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Chiral anomalies induced transport in Weyl metals in quantizing magnetic field
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Weyl metals host relativistic chiral quasiparticles, which display quantum anomalies in the presence of external
electromagnetic fields. Here, we study the manifestations of chiral anomalies in the longitudinal and planar
magnetotransport coefficients of Weyl metals, in the presence of a quantizing magnetic field. We present a
general framework for calculating all the transport coefficients in the regime where multiple Landau levels are
occupied. We explicitly show that all the longitudinal and planar transport coefficients show quantum oscillations
which are periodic in 1/B. Our calculations recover the quadratic-B dependence in the semiclassical regime and
predict a linear-B dependence in the ultraquantum limit for all the transport coefficients.
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I. INTRODUCTION

Weyl metals (WMs) host massless chiral relativistic quasi-
particles which show very interesting and novel phenomena
[1–15]. One of the most interesting aspects of massless rel-
ativistic chiral fluids, in quantum field theory is the break-
down of the chiral gauge symmetry in the presence of an
external electromagnetic field [16–18]. This results in the
chiral anomaly (CA) which manifests in the nonconservation
of chiral charge [16–19]. A condensed matter realization of
this was first explored in the lattice theory of Weyl fermions
by Nielsen and Ninomiya in 1983 [18]. They predicted that
the CA will give rise to a positive longitudinal magneto-
conductivity, which is linear in the magnetic field strength
(B), for ultrahigh magnetic field in the diffusive limit. With
the recent realizations of WM [20], there have been sev-
eral experiments which report positive magnetoconductivity
or negative magnetoresistance and attribute it to the CA
[1–4,21–24].

Relativistic chiral fluids in a gravitational field also display
the mixed chiral-gravitational anomaly, which results in non-
conservation of the chiral energy [25,26]. This manifests in
the magnetothermal experiments in the form of positive mag-
netothermopower and positive magnetothermal conductivity
[26–29], both of which have also been observed in recent
experiments [30,31]. In addition to their manifestations in
longitudinal magnetotransport, CAs have also been shown to
give rise to the planar Hall effects in all transport coefficients
[29,32–40]. Recently, we predicted another anomaly, the ther-
mal chiral anomaly in which a temperature gradient collinear
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with the magnetic field gives rise to charge and energy imbal-
ance between the opposite chirality Weyl fermions [29].

However, the bulk of the theoretical work till date has
been focused on the semiclassical transport regime which
displays a quadratic-B dependence of all transport coefficients
[6,8,34,41–48] or only in the ultraquantum regime [18] (see
Fig. 1). Recently, a unified framework for calculating the elec-
trical magnetoconductivity in all the distinct transport regimes
have been developed in Refs. [49–51]. So it is natural to
ask what happens to the other magnetotransport coefficients.
Can all the distinct transport coefficients be explored within a
unified framework?

In this paper, we attempt to answer these and other related
questions. Here, we generalize the framework of Refs. [50,51]
for calculating all the magnetotransport coefficients in the
regime where multiple Landau levels are occupied and con-
nect them to the different CAs. We explicitly show that all the
longitudinal and planar transport coefficients show quantum
oscillations which are periodic in 1/B. Our calculations re-
cover the quadratic-B dependence in the semiclassical regime
and predict a linear-B dependence in the ultraquantum limit
for all the magnetotransport coefficients. The rest of the paper
is organized as follows: In Sec. II, we discuss the Landau
quantization in WMs, and in Sec. III, we connect the anoma-
lous magnetotransport in WMs to different CAs. In Sec. IV,
we present the general formalism of calculating all the CA-
induced magnetotransport coefficients. In Sec. V, we calculate
the longitudinal magnetotransport coefficients, followed by
the exploration of the magnetotransport coefficients in the
planar Hall setup in Sec. VI. We discuss the experimental pos-
sibilities in Sec. VII and summarize our results in Sec. VIII.

