for constant-
detachment probability d = 0.4. (b) Probability of remaining on the
track as a function of time, for different detachment probabilities
d . (c) MSDEA (4) as a function of time. (d) Diffusion exponent
αn

n−b (6) as a function of time. For d = 0 (no detachment), αn
n−2 = 1

(conventional diffusion) at all times. As the detachment probability
increases to d = 1, αn

n−2 increases to the ballistic limit of 2.

As a Gaussian distribution has β2(x) = 3, it is convenient to
define the excess kurtosis γ2 ≡ β2 − 3, such that any nonzero
γ2 indicates non-Gaussian behavior [29,30].

IV. RESULTS AND DISCUSSION

A. Ensemble-level analysis

We first determine the effects of a constant origin-directed
detachment bias on the ensemble-level system. Figure 1(a)
displays the evolution of the displacement distribution for the
ensemble-level analysis with constant-detachment probabil-
ity d = 0.4. Two peaks form, symmetric about the origin,
and move with increasing dispersion in the ±x̂ directions,
respectively. This is expected, as steps towards the origin
have a probability of detachment, whereas steps away from
the origin do not. Figure 1(b) shows that as the probability
d of detachment increases, the probability of remaining on
the track decays more rapidly. The MSDEA (4) varies with
d , ranging from a ballistic trend (α = 2) for detachment
probability d = 1 to conventional diffusion (α = 1) for the
no-detachment scenario (d = 0) [Fig. 1(c)]. For intermediate
d (0 < d < 1), the MSD displays increasing superdiffusive
trends with increasing d .

To more quantitatively extract the time dependence of
the anomalous diffusion exponent, we calculate αn

n−2 us-
ing (6). For all intermediate values of d , Fig. 1(d) shows
that α increases with time monotonically towards the ballis-
tic threshold; the transition to the ballistic threshold occurs
sooner as d → 1.

Figure 2 shows the ensemble-level analysis with an expo-
nential time-dependent detachment probability given by (3).
d (t ) is still bounded by [0,1], but increases monotonically
with time towards unity at a rate governed by kd [Fig. 2(a)].

033520-3



KOROSEC, SIVAK, AND FORDE PHYSICAL REVIEW RESEARCH 2, 033520 (2020)

FIG. 2. Ensemble-level analysis with exponential detachment.
(a) Time-dependent detachment probability (3) as a function of time
for various decay rates kd. (b) Probability of remaining as a function
of time for various kd. (c) MSDEA (4) as a function of time, for
various kd. (d) Transient behavior of αn

n−2 (6) as a function of time,
for various kd. (e) Maximum diffusion exponent αmax as a function
of kd. (f) Parametric plot of αmax vs the time at which αmax occurs.

The slowest detachment process studied, corresponding to
kd = 10−2, leads to the slowest decay of Prem from 1 to 0
[Fig. 2(b)]. For the fastest detachment process studied (kd =
104), the MSDEA (4) appears ballistic at all times [Fig. 2(c)].
For all other kd values, we find the MSD to undergo a time-
dependent transition from diffusive to ballistic, exhibiting a
long superballistic transient at intermediate times (peaking at
α ≈ 3.5 for kd = 10−2). We find that all kd < 1 lead to αn

n−2
rising past the ballistic threshold. This behavior is character-
ized in Fig. 2(d), in which it is clear that as kd decreases,
the maximum αn

n−2 (αmax) increases further into the super-
ballistic regime. Figure 2(e) shows that αmax decreases from
strongly superballistic as kd increases, until for kd > 1, αn

n−b
reaches and remains near the ballistic limit. Figure 2(f) shows
that αmax occurs later as kd decreases. Therefore, for slower
origin-biased detachment (lower kd), the system takes longer
to breach the ballistic threshold, but extends farther into the
superballistic regime and stays superballistic for longer.

