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Quantum Zeno effect appears in stages
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In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system
by freezing its state to one of the measurement eigenstates. The effect is conventionally controlled by the
measurement frequency. Here we study the development of the Zeno regime as a function of the measurement
strength for a continuous partial measurement. We show that the onset of the Zeno regime is marked by a
cascade of transitions in the system dynamics as the measurement strength is increased. Some of these transitions
are only apparent in the collective behavior of individual quantum trajectories and are invisible to the average
dynamics. They include the appearance of a region of dynamically inaccessible states and of singularities in
the steady-state probability distribution of states. These predicted dynamical features, which can be readily
observed in current experiments, show the coexistence of fundamentally unpredictable quantum jumps with
those continuously monitored and reverted in recent experiments.

DOI: 10.1103/PhysRevResearch.2.033512

I. INTRODUCTION

The evolution of a quantum system under measurement is
inherently stochastic due to the intrinsic quantum fluctuations
of the detector [1]. If these fluctuations can be accurately
monitored, measurements can be used to track the stochastic
evolution of the system state, i.e., individual quantum trajec-
tories. From a theoretical tool to investigate open quantum
systems [2], quantum trajectories have become an observable
reality in experiments in optical [3,4] and solid-state [5–7]
systems. Tracking quantum trajectories has been exploited
as a tool to engineering quantum states via continuous feed-
back control [8–10] and entanglement distillation [11,12]. It
has been used to observe fundamental properties of quantum
measurements [13–17] and, recently, to predict topological
transitions in measurement-induced geometric phases [18–21]
and many-body entanglement phase transitions in random
unitary circuits, invisible to the average dynamics [22–25].
Monitoring quantum trajectories has also made possible an-
ticipating and correcting quantum jumps in superconducting
qubits [26].

The above-mentioned transitions stem from the basic
physics of the quantum Zeno effect [27,28]. In this regime,
as a result of repeated measurements, the system state is
mostly frozen next to one of the measurement eigenstates, yet
rarely performs quantum jumps between them. The crossover
between coherent oscillations and the Zeno regime is con-
trolled by the frequency of the measurement and has been
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extensively explored both theoretically [29–34] and experi-
mentally [35–39]. Beyond projective measurements, the onset
of the Zeno regime is richer [40,41], and quantum jumps ap-
pear as part of continuous stochastic dynamics. For example,
in a system monitored via continuous partial measurements,
quantum jumps can be anticipated, continuously monitored,
and reverted [26], a task which is fundamentally impossible
with projective measurements. Moreover, the onset of the
Zeno regime with nonprojective measurements is more con-
voluted and has been characterized by different measurement
strengths and phenomenology based on the dynamics of the
detector signal [42], average [43–47], or postselected [48,49]
state evolution.

Here we study the transition between the regimes of co-
herent oscillations and Zeno-like dynamics in a qubit subject
to continuous partial measurements [see Fig. 1(a)], a model
directly describing some recent experiments [26]. By investi-
gating the full stochastic dynamics of quantum trajectories,
we show that the quantum Zeno regime is established via
a cascade of transitions in the system dynamics, some be-
ing invisible to the average dynamics. Furthermore, we find
that, in the Zeno regime, catchable continuous jumps between
states |1〉 and |0〉 necessarily have a discontinuous counterpart,
jumps between |0〉 and |1〉, which are inherently unpredictable
in individual realizations. Our results provide a unified picture
of the onset of the Zeno regime arising from continuous partial
measurements and demonstrate that investigating individual
quantum trajectories can uncover drastically new physics even
in simple and well-studied systems. Our findings may be
relevant for quantum error correction protocols employing
continuous partial measurements [50,51].

II. MODEL AND POSTSELECTED DYNAMICS

We consider a qubit performing coherent quantum oscil-
lations between states |0〉 and |1〉 due to the Hamiltonian
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FIG. 1. (a) The system. A Hamiltonian induces oscillations be-
tween levels |0〉 and |1〉 of a qubit, which is continuously measured
by a detector weakly coupled to one of the levels. (b) Dynamical
flow (red and blue arrows) of θ (t ) from Eq. (3) under “no-click”
postselected dynamics. For sufficiently weak measurements, λ < 1
(left), the dynamics is oscillatory; for λ > 1 (right), stable and unsta-
ble fixed points (θ+ and θ−, respectively) emerge. The states in the
interval θ ∈ (−π, θ+) are inaccessible to the system under both the
no-click and the full stochastic dynamics.

Hs = �sσx, where �s > 0; at the same time the qubit is mon-
itored by a sequence of measurements at intervals dt � 1/�s

[see Fig. 1(a)]. Each measurement is characterized by two
possible readouts r = 0 (“no-click”) and 1 (“click”). The cor-
responding measurement back-action |ψ〉 → M (r)|ψ〉 is given
by the operators

M (0) = |0〉〈0| +
√

1 − p|1〉〈1|, M (1) = √
p|1〉〈1|, (1)

where p ∈ [0, 1] controls the measurement strength. For p =
1, each measurement is projective and this induces the con-
ventional quantum Zeno effect with the system being frozen in
one of the measurement eigenstates, |0〉 or |1〉. In the opposite
limit, p = 0, essentially no measurement takes place, and the
system performs Rabi oscillations under Hs. We investigate
the intermediate case of p = αdt with dt → 0, and α � 0
controlling the effective measurement strength over a finite
time interval. A physical model of this measurement process
is realized by coupling the system to a two-level system de-
tector that, in turn, is subject to projective measurements (see
Appendix A for details).

In each infinitesimal step the measurement and the system
evolution add up to give the combined evolution

|ψ (t + dt )〉 = M (r)U |ψ (t )〉, (2)

where U = e−iHsdt ≈ 1 − iHsdt is the Hamiltonian unitary
evolution over an infinitesimal time interval dt . When the
system is initialized in |0〉 or |1〉, its evolution is constrained to
the y-z section of the Bloch sphere and the state has the form
|ψ (t )〉 = |ψ[θ (t )]〉 = cos θ (t )

2 |0〉 + i sin θ (t )
2 |1〉. Equation (2)

translates onto

θ (t + dt ) =
{
θ (t ) − �[θ (t )] dt if r = 0
π if r = 1 , (3)

where �(θ ) = 2�s[1 + λ sin θ ] and λ = α
4�s

sets the strength
of the measurement relative to the Hamiltonian. A measure-
ment yielding readout r = 1 immediately projects the system
onto state |1〉, while a no-click r = 0 readout implies an in-
finitesimal evolution of the state with angular velocity �(θ ).