II. LANDAU QUANTIZATION IN WEYL METAL

In the presence of a magnetic field, the Hamiltonian of a
single Weyl cone (of chirality s), after Peierls substitution, is
given by

Ĥ s = svF σ · (p̂ + eA). (1)
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FIG. 1. (a) The three different magnetotransport regimes. In
the semiclassical regime (purple area), multiple Landau level are
occupied, but the impurity scattering or thermal smearing makes
them indistinguishable (h̄ωc < kBT or h̄/τ ). In the quantum oscil-
lation regime (blue), multiple Landau level are occupied and they
are distinguishable, while in the ultraquantum regime (green), only
the lowest Landau level is occupied (h̄ωc > μ). (b) The magnetic
field dependence of the magnetoconductance in the three transport
regimes for a WM.

Here, −e is the electronic charge, vF is the Fermi veloc-
ity, σ = (σx, σy, σz ) is a vector composed of the three Pauli
matrices, and A is the vector potential corresponding to the
magnetic field B = ∇ × A. Considering the magnetic field
along the z direction and using the Landau gauge with A =
(−By, 0, 0), it is straightforward to calculate the energy spec-
trum of the Hamiltonian in Eq. (1). The Landau level (LL)
energy spectrum is given by

εs
n± =

{−sh̄vF kz n = 0,

±
√

(h̄vF kz )2 + 2n(h̄ωc)2 n � 1.
(2)

Here, n denotes the LL index, kz is the z component of the
crystal momentum, and we have defined the cyclotron fre-
quency, ωc = vF /lB with lB = √

h̄/(e|B|) being the magnetic
length scale. In the rest of the paper, we will use B = |B|. The
energy spectrum of Eq. (2) is shown in Figs. 2(a) and 2(b). We
emphasize that the lowest LL are chiral in nature, i.e., right
(left) movers for negative (positive) chirality node, and will
play a crucial role in the CAs [18] discussed in this paper.

FIG. 2. The Landau level energy spectrum in a WM for (a) pos-
itive and (b) negative chirality Weyl node, respectively. The lowest
LLs disperse linearly and are chiral in nature. Here, k̃z ≡ h̄vF kz/μ.
(c) The corresponding density of states (DOS) of the LL spectrum.
The DOS is scaled by D/(hvF ). The DOS for the lowest (n = 0)
LL is constant, and it increases as the energy moves away from the
Weyl nodes. The oscillation in the DOS will also manifest in all the
transport coefficients.

In contrast, all the n � 1 LLs are achiral (support both right
and left movers), and they play an important role in quantum
oscillations.

Each of the LLs is highly degenerate and the degeneracy
is specified by D = 1/(2π l2

B). The density of states (DOS) of
the LL spectrum is shown in Fig. 2(c). The group velocity of
the quasiparticles in these LLs is given by

vs
nz = ∂εs

n

h̄∂kz
=

{
−svF n = 0,

h̄v2
F kz/ε

s
n n � 1.

(3)

Here, εs
n → εs

n+ (εs
n → εs

n−) for the positive (negative) energy
branches. The carriers of the lowest LLs have a constant
velocity, and are either left movers (for s = 1) or right movers
(for s = −1). Next, we discuss the origin of quantum anoma-
lies from the lowest chiral LLs and explore their manifestation
in electric and thermal magnetotransport experiments in WM
[25,27,29,41,52].

III. EQUILIBRIUM CURRENTS AND COEFFICIENTS OF
CHIRAL ANOMALIES

One simple way to understand the origin of CAs in
WM is to calculate the equilibrium (no externally applied
bias voltage or temperature gradient) current, in the pres-
ence of a magnetic field. The equilibrium charge and en-
ergy current for each Weyl node is given by { js

e,eq, js
E,eq} =

D
∑

n

∫ dkz

2π
vs

nz{−e, εs
n} f s

n . Here, f s
n is the Fermi-Dirac distri-

bution function for the nth LL: f s
n ≡ 1/[1 + eβ(εs

n−μ)] with
β ≡ 1/kBT , and μ denotes the chemical potential. These
expressions for the current are valid for both the εs

n+ and the
εs

n− branches, which are chosen depending on μ being positive
and negative, respectively. For all the LLs with n �= 0, the
integrand is an odd function of kz, and thus their contribution
to the total charge and energy current is identically zero. Thus,
only the n = 0 LL can contribute to the equilibrium charge
and energy current. To evaluate this contribution, we will con-
sider the chemical potential to be positive (μ > 0). Evaluating
these expressions using integration by parts [28,29], we obtain

js
e,eq = −e

(
μCs

0 + kBTCs
1

)
B, (4)

js
E,eq =

(
μ2 Cs

0

2
+ μkBTCs

1 + k2
BT 2 Cs

2

2

)
B. (5)