When an ensemble of particles moves at the ballistic
threshold, their velocity is constant; exceeding the ballistic
threshold requires an ensemble acceleration [〈a(t )〉 > 0]. In
Appendix D we derive a general expression for the mean
velocity 〈v+(t )〉 of the positive half of the displacement dis-
tribution [see Fig. 1(a)]. For the constant and exponential

FIG. 3. Ensemble-level analysis of positive peak displacement.
(a) Positive peak displacement and (b) its velocity (13), as a function
of time for constant detachment. (c) Positive peak displacement and
(d) its velocity (14) as a function of time for exponential detachment.

biased-detachment models,

〈v+〉const = d

2 − d
, (13)

〈v+〉exp = 1 − e−kdt

1 + e−kdt
. (14)

Equation (13) predicts constant velocity (no acceleration; bal-
listic motion) for constant-detachment probability (d > 0),
while (14) predicts acceleration (superballistic motion) when
the origin-biased detachment probability increases with time
according to (3).

We compare these predictions with the dynamics of the
ensemble-level displacement distributions (Figs. 1 and 2).
For all constant-detachment probabilities, the positive peak
displacement linearly increases with time [Fig. 3(b)]. The
positive peak displacement for exponential detachment proba-
bility [Fig. 3(c)] increases nonlinearly, with velocity given by
(14). In Appendix D, we validate (14) by integrating it with
respect to time to get the conditional mean displacement (D6)
and show that the analytical result agrees with the simulations
(Fig. 9).

Despite our system moving with equidistant jump lengths,
with equal probability in either direction, and at constant time
intervals, the detachment protocol alone is sufficient to push
the anomalous diffusion exponent far into the superballistic
regime for hundreds of time steps. Therefore, despite no in-
dividual particle experiencing acceleration, the selective bias
of the detachment protocol produces an ensemble acceleration
sufficiently strong to push the diffusion exponent far into the
superballistic regime. Biased detachment represents a distinct
mechanism to produce apparently anomalous diffusion.

B. Trajectory-resolved analysis

We have shown in an analytically tractable ensemble-
level analysis that biased detachment is sufficient to tune
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FIG. 4. Trajectory-resolved analysis. (a) Proportion remaining as
a function of time for various values of kd. (b) Example Gaussian
fits to the displacement distribution for kd = 0.02 and time lags
τ = 1, 5, 15, 20. (c) MSDEA (9) as a function of time for each kd.
(d) MSDETA (11) as a function of time for each kd.

the anomalous diffusion exponent far into the superballistic
regime. Next, we explore the effects of the biased exponential
detachment probability (3) in a trajectory-resolved analysis.

For each kd, we simulate 5 × 104 independent trajectories.
Figure 4(a) displays the proportion of trajectories still contin-
uing at different times: As kd increases, detachment happens
more rapidly.

We use the Gaussian parameter γ2 (12) to determine if
the displacement distribution conforms to a Gaussian, which
is thought to be a requirement for conventionally diffusive
systems [2]. For larger time lags, the displacement distribution
is non-Gaussian [Fig. 4(b)], reflecting the increased bias as
seen in the larger anomalous diffusion exponent α. Figure 10
in Appendix E plots γ2 for various kd across a large range of
time lags, revealing a general trend for negative γ2 at larger
time lags and larger kd.

Figures 4(c) and 4(d) show the MSDEA (9) and the
MSDETA (11) for all kd. The MSDEA produces higher αGLS

for every kd, with a maximum αGLS = 2.2 for kd = 10, com-
pared to 1.8 from the MSDETA with the same kd. Whereas the
MSDEA breaks through the ballistic threshold, the MSDETA

remains in the superdiffusive (sub-ballistic) regime.
For the trajectory-resolved analysis the highest kd we

explore is 10, where αGLS peaks at 2.2 and 1.8 for the
MSDEA and MSDETA, respectively [Figs. 4(c) and 4(d)].
αGLS corresponding to MSDEA for the lowest kd = 5 × 10−4

barely increases above the diffusive (no-detachment) limit
[Fig. 4(c)]. This appears to be the opposite trend to that seen
for the ensemble-level analysis, where the highest values of α

occur for the smallest kd values [Fig. 2(c)]. However, we note
that the trajectory-resolved approach explores significantly
shorter timescales than the ensemble-level analysis, a result
of (in some cases, rapid) detachment of walkers from the
track and thus poor statistics at longer times. The early-time

FIG. 5. Trajectory-resolved MSDETA (11) (blue circles) and
MSDEA (9) (brown squares) compared with ensemble-level MSDEA

(4)(orange triangles), for kd = 0.04 and 500 000 trajectories. Inset:
All MSDs at short times or time lags.