The probabilities of the two possible readouts are given by

pr=1 ≡ p1 = αdt sin2 θ (t )

2
, pr=0 ≡ p0 = 1 − p1 (4)

and depend on the qubit state, i.e., on θ (t ).
For understanding the full stochastic dynamics, it is in-

structive to review its continuous no-click part, previously
analyzed in Ref. [48]. In this case the state evolution is
governed by the the differential equation θ̇ = −�(θ ). The
corresponding flow of the variable θ is shown in Fig. 1(b).
Since �s > 0 and λ > 0, for any θ ∈ (0, π ), we have �(θ ) >

0, and the system evolves continuously towards θ = 0. No-
tably, this is the only way for the system state to evolve from
|1〉 to |0〉 and it corresponds to the quantum jumps that have
been continuously monitored in Ref. [26]. The transition from
|0〉 to |1〉, instead, takes place via the region θ ∈ (−π, 0) and
has richer dynamics controlled by the measurement strength.
For sufficiently weak measurements, 0 � λ < 1, one has
�(θ ) > 0 for any θ , and the system monotonously evolves
towards θ = −π ; however, for λ > 1 there appear two fixed
points, �(θ±) = 0, at

θ± = 2 arctan(−λ ±
√

λ2 − 1), (5)

where θ+ is a stable point, while θ− is an unstable one, as
shown in Fig. 1(b). Under the r = 0 postselected dynamics for
λ > 1, the system will eventually flow to θ = θ+ [48] (where
it remains until the occurrence of a click, which collapses the
system to |1〉).

III. STOCHASTIC EVOLUTION AND DYNAMICAL
TRANSITIONS

Beyond the postselected r = 0 quantum trajectory, the
stochastic dynamics of the system is described by the prob-
ability density Pt (θ ) of being in the state |ψ (θ )〉 at time t .
Using Eqs. (3) and (4), one derives the master equation for
Pt (θ ):

dPt (θ )

dt
=

[
∂θ [�(θ )Pt (θ )] − 4�sλ sin2 θ

2
Pt (θ )

+ 4�sλδ(θ − π )
∫ 2π

0
d θ̃ sin2 θ̃

2
Pt (θ̃ )

]
. (6)

Here, the first term on the right-hand side describes the
no-click evolution, the second term describes the reduction
of Pt (θ ) due to clicks that happen with probability p1 =
4�sλ sin2 θ

2 dt [see Eq. (4)], while the last term accounts for
the clicks bringing the states from any θ to θ = π .

Two experimentally accessible quantities directly related
to Pt (θ ) capture the main physics: the steady-state distribu-
tion P∞(θ ) ≡ limt→∞ Pt (θ ) and the average “polarization”
of the qubit, s̄(t ) ≡ (s̄y(t ), s̄z(t )), where s̄i(t ) ≡ 〈σi(t )〉 =∫ π

−π
〈ψ (θ )|σi|ψ (θ )〉Pt (θ ) dθ , i = y, z. Both quantities are

plotted in Fig. 2. They showcase three qualitative transitions
in the dynamics as function of the measurement strength.

We can readily present the key physics of these transitions
before entering all the features in due details. For sufficiently
small λ, the qubit can be found in any state with finite proba-
bility density P∞(θ ) �= 0. In particular, it is possible to evolve
from |0〉 to |1〉 via trajectories involving a detector click as
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FIG. 2. The stochastic dynamics of the qubit state in the y-z section of the Bloch sphere exhibits transitions at relative measurement
strengths λ = 1, 2/

√
3, and 2. The long-time probability distribution Pt=∞(θ ) at different values of λ is shown as the height above the unit

circle for the analytic result (red solid line) and for the numerical simulations (green dots). The trajectories of the expectation values s̄y,z(t ), for
the system initialized in |0〉 at t = 0, are shown with the dashed magenta lines. Each numerical simulation involved 10 000 stochastic trajectory
realizations, tracing the evolution until t = 10, with measurements yielding random outcomes happening at intervals dt = 0.01, using �s = 1;
θ is binned in intervals of size 5◦.

well as no clicks from the detector. Instead, the evolution from
|1〉 to |0〉 happens only via no-click sequences, as noted above.
The first and most drastic transition happens at λ = 1, above
which there opens a region of θ ∈ (−π ; θ+] where P∞(θ ) = 0.
In fact, this region is inaccessible for the qubit at any time
t ; hence, for λ > 1 all quantum trajectories from |0〉 to |1〉
must involve a detector click. Generically, the click may occur
when the qubit has not reached θ+, which is typically the case.
The second transition happens at λ = 2/

√
3, above which

P∞(θ ) diverges at θ = θ+. This indicates that the system ini-
tialized in |0〉 typically reaches the vicinity of θ+, and spends
a long time there, before the click and the corresponding
jump to θ = π take place. So far, the population imbalance
between |0〉 and |1〉, s̄z(t ), exhibits oscillations, which are
reflected in the oscillations of the average state polarization,
s̄(t ). The third and final transition at λ = 2 marks the end
of the oscillations, so that, for λ > 2, s̄z(t ) steadily decays
in time, completing the final onset of Zeno-like dynamics.
These transitions set the overall picture of the onset of the
Zeno regime in the system, and constitute the main findings
of our paper.