Here, the coefficients Cs
ν for ν = {0, 1, 2} are given by

Cs
ν = e

2π h̄

∑
n

∫
dkz

2π
vs

nz

(
εs

n − μ

kBT

)ν(
−∂ f s

n

∂εs
n

)
. (6)

For our choice of μ > 0, we have εs
n → εs

n+. A brief derivation
of Eqs. (4) and (5) is sketched in Appendix A. We emphasize
here that Eqs. (4)–(6) are exact expressions and these do not
require any approximation. In Eq. (6), only the chiral lowest
LLs (n = 0) contribute to the sum and we have Cs

ν ∝ s, the
chirality of the Weyl node. Thus, the existence of the chiral
LLs is an essential ingredient to obtain the nonzero charge and
energy currents for each node even in equilibrium. These chi-
ral currents are in turn related to the CAs in WMs [27,29,52].
We had earlier derived equations similar to Eqs. (4) and (5)
in the semiclassical regime, where the Berry curvature of the
Weyl nodes played an important role [29].
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FIG. 3. The temperature dependence (x = βμ) of the dimen-
sionless functions associated with the CAs. Note that in x → ∞
or T → 0 for a finite μ > 0 limit, these functions are constant as
shown in the orange shaded region. In this region, the coefficient of
thermal chiral anomaly F1 → 0. However, it has a finite value in the
finite x regime. For this paper, we will mostly focus on the regime
μ > kBT or x > 1, which is shaded in blue, and on the μ � kBT
regime, shaded in orange.

The quantities Cs
0, Cs

2, and Cs
1 are known as the coefficient

of the chiral (or axial) anomaly [41], the coefficient of the
mixed chiral (or axial) gravitational anomaly [25,27,52] and
the coefficient of the thermal chiral (or axial) anomaly [29],
respectively. We emphasize that the coefficient Cs

1 vanishes
in the βμ → ∞ limit and has been relatively unexplored.
Evaluating Eq. (6), we obtain

Cs
ν = −s

e

4π2h̄2

⎧⎪⎨
⎪⎩
F0(βμ) ν = 0,

(7a)

F1(βμ) ν = 1, (7b)

F2(βμ) ν = 2. (7c)

Here, we have defined F0(x) = 1
1+e−x for the chiral anomaly,

F1(x) = x
1+ex + ln(1 + e−x ) for the thermal chiral anomaly,

and F2(x) = π2

3 + 2Li2(−e−x ) − 2x ln(1 + e−x ) − x2

1+ex for
the mixed chiral-gravitational anomaly. The x dependence of
these functions is explicitly shown in Fig. 3. In the x → ∞
limit, these functions are constant [see Eq. (20)], with F2

being the largest of the three and F1 → 0. However, the
thermal chiral anomaly coefficient F1 has a finite value for
finite x.

In equilibrium, the total charge and energy current from
all the Weyl nodes in a WM adds up to zero, as opposite
chirality nodes always appear in pairs in a WM. However, the
chiral charge current ( j+e,eq − j−e,eq) and energy current ( j+E,eq −
j−E,eq) are nonzero even in equilibrium. More interestingly,
in the presence of an external electric field or a temperature
gradient, this leads to charge and energy imbalance between
pair of opposite chirality Weyl nodes. Below, we explore the
consequence of this in magnetotransport experiments.