MSD and α do agree between the analytical and numerical ap-
proaches [Figs. 2(c) and 4(c)], as we now show quantitatively.

To improve statistical significance, we simulate signifi-
cantly more (5 × 105) trajectories for kd = 0.04. Figure 5
shows trajectory-resolved MSDEA (9) and MSDETA (11),
alongside the ensemble-level MSDEA. This comparison
makes clear that all MSDs follow the same trend. It also
highlights the statistical challenge of achieving superballistic
behavior by biased detachment; however, even a small detach-
ment bias (kd = 0.04) produces significant superdiffusion.

C. Analysis of longest-duration trajectories

Studies of molecular-motor transport commonly include in
an MSD analysis only a subset of the recorded trajectories,
often chosen because they remained associated to the track
beyond a threshold duration [15–17] or reached a certain
distance [31]. Here, we show that with biased detachment,
selecting a longest-lived subset of the total ensemble biases
the MSD analysis.

We simulate 2 × 109 independent trajectories with
kd = 0.05, but only analyze subsets M of these trajectories,
selecting the M1 = 102, M2 = 104, and M3 = 106

longest-duration trajectories for each subset (corresponding to
proportions 5 × 10−8, 5 × 10−6, and 5 × 10−4, respectively).
Figure 6(a) shows the detachment characteristics of these
subsets: Each M subensemble experiences a lag time before
detachment begins. As the subset size decreases, detachment
begins later. Figure 6(b) shows randomly selected trajectories
from the longest-duration M1 ensemble. Despite their clear
stochasticity, they exhibit net motion away from the origin (as
expected for these trajectories that avoided early origin-biased
detachment).

Figure 6(c) displays MSDEA as a function of time for all
three M ensembles. At the earliest times the diffusion expo-
nent αGLS = 1.04, slightly exceeding conventional diffusion.
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FIG. 6. Longest-duration trajectory-resolved analysis. (a) Frac-
tion remaining as a function of time for the M longest-lived
trajectories out of the total ensemble size of 2 × 109. (b) Randomly
selected trajectories from the longest-lived M1 ensemble. (c) MSDEA

(9) and (d) MSDETA (11) as a function of time for all M ensembles.

To more fully explore the effect of processivity, we fit over
the full range of timescales for which all trajectories in each
of the M ensembles remain attached. We find α of 1.36, 1.32,
and 1.25 for M1, M2, and M3, respectively. Therefore, the size
of the subset M influences the reported α even for that subset
of trajectories that are fully processive. After the onset of
detachment, αGLS increases far into the superballistic regime
and peaks at 3.0, as measured by a generalized least-squares
fit of the M1 ensemble over the time interval indicated by the
black slanted line in Fig. 6(c). The MSDETA displays similar
trends to the MSDEA at both short and long time lags, curving
upwards to a steep slope of αGLS = 3.0 at long time lags
[Fig. 6(d)].

The longest-lived trajectories are those that have managed
to escape the “detachment trap” by successively moving away
from the origin. That is, although the motion is random, from
a sufficiently large ensemble there will be walkers that appear
superdiffusive. It is therefore expected that the longest-lived
ensembles exhibit superdiffusive characteristics even before
the onset of detachment, as shown in Figs. 6(c) and 6(d).
These results suggest that selecting a subset of trajectories
based on processivity has the potential to strongly bias in-
ferences about the system dynamics, whether one uses the
MSDEA or MSDETA. At long times both MSD measures dis-
play similar superballistic measures of α.

D. Application to burnt-bridges ratchets

Some synthetic biomolecular systems, such as molecu-
lar spiders [32,33], burnt-bridges ratchets [34], and DNA
nanomotors [35–37], remodel their tracks as they move and
have been engineered to achieve directional motion at the
molecular level. This remodeling turns a substrate site into
a product site, and where there is a greater affinity to bind

FIG. 7. MSDEA as a function of time (green) and MSDETA as
a function of time lag (black) for burnt-bridges ratchets with finite
processivity [41].

to the substrate, motion is biased away from the product
wake. Therefore, such systems have an increased probability
of detachment from their tracks if they move backwards (into
their product wake) [38–41]. Our system is not unlike that of
a simple Brownian ratchet [42], traversing a series of bound-
aries that can be freely passed from the left, but are difficult
to cross from the right. In our work we allow movement to
occur without inhibition away from the origin, but ascribe a
detachment penalty to moves taken towards the origin. Tuning
this kinetic penalty leads to an ensemble acceleration that
manifests in a highly anomalous diffusion exponent.