To analyze these transitions and their implications in some
detail, consider first the nontrivial steady state, P∞(θ ). From
the condition dPt→∞(θ )/dt = 0, Eq. (6) gives

P∞(θ ) =
λ exp

[
2λ√
1−λ2

(
arctan

λ+tan θ
2√

1−λ2 − π
2

)]
(1 + λ sin θ )2

[
1 − exp

(
− 2πλ√

1−λ2

)] , (7)

for λ < 1, while for λ > 1 the expression reads

P∞(θ ) =
⎧⎨
⎩

λ
(1+λ sin θ )2

(
tan θ

2 +λ−√
λ2−1

tan θ
2 +λ+√

λ2−1

) λ√
λ2−1

, θ ∈ (θ+; π ],

0, θ ∈ (−π ; θ+].

(8)

In Fig. 2, the analytical results in Eqs. (7) and (8) are com-
pared with Monte Carlo numerical simulations of individual
quantum trajectories, showing excellent agreement. The first
two transitions in the system dynamics highlighted above are

evident from P∞(θ ) (see Fig. 2). The opening of the forbidden
region (−π ; θ+] appears discontinuously rather than opening
smoothly, since θ+ = θ− = −π/2 at λ = 1. It manifests itself
in the nonanalytic behavior of P∞(θ ) as a function of λ at
λ = 1. For λ > 1, the second transition shows up at θ ≈ θ+,
where

P∞(θ ) ∝
(

tan
θ

2
− tan

θ+
2

) λ√
λ2−1

−2

, (9)

which diverges at θ = θ+ for λ > 2/
√

3. The physics un-
derpinning this transition is evinced by Eq. (6) at θ = θ+.
The first two terms in the right-hand side, Pt (θ+)∂θ+�(θ+)
and −4�sλ sin2 θ+

2 Pt (θ+), describe the rate of accumulation
of probability for states at θ ≈ θ+ due to no-click dynamics
and the loss of such probability due to detector clicks, respec-
tively. At λ = 2/

√
3 the two terms balance each other, and

for λ > 2/
√

3 the former dominates. Note that the λ = 2/
√

3
transition goes unnoticed in both the average [state polariza-
tion s̄(t )] behavior and in the postselected r = 0 dynamics.

While the steady-state properties of P∞(θ ) showcase these
transitions, their role in the onset of the Zeno regime is fully
unveiled only in the full stochastic dynamics. To appreciate
that, consider the probability P(0)(t ) of obtaining a sequence
of no clicks (r = 0 readouts) of duration t [see Fig. 3 (inset)].
We obtain that at long times P(0)(t ) decays exponentially as

P(0)(t ) ∝ e−2�sζ (λ)t {A(λ) + B(λ) cos[εt + ϕ(λ)]}, (10)

where B(λ) = 0 for λ > 1, the frequency of the oscillatory
term for λ < 1 is ε = 2�s

√
1 − λ2, and the decay rate is

ζ (λ) = Re[λ − √
λ2 − 1] (see Appendix B for the deriva-

tion). The value λ = 1 is special in two respects. For λ < 1,
the system state rotates between |0〉 and |1〉 under no-click
dynamics. However, the probability of observing a click is dif-
ferent for different θ—hence the oscillations of P(0)(t ). With
the appearance of the forbidden region, the evolution under
no-click readout is frozen at θ = θ+, hence the oscillations
of P(0)(t ) disappear. The less obvious effect is that at λ = 1
the decay rate ζ (λ) is maximal (see Fig. 3). Therefore, the
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FIG. 3. The decay rates ζ (λ) (solid) and ζ̄ (λ) (dashed) charac-
terizing, respectively, the probability to observe no clicks P(0)(t ) and
the survival probability [1 + s̄z(t )]/2. Note the respective decay rate
maxima at λ = 1 and 2. Inset: The time dependence of P(0)(t ) for
λ = 0.5 (solid) and λ = 1.25 (dashed). At long times P(0)(t ) decays
exponentially with (without) superimposed oscillations for λ < 1
(λ > 1).

probability of observing a long sequence of no clicks increases
with the measurement strength for λ � 1, while it decreases
for λ � 1.

Consider now the probability P(0)(θ ) to reach a particu-
lar value of θ under no-click dynamics. P(0)(θ ) is obtained
from P(0)(t ) and the no-click evolution θ̇ (t ) = −�[θ (t )] via
P(0)(θ0) ≡ P(0)(t0) with t0 satisfying θ (t0) = θ0. In proximity
of θ = θ+, one has (see Appendix B)

P(0)(θ ≈ θ+) ∝
(

tan
θ

2
− tan

θ+
2

) λ√
λ2−1

−1

. (11)

Note that P(0)(θ ) vanishes at θ = θ+ for any finite λ > 1.
However, dP(0)(θ )/dθ vanishes at θ+ for λ < 2/

√
3 and di-

verges for λ > 2/
√

3. Therefore, for λ < 2/
√

3, the system
typically jumps to θ = π via a detector click before it reaches
θ+. For λ > 2/

√
3, the system is likely to reach a close vicin-

ity of θ+ before a click happens.
To observe the last transition, λ = 2, one needs to consider

the average state polarization, s̄(t ) = (s̄y(t ), s̄z(t )), and in par-
ticular the population imbalance, s̄z(t ). When the system is
initialized in state |0〉 at time t = 0, using Eq. (6), one finds
(see Appendix B)

s̄z(t ) = e−�sλt

(
cosh �st

√
λ2− 4 + λ

sinh �st
√

λ2 − 4√
λ2 − 4

)
. (12)

One sees that λ = 2 marks a transition from oscillatory
(at λ < 2) to nonoscillatory (at λ > 2) dynamics. The
same transition is observed in s̄y(t ). Similarly to P(0)(t )
in Eq. (10), s̄z(t → +∞) ∝ e−2�s ζ̄ (λ)t with the decay rate
ζ̄ (λ) = Re[λ − √

λ2 − 4]/2. Therefore, the decay rate ex-
hibits a maximum at λ = 2 (see Fig. 3). Importantly, s̄z(t )
characterizes not only the population imbalance but also the
survival probability [1 + s̄z(t )]/2, i.e., the probability to find
the system in state |0〉 when performing a projective mea-
surement at time t . The decay rate behavior implies that
the long-time survival probability increases with increasing λ

when λ � 2, and decreases otherwise [52]. On this ground,

one marks the transition at λ = 2 as the final onset of the
Zeno-like dynamics. Notably, the λ = 2 transition is also
reflected in a topological transition in the statistics of the
detector clicks [42].