IV. NONEQUILIBRIUM CURRENTS AND CHIRAL
ANOMALIES

An applied electric field or temperature gradient drives
the system out of equilibrium. In the Boltzmann transport

formalism, the nonequilibrium distribution function (NDF),
gs

n, within the relaxation time approximation, satisfies the
following equation [29,50]:

∂t g
s
n + k̇s

n · ∇kgs
n + ṙs

n · ∇rgs
n = −gs

n − ḡs
n

τ
− ḡs

n − f s
n

τv

. (8)

Here, ḡs
n is the local equilibrium distribution function consid-

ered to be the Fermi function for the nth LL with a node-
dependent chemical potential μs and temperature T s. The first
term in the right-hand side of Eq. (8) represents the relaxation
of the NDF to the local equilibrium through the intranode
scattering rate 1/τ . The intranode scattering does not alter
the number of carriers in the respective node, and its impact
is similar to that in other metals as well. In contrast, the
second term represents the internode scattering with a relax-
ation rate of 1/τv , which attempts to undo the impact of the
chiral imbalance [Eqs. (9) and (10)] and restore a steady-state
carrier distribution function. In a typical WM with broken
time-reversal symmetry, the Weyl nodes are separated in the
momentum space. If we are in a regime of small μ so that the
Fermi wave vector is smaller than the separation of the Weyl
nodes, then we have τv � τ [8].

The idea of a steady state in the presence of CAs and
internode scattering becomes more evident from the continu-
ity equations of particle number and heat density for electric
field and temperature gradient applied along the direction of
magnetic field. Integrating Eq. (8) over all the states in a single
cone, we obtain the particle number conservation equation
(within the linear response) to be

∂N s

∂t
+ ∇r · Js

n + eEBCs
0 = −N s − N s

0

τv

. (9)

Here, ∇r · Js
n = kBCs

1B∇T is the divergence of the particle
current. The quantities {N s

0 ,N s} = D
∑

n

∫ dkz

2π
{ f s

n , gs
n} are

the total particle number density in each Weyl cone before
and after applying external fields, respectively. In Eq. (9), the
terms with Cs

0EB and Cs
1B∇T represent CA-induced flow of

particle [29].
Following a similar procedure, we construct the continuity

equation for heat density. Multiplying Eq. (8) by ε̃s
n ≡ εs

n − μ

and integrating over all the states of a given Weyl node, we
obtain

∂Qs

∂t
+ ∇r · Js

Q + eEBCs
1kBT = −Qs − Qs

0

τv

. (10)

Here, ∇r · Js
Q = k2

BCs
2T B∇T is the divergence of the heat cur-

rent. The quantities {Qs
0,Qs} = D

∑
n

∫ dkz

2π
ε̃s

n{ f s
n , gs

n} are the
heat density in each cone, before and after applying external
fields, respectively. In Eq. (10), EBCs

1 and Cs
2B∇T represent

the CA-induced flow of the heat density [29]. In constructing
Eqs. (9) and (10), we have used the fact that the intranode
scattering does not change the number of carrier and energy
of each Weyl node.

To evaluate the charge and heat currents in this steady
state, we now calculate the NDF from Eq. (8). Within the
linear response regime, it is reasonable to expect that the
change in chemical potential and temperature in each cone
is small: δμs ≡ μs − μ < μ and δT s ≡ T s − T < T . Then to
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FIG. 4. Chiral anomalies induced charge and energy imbalance
in a WM in the ultraquantum limit. (a) The electrical chiral anomaly
induced nonconservation of chiral charge in the presence of paral-
lel electric and magnetic fields. (b) The mixed chiral-gravitational
anomaly induced nonconservation of chiral energy in the presence of
a temperature gradient parallel to the magnetic field.

the lowest order in δμs and δT s, the NDF can be expressed as

gs
n = f s

n − τvs
nz

(
eE + εs

n − μ

T
∇T

)(
−∂ f s

n

∂εs
n

)

+
(

1 − τ

τv

)(
δμs + εs

n − μ

T
δT s

)(
−∂ f s

n

∂εs
n

)
. (11)

In Eq. (11), the chiral chemical potential δμs and chiral
temperature δT s are given by(

δμs

kBδT s

)
= −τvB[Ds]−1

(Cs
0 Cs

1

Cs
1 Cs

2

)(
eE

kB∇T

)
. (12)

Here, we have defined the magnetic-field-dependent general-
ized energy density matrix, Ds ≡ (Ds