To demonstrate that the anomalous α shown above is
observed in more realistic systems with finite processivity,
we examine simulated trajectories of a burnt-bridges ratchet
(BBR), reported previously [41]. Here, we examine an ensem-
ble of 10 000 independent BBRs each moving on a quasi-one-
dimensional (1D) track that is four lattice sites wide. Each
BBR has three catalytic legs with a span of eight lattice sites,
which can each interact with substrate sites but not product
sites. Figure 7 shows that the MSDEA (9) and MSDETA (11)
are quantitatively different. This is not surprising, because
initial symmetry breaking leads to distinct short-time and
long-time dynamics. In the long-time limit, both the MSDEA

(9) and MSDETA (11) produce superballistic αGLS (2.19 and
2.17, respectively). As no acceleration is imposed on the sys-
tem, the breach above the ballistic threshold likely arises, as
above, from the origin-directed detachment bias inherent to
the BBR dynamics. We note that this apparent superballis-
tic behavior is for a specific example of BBRs described in
Ref. [41] and may not be a general result for all BBR systems.

V. IMPLICATIONS

A. Biological molecular motors

MSD analysis is often utilized in investigations of intra-
cellular active transport [43]. It has been applied to molecular
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motors such as kinesin [44], dynein [45], and myosin [46].
Of relevance to this work, all of these motors exhibit finite
processivity: No molecular motor remains bound to its track
forever. This finite processivity was the inspiration for the
longest-lived analysis of Sec. IV C: Could duration-based se-
lection of trajectories alter the conclusions drawn from MSD
analysis? For example, when calculating the MSDTA (10)
from experimental data it is common to include only those
motors that remained bound to the track for a certain time
[15–17], thereby ignoring those that detached. The selection
of trajectories for MSD analysis is not always described,
which makes it difficult for the interested reader to assess any
bias that may manifest in the MSD. (We expect ensemble se-
lection is not typically described in detail because the resulting
potential bias in the MSD has yet to be raised.) To our knowl-
edge experimental studies that examine how the MSD changes
as a function of the duration of the trajectories chosen are
lacking. Such subsampling would demonstrate the robustness
of the conclusions drawn from the MSD, and could potentially
provide mechanistic insight about detachment kinetics. For
example, subsampling may indicate a directional detachment
bias, as suggested by the work presented in this paper.

B. Random walks with finite processivity

Much attention has focused on understanding systems
displaying anomalous diffusion. Anomalous diffusion is of-
ten correlated with non-Gaussian displacement distributions
[47,48]. When simulating individual trajectories, our displace-
ments are drawn from a Gaussian distribution; however, our
displacement distributions for large time lags break Gaussian-
ity because of the penalty we ascribe to steps taken towards
the origin. Anomalous diffusion is therefore achieved by the
consequences of the step direction: The walker faces an en-
hanced probability of detachment only if its step is towards
the origin. Thus, the trajectories that tend towards the origin
are filtered out as time progresses, thereby splitting the central
mode into two symmetric modes about the origin (Fig. 2).
Despite the asymmetry being applied at t0, the MSD may re-
port an anomalously diffusive α only at long time lags if kd is
small. Similarly, Fig. 10 shows that for small-to-intermediate
time lags, γ2 can fluctuate about the Gaussian value of unity
before systematically deviating from it. Therefore, we suspect
the effects of biased detachment on the MSD may be diffi-
cult to deconvolve given limited statistics for systems with a
small kd.