We would like to note that while we used different quan-
tities to showcase each of the three dynamical transitions all
three of them can be inferred by looking at a single quantity:
the eigenmode spectrum of Eq. (6). This more mathematical
identification of the transitions and its relation to the physics
described here is discussed in Appendix C.

IV. OBSERVING THE TRANSITIONS EXPERIMENTALLY

The above physics can be readily observed in the setup
of recent experiments [26] by adjusting the measurement
strength/Rabi frequency. The simplest transition to observe
is that at λ = 2, which is apparent in routine experiments
measuring the average polarization or survival probability in
|0〉. Observing the transitions at λ = 1 and 2/

√
3 requires

sampling the distribution P∞(θ ) by tracking individual quan-
tum trajectories for sufficiently long times and performing
quantum tomography on the final states. This is possible with
state-of-the-art experimental techniques [5,26], though labo-
rious. A somewhat less laborious alternative to observe the
λ = 1 transition is to measure the probability to observe no
clicks for a given time, P(0)(t ). While this requires recording
every measurement outcome, it does not require knowing the
qubit state at time t . For the transition at λ = 2/

√
3, one can

measure the probability to reach a specific θ by a sequence
of no clicks, P(0)(θ ), which requires further tracing the qubit
state up to time t . This can be done either by inferring the
state from the theoretical dependence θ (t ) or via a tomogra-
phy of states postselected on r = 0 readouts (which has been
implemented in Ref. [26] for λ � 1).

V. CONCLUSIONS

Here we have studied the full stochastic dynamics of a sys-
tem subject to a constant Hamiltonian and a continuous partial
measurement. We have shown that the onset of the Zeno-like
regime is preceded by a number of drastic qualitative changes
in the system dynamics. Each such transition introduces a dif-
ferent feature of the fully localized dynamics, starting with the
opening up of a finite-size region of forbidden states, followed
by a singularity in the steady-state probability distribution of
states, and ultimately a nonoscillatory dynamics of the qubit
survival probability. We have proposed how to observe our
findings in current experiments. Strikingly, depending on the
definition of the “Zeno-like regime,” one could call each of the
transitions its onset. For example, the probability of observing
a long sequence of no clicks starts increasing with increasing
the measurement strength at λ = 1. The survival probability
starts increasing with increasing the measurement strength
only after the last transition at λ = 2. Some of our findings
may depend on the specific measurement model, making it
of interest to study the onset of the Zeno regime beyond
continuous partial measurement.
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APPENDIX A: A PHYSICAL MODEL OF THE
MEASUREMENT

The system under consideration in the paper is a qubit (|0〉,
|1〉) evolving under its own Hamiltonian and being measured
by a two-state detector (|0d〉, |1d〉) at intervals dt . The sys-
tem’s Hamiltonian is

Hs = �sσ
(s)
x . (A1)

We consider a system-detector Hamiltonian given by

Hs−d = J

2
(1 − σ (s)

z )σ (d )
y , (A2)

where the detector is also assumed to be a two-level system.
The detector is initially prepared in the state |0d〉 for each mea-
surement, i.e., at the beginning of each time step. The system’s
evolution under the combined effect of its Hamiltonian and the
coupling to the detector is given by the unitary evolution due
to

H = Hs + Hs−d , (A3)

for time dt , after which the detector is read out with readouts
r = 0, 1 corresponding to it being in |rd〉.

We consider the scaling limit of continuous measurements
defined as dt → 0, J2dt → α = const (i.e., J = √

α/dt). In
this limit, the measurement and the system evolution do not
intermix in a single step; therefore,

|ψ (t + dt )〉 = M (r)Us|ψ (t )〉. (A4)

The unitary evolution due to the system’s Hamiltonian is

Us = e−iHsdt = cos �sdt − iσ (s)
x sin �sdt

=
(

1 −i�sdt
−i�sdt 1

)
+ O(dt2).

The measurement back-action matrices, combining the effects
of the system-detector evolution and the readout in the state
|rd〉, defined as

M (r) = 〈rd |e−iHs−d dt |0d〉, (A5)

are

M (0) =
(

1 0
0 cos Jdt

)
=

(
1 0
0 1 − 1

2αdt

)
+ O(dt2), (A6)

M (1) =
(

0 0
0 sin Jdt

)
=

(
0 0
0

√
αdt

)
+ O(dt3/2). (A7)

These are the operators in Eq. (1) of the paper describing the
effect of the measurements.

APPENDIX B: CALCULATION OF POSTSELECTION AND
SURVIVAL PROBABILITIES

In the main text we have presented some of the observable
signatures of the transition in terms of the probabilities P(0)(t )
to observe a no-click sequence of duration t and P(0)(θ ) to
reach θ by a sequence of no clicks, as well as the behavior of
the average state polarization s̄(t ). Here we derive the results
stated in the main text.

1. Probabilities P(0)(t ) and P(0)(θ)

To determine the probability of the r = 0 postselected
trajectory, we start by solving the state evolution under a
sequence of zero readouts. The corresponding equation for θ

[see Eq. (3)] is

dθ

dt
= −2�s(1 + λ sin θ ). (B1)

The solution is

tan
θ

2
=

√
λ2 − 1 tanh[�s

√
λ2 − 1(t − t0)] − λ. (B2)

Setting the initial condition θ (t = 0) = 0 and simplifying the
expression, we arrive to

tan
θ (t )

2
=

√
λ2 − 1 coth

(
�st

√
λ2 − 1 − 1

2
ln

tan θ+
2

tan θ−
2

)
− λ

= − 1

λ + √
λ2 − 1 coth(�st

√
λ2 − 1)

. (B3)

For λ > 1, this expression describes the evolution of θ (t ) from
π at t = − 1

�s

√
λ2−1

arccoth( λ√
λ2−1

) to θ+ at t = +∞. For λ <

1, Eq. (B3) becomes

tan
θ (t )

2
= − 1

λ + √
1 − λ2 cot(�st

√
1 − λ2)