0 Ds
1

Ds
1 Ds

2

)
, with

Ds
ν = D

∑
n

∫
dkz

2π

(
εs

n − μ

kBT

)ν(
−∂ f s

n

∂εs
n

)
, (13)

and ν = {0, 1, 2}.
Equation (12) quantifies the chiral charge and energy im-

balance in the two Weyl nodes. These imbalances are propor-
tional to the coefficients of CAs and inversely proportional to
the generalized energy density. The former is due to the fact
that CAs are responsible for the charge and heat imbalances.
The latter is a consequence of the fact that a smaller DOS
will lead to a larger change in δμs and δT s and vice versa.
These imbalances are schematically depicted in Fig. 4 in the
ultraquantum limit with only the lowest LLs being occupied.
Figure 4(a) shows the δμs induced by the electrical chiral
anomaly and Fig. 4(b) displays the δT s generated by the
mixed chiral-gravitational anomaly. In addition to these two
anomalies, the thermal chiral anomaly has a nonzero contri-
bution to both the charge and energy imbalances, though this
contribution is relatively smaller [29].

V. LONGITUDINAL MAGNETOTRANSPORT

Having obtained the NDF in the Landau quantization
regime, we now proceed to calculate the magnetotrans-
port coefficients. The steady-state nonequilibrium charge and
heat current for each Weyl node is defined as { js

e, js
Q} =∑

n D
∫ dkz

2π
vs

nz{−e, ε̃s
n}gs

n. Focusing only on the anomaly-
induced contribution which is proportional to the internode

scattering time τv , we obtain

(
js
e

js
Q

)
= −τvB2

( −eCs
0 −eCs

1

kBTCs
1 kBTCs

2

)
[Ds]−1

(Cs
0 Cs

1

Cs
1 Cs

2

)

×
(

eE

kB∇T

)
. (14)

Note that in Eq. (14), the magnetic field dependence of the
charge and heat current comes from (i) the B2 term, (ii) the
DOS which depends on B via the LL spectrum, and (iii)
magnetic field dependence of τv . The transport coefficients
can now be easily obtained from the phenomenological re-
lations for linear response: je,i = ∑

j[σi jE j − αi j∇ jT ] and
jQ,i = ∑

j[ᾱi jE j − κ̄i j∇ jT ]. Here, σ , α, ᾱ, and κ̄ denote the
electrical, thermoelectric, electrothermal, and constant volt-
age thermal conductivity matrix, respectively. In the limiting
case of βμ → ∞ (or μ � kBT ), the thermal chiral anomaly
coefficient Cs

1 → 0. In the same limit, we find Ds
0,Ds

2 � Ds
1.

Using these, Eq. (14) can be rewritten as

(
js
e

js
Q

)
= τvB2

⎛
⎝ 1

Ds
0

(
eCs

0

)2 Ds
1

Ds
0Ds

2
eCs

0kBCs
2

T Ds
1

Ds
0Ds

2
eCs

0kBCs
2 T 1

Ds
2

(
kBCs

2

)2

⎞
⎠(

E

−∇T

)
.

(15)
From Eq. (15), we note that σ ∝ (Cs

0)2, κ̄ ∝ (Cs
2)2, and α ∝

ᾱ ∝ Cs
0Cs

2. Thus, it is reasonable to associate different trans-
port coefficients with different CAs. The presence of thermal
chiral anomaly coefficient in the more general Eq. (14) leads
to a more complicated dependence of the transport coeffi-
cients on the anomaly coefficients.

We now explore the different regimes of magnetotransport
depending on the strength of applied magnetic field: (i) the
ultraquantum regime where only the lowest (n = 0) LLs are
occupied, (ii) the quantum oscillation regime with a few
distinguishable LLs being occupied, and (iii) the semiclassical
regime with many but indistinguishable LLs being occupied.