VI. CONCLUSIONS

The MSD is commonly used to assess anomalous diffusion
in microscopic systems. Here, we assessed the effect of a bi-
ased detachment probability on the MSD of one-dimensional
random walkers, employing both constant and exponential
detachment probabilities. We found that the detachment rate
controls the apparent dynamics of the system: More gradual
detachment (smaller kd) delays the onset of superballistic
behavior, but results in a larger and longer-lasting excursion
into the superballistic regime [Fig. 2(d)]. All of these biased-
detachment systems eventually relax to the ballistic limit
(α = 2). Figure 5 shows a comparison between the trajectory

and ensemble approaches where the superballistic behavior
is most clearly seen in the (much longer-time) ensemble-
level model. The limited statistics arising from detachment of
trajectory-resolved systems means they cannot easily provide
measures of long-time superballistic behaviors; however, the
statistics are sufficient to demonstrate a strong superdiffusive
bias.

The detachment bias confounds our ability to infer dy-
namical properties: The MSD suggests highly anomalous
behavior, while the underlying dynamics we have imposed are
Brownian. Therefore, for systems with trajectories of varying
duration, a superdiffusive MSD should not on its own be taken
to demonstrate directionality of a walker; such insight would
require deconvolving the effects of processivity.

It has previously been shown that a misinterpretation of
the MSD can arise in single-particle tracking experiments
due to measurement error and inherent system heterogeneity
[18]. Researchers have also cautioned about overinterpretation
of the MSD for continuous-time random walks with power-
law waiting-time distributions, where improper averaging can
lead to false conclusions about transport properties [49]. We
further caution the use of the MSD for systems with finite pro-
cessivity, where detachment bias may lead to an overestimate
of the anomalous diffusion exponent.
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APPENDIX A: ANALYTICAL EXPRESSION FOR
DIFFUSION EXPONENT α

The ensemble-averaged mean-squared displacement is de-
fined as

〈[r(n) − r(0)]2〉 = 1

N

N∑
i=1

[ri(n) − ri(0)]2 = Dgnα. (A1)

Here, n is an arbitrary point in time, N is the size of the
ensemble, Dg is the general diffusion coefficient, and α is the
anomalous diffusion exponent. We can also consider a point
n − b somewhat earlier in time,

〈[r(n − b) − r(0)]2〉 = Dg(n − b)α. (A2)

The ratio of (A1) and (A2) gives

〈[r(n) − r(0)]2〉
〈[r(n − b) − r(0)]2〉 = nα

(n − b)α
, (A3)

logn
〈[r(n) − r(0)]2〉

〈[r(n − b) − r(0)]2〉 = logn
nα

(n − b)α
(A4)

= α logn n

− logn[(n − b)α].
(A5)
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Using the logarithmic identity

logb x = logd x

logd b
, (A6)

we then solve for α,

logn
〈[r(n) − r(0)]2〉

〈[r(n − b) − r(0)]2〉 = α

(
1 − 1

logn−b n

)
, (A7)

αn
n−b =

(
1 − 1

logn−b n

)−1

logn

〈[r(n) − r(0)]2〉
〈[r(n − b) − r(0)]2〉 . (A8)

The αn
n−b notation denotes that α is estimated by two points,

at times n and n − b. Equation (A8) is an expression for α

derived from an arbitrary ensemble-averaged mean-squared
displacement. In the work presented in this paper we restrict
ourselves to one dimension and have a system for which
〈x〉 = 0. Equation (A8) then reduces to

αn
n−b =

(
1 − 1

logn−b n

)−1

logn

〈x2(n)〉
〈x2(n − b)〉 . (A9)

In this work we apply (A9) with b = 2 to analytical
ensemble-level results, to estimate the anomalous diffusion
exponent over a duration of two time steps.

APPENDIX B: COMPARING THE DYNAMIC
FUNCTIONAL TO NEWLY DERIVED αn

n−b

To demonstrate the utility of αn
n−b (6), we determine the

anomalous diffusion coefficient for an example in which bi-
ased detachment is suddenly turned on after 100 time steps.
Figure 8(a) shows conventional diffusion for the first 100 time
steps, after which there is a sudden increase in the MSDEA.
Figure 8(b) compares α determined using (6) and (5). The
derivative used to calculate αψ via (5) is a smoothing spline
derivative with cross-validation [50], while the expression (6)
for αn

n−b is exact.