(B4)

and describes the periodic evolution of θ (t ) with period T =
π

�s

√
λ2−1

.
We are interested in the probability of having zero readout

at time t , P0(t ). Knowing the probability of obtaining r = 0
in each infinitesimal step, the equation for P0(t ) is readily
determined:

dP(0)(t )

dt
= − p1

dt
P(0)(t ) = −α sin2 θ (t )

2
P(0)(t ) = −α

tan2 θ (t )
2

1 + tan2 θ (t )
2

P(0)(t )

= −α
sinh2(�st

√
λ2 − 1)

λ2 cosh(2�st
√

λ2 − 1) − 1 + λ
√

λ2 − 1 sinh(2�st
√

λ2 − 1)
. (B5)
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Integrating the equation and demanding P0(t = 0) = 1, one obtains

P(0)(t ) = e−2�sλt λ
2 cosh(2�st

√
λ2 − 1) − 1 + λ

√
λ2 − 1 sinh(2�st

√
λ2 − 1)

λ2 − 1
. (B6)

This expression is not singular at λ = 1, where it becomes P0(t ) = (1 + 2�st + 2�2
s t2)e−2�st . For λ < 1, it reduces to

P(0)(t ) = e−2�sλt λ
2 cos(2�st

√
1 − λ2) − 1 − λ

√
1 − λ2 sin(2�st

√
1 − λ2)

λ2 − 1
. (B7)

From Eq. (B7), one can directly derive the long-time behavior of P(0)(t ) reported in the paper [see Eq. (10)], which is

P(0)(t → +∞) ∝ exp (−2�sλt ) × oscillating function, (B8)

for λ < 1, and

P(0)(t → +∞) ∝ exp
(
−2�s

[
λ −

√
λ2 − 1

]
t
)

(B9)

for λ > 1.
The probability to reach state θ via a sequence of r = 0 readouts, P(0)(θ ), is obtained from the equation

dP0(θ )

dθ
= dP0[θ (t )]

dt

/
dθ

dt
= 2λ sin2 θ

2

1 + λ sin θ
P0(θ ). (B10)

The solution with P(0)(θ = 0) = 1 is

P(0)(θ ) = 1

1 + λ sin θ

(
tan θ

2 − tan θ+
2

tan θ
2 − tan θ−

2

) λ√
λ2−1

(
tan θ+

2

tan θ−
2

)− λ√
λ2−1

= 1

1 + λ sin θ
exp

(
2λ√

1 − λ2

[
arctan

λ + tan θ
2√

1 − λ2
− arctan

λ√
1 − λ2

])
. (B11)

When λ > 1, starting at θ = 0 it is possible to reach only the
states with θ ∈ (θ+; 0], which is reflected in the vanishing of

P(0)(θ ≈ θ+) ∝
(

tan
θ

2
− tan

θ+
2

) λ√
λ2−1

−1

, (B12)

and in the properties of its derivatives discussed in the paper.

2. Survival probability and the average state polarization

The final quantity used in the paper to describe the dy-
namics of the system is the average state polarization after
time t , s̄(t ) ≡ (s̄y(t ), s̄z(t )), which is related to the survival
probability in the initial state |0〉, P (t ) = [1 + s̄z(t )]/2, i.e.,
the probability to measure the system in |0〉 upon a projective
measurement at time t . These quantities require averaging
over all the state trajectories, and no postselection is required.
The average s̄y and s̄z components of the polarization can be
expressed through the state distribution Pt (θ ):

s̄y(t ) =
∫ π

−π

dθPt (θ ) sin θ, (B13)

s̄z(t ) =
∫ π

−π

dθPt (θ ) cos θ. (B14)

It then follows from Eq. (6) that

d

dt

(
s̄y

s̄z

)
=

(−α
2 −2�s

2�s 0

)(
s̄y

s̄z

)
. (B15)

The evolution has two eigenvalues, �s(−λ ± √
λ2 − 4).

When the system is initialized in state |0〉 at t = 0, the evo-
lution of s̄(t ) is given by

s̄y(t ) = −2e−�sλt sinh �st
√

λ2 − 4√
λ2 − 4

, (B16)

s̄z(t ) = e−�sλt

(
cosh �st

√
λ2− 4 + λ√

λ2− 4
sinh �st

√
λ2− 4

)
.

(B17)

Its long-time behavior is given by

s̄y,z(t ) ∝
{

exp (−�sλt ) × oscillating function, for λ < 2,

exp
(
−�s

[
λ − √

λ2 − 4
]
t
)
, for λ > 2.

(B18)

Therefore, at long times, the survival probability P (t ) decays
to the steady-state value P (t → ∞) = 1/2. The decay rate is
�s(λ − √

λ2 − 4) = 2�s( λ−√
λ2−4
2 ). It exhibits a maximum at

λ = 2, resembling the maximum of the decay rate of P0(t ) at
λ = 1.

Note that the equation for the polarization evolution, yield-
ing two eigenvalues, �s(λ ± √

λ2 − 4), has been obtained
from Eq. (6). Thus, Eq. (6) “knows” about the eigenvalues
γ = 1

2 (−λ ± √
λ2 − 4) for any values of λ. At the same time,

these eigenvalues correspond to normalizable eigenmodes of
Eq. (6) only when λ < 2/

√
3 (see the discussion in Ap-

pendix C3).
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APPENDIX C: DERIVATION AND THE EIGENSPECTRUM
OF THE MASTER EQUATION

1. Derivation of Eq. (6)

The stochastic dynamics of the system is described by the
probability density Pt (θ ) of being in the state |ψ (θ )〉 at time
t for the stochastic variable θ . The probability of the system
being in an interval of states [θ1, θ2] at time t , Pt ([θ1; θ2]) =∫ θ2

θ1
dθPt (θ ), obeys the evolution∫ θ2

θ1

dθPt+dt (θ ) =
∫ θ̃2

θ̃1

d θ̃Pt (θ̃ )p0(θ̃ ) + �H (π ∈ [θ1; θ2])