A. Ultraquantum regime

In the ultraquantum regime, only the lowest (n = 0) LL is
occupied and we have h̄ωc � μ. In this regime, the CA coef-
ficients have already been calculated in Eq. (7). We calculate
the finite-temperature DOS and its energy moments defined in
Eq. (13) to be

Ds
ν,0 = D

2π h̄vF

⎧⎪⎨
⎪⎩
F0(βμ) ν = 0,

(16a)

F1(βμ) ν = 1, (16b)

F2(βμ) ν = 2. (16c)

Note that similar to the coefficient of thermal CA, Cs
1, the first

energy moment of the DOS, Ds
1,0 is relatively smaller than the

other two. Using these expressions in Eq. (14), we obtain the
anomaly-induced charge current to be

js
e = e

h

eBτvvF

h
[eF0(βμ)E + kBF1(βμ)∇T ]. (17)

033511-4



CHIRAL ANOMALIES INDUCED TRANSPORT IN WEYL … PHYSICAL REVIEW RESEARCH 2, 033511 (2020)

We highlight the linear-B dependence of the charge cur-
rent. The corresponding charge conductivity is given by
σ s

zz = e2

4π2 h̄
vF τv

l2
B
F0(βμ). Since F0(x → ∞) ≈ 1, this repro-

duces the previously obtained results [18,41,49,53,54] in the
limit βμ → ∞.

The corresponding thermoelectric conductivity is given by
αs

zz = − kBe
4π2 h̄

vF τv

l2
B
F1(βμ) which is small but nonzero for finite

βμ. Remarkably, we find that the magnetic-field-induced ther-
moelectric conductivity is negative, unlike its semiclassical
counterpart [29,47] and violates the Mott relation. However,
in the limiting case of βμ → ∞, αs

zz → 0, consistent with the
results of Refs. [27,52]. As a consequence of this vanishing α,
the magnetic-field-induced change in the Seebeck coefficient,
S = ασ−1, is equal to the magnetic-field-induced change in
σ . This in turn implies that the magnetoresistance (MR) in the
Seebeck coefficient is equal to the MR in the resistivity. This is
in contrast with the semiclassical regime where the MR in the
Seebeck coefficient is twice that of the MR in the resistivity
[29,31,47].

The CA-induced heat current is obtained to be

js
Q = kBT

h

eBvF τv

h
[−eF1(βμ)E − kBF2(βμ)∇T ]. (18)

Similar to the charge current, the heat current also shows a
linear-B dependence. The validity of the Onsager’s reciprocity
relation, ᾱ(B) = T α(−B) can also be confirmed. The con-
stant voltage thermal conductivity is given by

κ̄s
zz = k2

BT

4π2h̄

vF τv

l2
B

F2(βμ). (19)

Interestingly, for finite βμ, we find that κ̄s
zz and σ s

zz are
not connected via the Wiedemann-Franz law. However, the
Wiedemann-Franz law gets restored in the βμ → ∞ limit,
and we have κ̄s

zz = π2

3 ( kB
e )2σ s

zz. This linear-B dependence of
the thermal conductivity in the ultraquantum limit has also
been observed in recent experiments [52,55].

B. Quantum oscillation regime

In this section, we will discuss the scenario when multiple
LLs are occupied. For this, the chemical potential has to be
larger than the separation between the LLs (μ > h̄ωc). Since
we want to highlight the oscillations in the magnetotransport
coefficients, we work in the regime kBT � h̄ωc, so that the
temperature broadening does not smear out the signatures
of the discrete LLs. These two conditions combine to yield
μ � kBT and thus we focus on the limit of βμ → ∞ in this
section. In this limit, the coefficients of CAs are given by

Cs
ν = −s

e

4π2h̄2

⎧⎪⎨
⎪⎩

1 ν = 0,
(20a)

0 ν = 1, (20b)

π2/3 ν = 2. (20c)

In contrast to the anomaly coefficients, the DOS and its
energy moments get contributions from all the filled LLs.

FIG. 5. (a) The variation of the longitudinal charge conductivity
with B (for μ = 25 meV). Note the linear-B dependence in the
ultraquantum regime. The inset shows the low-field behavior and the
semiclassical quadratic-B dependence is shown in orange. (b) The
μ dependence of the longitudinal charge conductivity (for B = 2 T).
Note that the spurious divergence of the longitudinal conductivity as
μ → 0 in the semiclassical limit is not there in the LL picture. Here,
we have chosen vF = 2 × 105 m/s and τv = 10−9 s.