FIG. 8. (a) An example of a log-log MSDEA-time trend from
the analytical model where detachment is turned on at t = 100.
(b) A comparison of α computed numerically by (5) and analytically
by (6).

TABLE II. 〈x2〉rem and αn
n−2 for the first four time steps.

Time step Prem
∑

pix2
i 〈x2〉rem αn

n−2

0 1 0 0
1 1 1 1
2 1

2 (1 + r) 2 4
1+r

3 1
4 (1 + 3r) 3

4 (3 + r) 9+3r
1+3r log3

9+3r
1+3r

4 1
8 + 1

2 r + 3
8 r2 2(1 + r) 16

1+3r 2 log4
4(r+1)
3r+1

APPENDIX C: ANALYTICAL CALCULATIONS FOR THE
DISCRETE RANDOM WALK WITH DETACHMENT

Table II provides sample analytical calculations from
Table I of the ensemble-level MSDEA (4) and the analytical
anomalous diffusion exponent αn

n−2 derived in Appendix A,
up to four time steps. Here, d is the probability of detachment
(3), and r ≡ 1 − d represents the probability of remaining
attached to the lattice for an individual step. Prem is a normal-
ization factor and represents the total probability of remaining
attached to the lattice.

APPENDIX D: DERIVATION OF 〈v+〉 FOR THE
ENSEMBLE-LEVEL MODEL

Here, we derive a general expression for the ensemble level
〈v+〉, the mean velocity conditioned on the walker being at
positive displacement. We consider a discrete system in one
dimension that can take steps to the left or right with step
size |�x| = 1 and �t = 1. The probability of stepping left or
right is equal. Let dl (t ) and dr (t ) represent the probability of
detaching from the lattice for steps taken to the left and right,
respectively. We then write the normalized probability at time
t of taking a step to the left and remaining attached as

P(�xleft ) = 1 − dl (t )

2 − dl (t ) − dr (t )
, (D1)

and the normalized probability of taking a step to the right and
remaining attached as

P(�xright ) = 1 − dr (t )

2 − dl (t ) − dr (t )
. (D2)

Thus, the average displacement after one time step is 〈δx〉 =
[P(�xright ) − P(�xleft )]�x. Then

〈v+〉 = 〈δx〉
�t

= dl (t ) − dr (t )

2 − dl (t ) − dr (t )

�x

�t
. (D3)

The effects of detachment on the mean ensemble acceleration
〈a+〉 = d

dt 〈v+〉 can then be determined, as can the conditional
mean displacement, 〈x+〉 = ∫

dt〈v+〉.
In this work we consider exponential detachment for parti-

cles moving towards the origin, dr (t ) = 0 and dl (t ) = d (t ) =
1 − e−kdt . We then have

〈v+〉exp = 1 − e−kdt

1 + e−kdt
. (D4)

We also consider the case where detachment towards
the origin is constant with time, dr (t ) = 0 and dl (t ) = d ,
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FIG. 9. Conditional mean 〈x+〉exp (D6) (blue dots) from theory
agrees with ensemble-level positive peak displacement (curves) from
Fig. 3(c).

giving

〈v+〉const = d

2 − d
. (D5)

To demonstrate agreement of this approach with our nu-
merical data, we compare for the exponential case the positive
peak displacement obtained from the ensemble-level simula-
tions with the analytical conditional mean,

〈x+〉exp =
∫

dt
1 − e−kdt

1 + e−kdt
(D6)

= 2 log(ekdt + 1)

kd
− t + C, (D7)

FIG. 10. Excess kurtosis as a function of time lag for the
trajectory-resolved model.

where C is an integration constant. We set the integration con-
stant to C = − 2 log 2

kd
such that 〈x+〉exp(t = 0) = 0. We find this

analytical expression for 〈x+〉exp to agree with the ensemble-
level results for exponential detachment (Fig. 9).

APPENDIX E: FURTHER KURTOSIS ANALYSIS OF
TRAJECTORY-RESOLVED MODEL

In Fig. 10, we plot the excess kurtosis as a function of time
lag for various kd of the trajectory-resolved simulations. For
small kd, γ2 tends to fluctuate about the Gaussian value of
unity. For larger kd, γ2 tends to negative values.
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