×
∫ 2π

0
d θ̃ p1(θ̃ )Pt (θ̃ ), (C1)

where �H (x ∈ [a; b]) is 1 if x ∈ [a, b] and zero otherwise,
and pr (θ ) are the probabilities of obtaining the readout r in
a measurement:

pr=1 ≡ p1 = αdt sin2 θ (t )

2
, pr=0 ≡ p0 = 1 − p1. (C2)

The first term on the right-hand side of Eq. (C1) describes
the change of Pt+dt ([θ ′

1; θ ′
2]) due to the the smooth evolution

under r = 0 readout, while the second term accounts for
jumps to θ = π for the measurement outcome r = 1. The
variables θ̃1,2 are defined via the self-consistent condition
θ̃1,2 − �(θ̃1,2)dt = θ1,2, where �(θ ) = 2�s[1 + λ sin θ ] [see
Eq. (3)]. A differential equation for Pt (θ ) is obtained by solv-
ing the self-consistent equation to order (dt )2, differentiating
Eq. (C1) over θ2, and retaining the terms of order dt . With the
explicit expressions for pr and �(θ ), we get Eq. (6).

The integrodifferential master equation (6) needs to be
supplemented by the boundary conditions. They are simple:

Pt (θ = 0) = Pt (θ = 2π ). (C3)

In other words, Pt (θ ) = Pt (θ + 2π ). With this condition, it
is easy to check that the normalization by total probability∫ 2π

0 dθPt (θ ) = 1 is preserved by this equation. Finally, it is
useful for solving to eliminate the integral part of the equation.
This is easily done, as it only contributes at θ = π . Therefore,
Eq. (6) is equivalent to

dPt (θ )

dt
= −α sin2 θ

2
Pt (θ ) + ∂θ

[(
2�s + α

2
sin θ

)
Pt (θ )

]

(C4)

at θ �= π , supplemented with boundary condition

2�s[Pt (π + 0) − Pt (π − 0)] = −α

∫ 2π

0
dθ sin2 θ

2
Pt (θ ).

(C5)

2. Eigenmodes of Eq. (6)

We now derive the eigenmode solutions of Eq. (6), i.e., find
all the solutions of the form Pt (θ ) = e2�sγ t fγ (θ ). The reader
may skip the details and look at the result in Appendix C3.

Before diving into the derivation, it is useful to analyze
the expectations from the solution. Due to the normalization
condition, for every eigenmode with γ �= 0, we should

have
∫ 2π

0 dθ fγ (θ ) = 0. Since Pt (θ ) � 0, there can be no
eigenmodes with γ > 0. Thus, only solutions with γ � 0
are acceptable. Finally, since the decay rate of clicks at θ+
is p1(θ )/dt = α sin2 θ+

2 , for λ > 1 we expect an eigenmode
with 2�sγ � −α sin2 θ+

2 = −α tan2 θ+
2 /(1 + tan2 θ+

2 ) =
2�s(

√
λ2 − 1 − λ), i.e., γ �

√
λ2 − 1 − λ. We also expect a

steady-state solution with γ = 0 to exist.

a. The functional dependence

Away from θ = π , the equation for the eigenmodes is

−α sin2 θ

2
fγ (θ ) + ∂θ

[(
2�s+α

2
sin θ

)
fγ (θ )

]
= 2�sγ fγ (θ ).

(C6)

Equivalently,(
2�s + α

2
sin θ

)
f ′
γ (θ ) =

[α

2
(1 − 2 cos θ ) + 2�sγ

]
fγ (θ ).

(C7)

Note that for α � 4�s, at θ = θ±, the equation becomes sin-
gular as the factor multiplying the highest (and only) deriva-
tive vanishes. These singular points require special treatment.
However, this simply means that fγ (θ ∈ [−π ; θ+]) = 0 as this
interval is inaccessible from the time evolution of any state
initially outside it, as shown in the analysis of the postselected
dynamics in the paper. We will come back to the issue of the
special points later.

Away from the special points, the equation admits an an-
alytic solution, which can be expressed in two alternative
forms:

fγ (θ ) = C

(1 + λ sin θ )2
exp

(
2

λ + γ√
1 − λ2

[
arctan

λ + tan θ
2√

1 − λ2
− π

2

])
= C

(1 + λ sin θ )2

(
tan θ

2 − tan θ+
2

tan θ
2 − tan θ−

2

) λ+γ√
λ2−1

, (C8)

where λ = α/(4�s). The equivalence of the two expressions follows from

arctan x = 1

2i
ln

1 + ix

1 − ix
, (C9)

so one can write (
tan θ

2 − tan θ+
2

tan θ
2 − tan θ−

2

)y

=
(

tan θ
2 + λ − √

λ2 − 1

tan θ
2 + λ + √

λ2 − 1

)y

= exp

[
2y

(
arctan

λ + tan θ
2√

1 − λ2
− π

2

)]
.
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Obviously, the first form in Eq. (C8) is more convenient for λ < 1, while the second one is the natural choice for λ > 1. However,
for computational purposes one can use either. Note the singularities at θ = θ+ and θ− for λ > 1 (for λ < 1, tan θ±

2 − tan θ
2 �= 0

for any θ since tan θ±
2 has a nonzero imaginary part while tan θ

2 is a real function). From the equality

1 + λ sin θ = 1 + 2λ tan θ
2 + tan2 θ

2

1 + tan2 θ
2

=
(

tan θ
2 − tan θ+

2

)(
tan θ

2 − tan θ−
2

)
1 + tan2 θ

2

, (C10)

we obtain the following behavior in proximity of the singularity points at θ = θ±:

f (θ ≈ θ+) ∼
(

tan
θ

2
− tan

θ+
2

) λ+γ√
λ2−1

−2

, (C11)

f (θ ≈ θ−) ∼
(

tan
θ

2
− tan

θ−
2

)− λ+γ√
λ2−1

−2

. (C12)

The normalizability conditions ∣∣∣∣
∫ θ+

dθ f (θ )

∣∣∣∣ < ∞,

∣∣∣∣
∫ θ−

dθ f (θ )

∣∣∣∣ < ∞ (C13)

for Eqs. (C11) and (C12) imply that, for λ > 1, one must have
λ + Re γ√

λ2 − 1
> 1 (vicinity of θ+), (C14)

λ + Re γ√
λ2 − 1

< −1 (vicinity of θ−). (C15)

These two conditions are incompatible. The apparent contradiction is resolved by choosing the normalization constant C in
Eq. (C8) independently on intervals (−π ; θ−), (θ−; θ+), and (θ+; π ). Then, for normalizable solutions, C = 0 either on the first
two intervals or on the last two intervals. We do not investigate the case of C �= 0 on (−π ; θ−), as these solutions (if exist)
describe quick escape from the interval and cannot contribute if the system is initialized outside of it. Choosing C = 0 in the first
two intervals, the eigenmodes are normalizable, and one recovers the expected property fγ (θ ∈ [−π ; θ+]) = 0.