The highest occupied LL index can be calculated to be nc =
int[μ2/(2h̄2ω2

c )], and we obtain

Ds
ν = D

2π h̄vF

⎧⎪⎪⎪⎨
⎪⎪⎪⎩


0 ν = 0, (21a)

2π2

3βμ

1 ν = 1, (21b)

π2

3 
0 ν = 2. (21c)

Here, we have defined 
0 ≡ 1 + ∑nc
n=1 2/λn and 
1 ≡

−∑nc
n=1 2n(h̄ωc/μ)2/λ3

n with λn =
√

1 − 2n(h̄ωc/μ)2. Note
that nc ∝ int[1/B]. So the number of occupied LLs is in-
versely proportional to B. This combined with Eq. (21a)
is what leads to quantum oscillations in the longitudinal
magnetoconductivity with a period proportional to 1/B. As
a consistency check, we note that Eq. (21a) obtained here, is
identical to Eq. (4) of Ref. [50]. We find that while Ds

0 and
Ds

2 are more or less temperature independent (for μ > kBT ),
Ds

1 depends inversely on βμ and vanishes in the limit T → 0.
Using Eqs. (20) and (21) in Eq. (15), we calculate the charge
current to be

js
e = e2BτvvF

h2

(
e


0
E − kB

2π2

3βμ


1


2
0

∇T

)
. (22)

The 1/
0 term in the charge conductivity originates from
the 1/Ds

0 term in Eq. (15), and it gives rise to oscillations
in the longitudinal conductivity which are periodic in 1/B
[49,50]. The B dependence of the longitudinal conductiv-
ity is displayed in Fig. 5. Additionally, we find that the
longitudinal thermoelectric conductivity also shows quantum
oscillations arising from the discreteness of the LLs. In this
case, the 
1/


2
0 term in Eq. (22) governs the features of

the quantum oscillations. The Onsager’s reciprocity relation,
ᾱ(B) = T α(−B), holds for the longitudinal thermoelectric
conductivity, even in the quantum oscillation regime.

We calculate the heat current to be

js
Q = kBT

eBτvvF

h2

π2

3

(
2e

βμ


1


2
0

E − kB


0
∇T

)
. (23)

Equations (22) and (23) are the main results of this paper. We
have demonstrated that the longitudinal thermal conductivity
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FIG. 6. (a) The variation of the longitudinal thermal conductivity
with B. The linear-B dependence in the ultraquantum regime (for B >

12 T here) is evident. The inset shows the small B behavior and the
semiclassical B2 dependence is shown by the orange line. (b) The μ

dependence of the longitudinal thermal conductivity. The parameters
are identical to those of Fig. 5 and T = 10 K.

also possess quantum oscillations with features very similar to
that of the charge conductivity (both dictated by 1/
0) [56].
The dependence of the thermal conductivity on the magnetic
field and the chemical potential is shown in Fig. 6.

Remarkably, we find that the period of oscillations of
the longitudinal transport coefficients σ and κ̄ , defined in
Eqs. (22) and (23), satisfies the Onsager’s quantization rule
for Shubnikov–de Haas oscillations [57] in the transverse
conductivity. However, this is not surprising, considering the
fact that for both of these the origin lies in the DOS of the
LLs. Onsager’s quantization rule for the Shubnikov–de Haas
oscillations in the transverse conductivity states that the period
of conductivity oscillation (in 1/B) is given by

�

(
1

B

)
= 2πe

h̄

1

Ae
. (24)

Here, Ae is the extremal cross section of the Fermi surface in a
plane perpendicular to the magnetic field. For our longitudinal
conductivity, we find that both the charge and thermal con-
ductivity vanishes at μ2 = 2n(h̄ωc)2. This yields the period of
oscillation to be �1(1/B) = 2eh̄v2

F /μ2. Since the Fermi sur-
face in an isotropic WM is spherical with Ae = πk2

F , �1(1/B)
is consistent with Eq. (24). The quantum oscillation in 1/B in
the longitudinal components of σ and κ̄ are explicitly shown
in Fig. 7.