Putting these results together, we have the general expression for the eigenmodes, which reads, for λ > 1,

fγ (θ ) =

⎧⎪⎨
⎪⎩

C(1+tan2 θ
2 )2(

tan θ
2 −tan θ+

2

)2(
tan θ

2 −tan θ−
2

)2

(
tan θ

2 −tan θ+
2

tan θ
2 −tan θ−

2

) λ+γ√
λ2−1

, for θ ∈ [θ+; π ],

0, for θ ∈ [−π ; θ+],

(C16)

and, for λ < 1,

fγ (θ ) = C

(1 + λ sin θ )2
exp

(
2

λ + γ√
1 − λ2

[
arctan

λ + tan θ
2√

1 − λ2
− π

2

])
, for θ ∈ (−π ; π ). (C17)

b. The boundary conditions and normalization

The above does not present the final solution. We have two boundary conditions and a normalization condition to satisfy. The
first boundary condition, fγ (θ ) = fγ (θ + 2π ), is satisfied trivially.

The second boundary condition, which needs to be addressed further, Eq. (C5), yields

2�s
[

fγ (π − 0) − fγ (π + 0)
] = α

∫ π

−π

dθ sin2 θ

2
fγ (θ ). (C18)

Note that this condition is independent of C, hence it determines the spectrum of eigenmodes γ .
The normalization condition is ∫ 2π

0
dθ fγ (θ ) =

{
1, for γ = 0,

0, for γ �= 0.
(C19)

This should be used to determine C for the steady state (γ = 0) and should be satisfied automatically for all γ �= 0 eigenmodes.
The integrals can be calculated analytically:

∫
dθ f (θ ) = 2C

∫
dt

1 + t2(
t − tan θ+

2

)2(
t − tan θ−

2

)2

(
t − tan θ+

2

t − tan θ−
2

) λ+γ√
λ2−1

= C

λ + γ

(
t − tan θ+

2

t − tan θ−
2

) λ+γ√
λ2−1

⎛
⎝1 + λ

[
(2λ + γ )(1 − 2γ t ) − γ t2

]
(

t − tan θ+
2

)(
t − tan θ−

2

)(
γ − tan θ+

2

)(
γ − tan θ−

2

)
⎞
⎠, (C20)
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where t = tan θ
2 . Similarly,

∫
dθ sin2 θ

2
f (θ ) = 2C

∫
dt

t2(
t − tan θ+

2

)2(
t − tan θ−

2

)2

(
t − tan θ+

2

t − tan θ−
2

) λ+γ√
λ2−1

= C

2(λ + γ )

⎛
⎝t2 + (γ t − 1)2(

γ − tan θ+
2

)(
γ − tan θ−

2

)
⎞
⎠ 1(

t − tan θ+
2

)(
t − tan θ−

2

)
(

t − tan θ+
2

t − tan θ−
2

) λ+γ√
λ2−1

. (C21)

c. The solution for λ > 1 and θ ∈ [θ+; π]

Assuming λ+Re γ√
λ2−1

> 1, the boundary condition yields

2�sC = α

∫ π

θ+
dθ sin2 θ

2
fγ (θ ) = αC(2γ 2 + 2λγ + 1)

2(λ + γ )(γ 2 + 2λγ + 1)
⇐⇒ Cγ (γ 2 + γ λ + 1) = 0. (C22)

This fixes the possible γ , thus giving us three eigenmodes:

γ = 0, γ = 1

2

(
−λ ±

√
λ2 − 4

)
. (C23)

The norm of the eigenmodes is then∫ π

θ+
dθ f (θ ) = C

λ + γ

(
1 − γ λ

(γ 2 + 2λγ + 1)

)
= C

λ + γ

γ 2 + γ λ + 1

γ 2 + 2λγ + 1
, (C24)

which implies that the eigenfunctions with γ = 1
2 (−λ ± √

λ2 − 4) integrate to zero as expected. For the steady state, γ = 0, the
normalization condition

∫ π

θ+
dθ f (θ ) = 1 yields

C = λ, (C25)

fγ=0(θ ) = λ
(
1 + tan2 θ

2

)2

(
tan θ

2 − tan θ+
2

)2(
tan θ

2 − tan θ−
2

)2

(
tan θ

2 − tan θ+
2

tan θ
2 − tan θ−

2

)1/ cos θ+

= λ

(
1 + tan2 θ

2

)2

(
tan2 θ

2 + 2λ tan θ
2 + 1

)2

(
tan θ

2 + λ − √
λ2 − 1

tan θ
2 + λ + √

λ2 − 1

)λ/
√

λ2−1

. (C26)

Finally, we check the conditions in Eqs. (C11) and (C12):

λ + Re γ√
λ2 − 1

> 1 ⇐⇒ Re γ >
√

λ2 − 1 − λ. (C27)

Interestingly, the condition actually requires that all the eigen-
modes decay not slower than the decay rate at θ = θ+. The
steady state, γ = 0, always satisfies the condition for λ ∈
(1; +∞). For λ � 2, Re 1

2 (−λ ± √
λ2 − 4) = −λ/2. Then,

the normalizability condition is equivalent to

λ > 2
√

λ2 − 1 ⇔ 3λ2 < 4 ⇔ λ < 2/
√

3. (C28)

For λ > 2, the inequality 1
2 (−λ − √

λ2 − 4) <
1
2 (−λ + √

λ2 − 4) <
√

λ2 − 1 − λ always holds. Therefore,
the eigenmodes γ = 1

2 (−λ ± √
λ2 − 4) are only normalizable

for λ < 2/
√

3.

d. The solution for λ < 1

The same considerations hold for 0 � λ < 1. In this range
of parameters,

√
λ2 − 1 and tan θ±

2 become complex. There-
fore, it is more convenient to use fγ (θ ) in the first form

in Eq. (C8). At the same time, the integrals for the norm
and the boundary condition at θ = π are more conveniently
calculated using the expressions in Eq. (C16) (see Appendix
C2b). Using these expressions and the results of Appendix
C2b, one finds that the boundary condition at θ = π yields

C

λ + γ

γ 2+ γ λ + 1

γ 2+ 2λγ + 1

(
1 − exp

[
−2π

λ + γ√
1 − λ2

])
= 0. (C29)

Therefore, on top of the three eigenmodes, γ = 0 and
1
2 (−λ ± √

λ2 − 4), there is also an infinite sequence of eigen-
values given by

γ = −λ + im
√

1 − λ2, m ∈ Z. (C30)

Since there are no special points for λ < 1, both this infinite
set of solutions and the three eigenmodes in Eq. (C23) corre-
spond to valid normalizable eigenmodes.
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For the steady state, the normalization
∫ π

−π
dθ f (θ ) = 1

yields

C = λ

1 − exp
(
− 2πλ√

1−λ2

) , (C31)

fγ=0(θ ) = λ

1 − exp
(
− 2πλ√

1−λ2

) 1

(1 + λ sin θ )2

× exp

[
2λ√

1 − λ2

(
arctan

λ + tan θ
2√

1 − λ2
− π

2

)]
.

(C32)

For γ �= 0,∫ π

−π

dθ f (θ ) = C

λ + γ

γ 2 + γ λ + 1

γ 2 + 2λγ + 1

×
(

1 − exp

[
−2π

λ + γ√
1 − λ2

])
, (C33)

which vanishes due to the boundary condition above, as ex-
pected.

3. Summary of eigenvalues and eigenmodes of Eq. (6)

Putting together the results from Appendix C2, we can
summarize the solutions of the master equation (6) as follows.
The steady state, with eigenvalue γ = 0, is given for λ < 1 by

f0(θ ) = λ

1 − exp
(
− 2πλ√

1−λ2

) 1

(1 + λ sin θ )2
exp

[
2λ√

1 − λ2

(
arctan

λ + tan θ
2√

1 − λ2
− π

2

)]
, (C34)

while for λ > 1 it reads

f0(θ ) =
⎧⎨
⎩ λ

(1+λ sin θ )2

(
tan θ

2 +λ−√
λ2−1

tan θ
2 +λ+√

λ2−1

)λ/
√

λ2−1
, for θ ∈ [θ+; π ],

0, for θ ∈ [−π ; θ+],
(C35)

with tan θ±
2 = −λ ± √

λ2 − 1, λ = α/(4�s), and(
tan θ

2 + λ − √
λ2 − 1

tan θ
2 + λ + √

λ2 − 1

)λ/
√

λ2−1

= exp

[
2λ√

1 − λ2

(
arctan

λ + tan θ
2√

1 − λ2
− π

2

)]
. (C36)

These are the expressions used in the main text [see Eqs. (7) and (8)].
Several comments are in order. First, the expressions for both λ < 1 and λ > 1 are the same except for the normalization

constant, which exhibits an essential singularity at λ = 1 − ε. Second, exactly at the transition λ = 1,

f0(θ ) =
{

1
(1+sin θ )2 exp

[
− 2

1+tan θ
2

]
, θ ∈ [−π/2; π ],

0, θ ∈ (−π ; −π/2),
(C37)

which displays an essential singularity at θ = −π/2. Due to the nature of this singularity, the transition at λ = 1 appears smooth
when looking at the steady-state probability density. In this sense it could be regarded as a crossover.

The eigenmode spectrum consists of two sets of eigenvalues.
(1) γ = −λ + im

√
1 − λ2, m ∈ Z with

fγ (θ ) = C

(1 + λ sin θ )2
exp

(
2im

[
arctan

λ + tan θ
2√

1 − λ2
− π

2

])
. (C38)

These eigenvalues exist for λ � 1, become massively degenerate at λ = 1, and disappear at λ > 1. This disappearance coincides
with the opening of the forbidden region (−π ; θ+). Note, thus, that the λ = 1 transition, which appears as a crossover in the
steady-state behavior, presents a drastic change in the eigenmode spectrum.

(2) γ = 1
2 (−λ ± √

λ2 − 4) with

fγ (θ ) = C

(1 + λ sin θ )2
exp

(
λ ± i

√
4 − λ2

√
1 − λ2

[
arctan

λ + tan θ
2√

1 − λ2
− π

2

])
, for λ < 1, (C39)

fγ (θ ∈ [θ+; π ]) = C

(1 + λ sin θ )2

(
tan θ

2 − tan θ+
2

tan θ
2 − tan θ−

2

) λ±
√

λ2−4

2
√

λ2−1

, for λ > 1. (C40)

These eigenmodes disappear at λ > 2/
√

3. This disappear-
ance coincides with the steady state starting diverging at θ =
θ+ + ε.

Finally, note that the eigenvalues γ = 1
2 (−λ ± √

λ2 − 4)
for λ < 2 correspond to solutions with an oscillatory be-
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havior superimposed with a decay in time, while for λ >

2 they give steadily decaying in time solutions. This tran-
sition is identified in the paper in terms of the average
qubit polarization, and has been identified in the detec-
tor’s signal [42] as well. Here it appears as a property

of the eigenvalues spectrum. Curiously, these eigenvalues
are nonphysical for λ > 2/

√
3, which is before the tran-

sition is reached. At the same time, Eq. (6) does know
about these eigenvalues for any λ, as we show in Appendix
B2.
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