C. Semiclassical regime

In this section, we show that for small B when many LLs
are occupied, we can recover the semiclassical results for the

FIG. 7. The (a) charge and (b) thermal conductivity as a function
of the inverse of the magnetic field. The constant period of oscil-
lation in 1/B is evident. The period of oscillation is determined by
Onsager’s quantization rule defined in Eq. (24).

CA-induced transport coefficients [29]. For closely spaced
LLs such that μ � h̄ωc, we can replace the discrete sum
over LLs by an integral:

∑nc
0 → ∫ nc

0 dn. In this limit, we
obtain 
0 ≈ 2(μ/h̄ωc)2 and 
1 ≈ 2(μ/h̄ωc)2. Using these
expressions, it is straightforward to calculate

Ds
ν ≈ μ2

2π2

1

h̄3v3
F

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 ν = 0, (25a)

2π2

3βμ
ν = 1, (25b)

π2

3 ν = 2. (25c)

These expressions are identical to the DOS derived in Ref.
[29].

Now, the charge current can be obtained to be

js
e = e2

8π2h̄

(eB)2v2
F

μ2
τvvF

(
E − kB

e

2π2

3μβ
∇T

)
. (26)

The charge conductivity is identical to the previously reported
results [29,41,47] which show quadratic-B and positive mag-
netoconductivity. This semiclassical quadratic-B dependence
is a well-established signature of the CA in the low-field
limit, and it has also been experimentally verified [21–23].
The thermoelectric conductivity is also consistent with the
previously obtained semiclassical results [29,47], and with the
experimental observations in Dirac metals and/or semimetals
[30,31]. A similar calculation yields the heat current

js
Q = kBT

8π2h̄

(eB)2v2
F

μ2
τvvF

π2

3

(
2e

βμ
E − kB∇T

)
. (27)

We note that the thermal conductivity obtained here is iden-
tical to the previous reports [29,47] and it has recently been
measured in GdPtBi [52]. The magnetic field and the Fermi
energy dependence of charge conductivity in this regime
are shown in Fig. 5 on top of the quantized LL results. In
Fig. 5(a), the three different transport regimes, with different
B dependences, are evident. In the inset, the yellow line
shows the semiclassical fitting. In Fig. 5(b), the Fermi energy
dependence is displayed. In Fig. 6, we have shown the same
for the thermal conductivity.

VI. PLANAR HALL EFFECTS

So far we have explored the impact of CAs in the longitudi-
nal magnetotransport coefficients. However, it has been shown
that the origin of planar Hall effects and anisotropic longitu-
dinal transport coefficients in nonmagnetic materials can also
be related to CAs [32–36]. Here, we explore the impact of
quantized LLs, on all the planar Hall transport coefficients and
explore the possibility of quantum oscillations in them.

In the planar Hall setup [37–40], we measure the longitudi-
nal and Hall transport coefficients in the plane of the E − B (or
∇T − B) fields, as shown in Fig. 8(a). Here the electric field is
applied along the z direction with a planar magnetic field ap-
plied at an angle φ, so that B = B(cos φẑ + sin φŷ). However,
it turns out that the calculations for the case where the electric
field or temperature gradient is parallel or perpendicular to the
magnetic field are relatively easier [58,59]. Thus, we perform
our calculations in a rotated frame of reference (z′-y′), so that
the magnetic field lies along the z′ axis of the new frame, as
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FIG. 8. (a) A schematic of the planar Hall geometry experiments.
(b) For ease of calculations, we work in the frame of reference with
an axis aligned along the magnetic field. This is rotated with respect
to the laboratory frame (aligned along the electric field or tempera-
ture gradient) by an angle φ. The B dependence of (a) the anisotropic
longitudinal thermal conductivity (κ̄zz ∝ cos2 φ) and (b) the planar
Righi-Leduc effect (κ̄yz ∝ cos φ sin φ) for different angles between
the magnetic field and the temperature gradient. The inset shows the
contribution of the lowest LL.

shown in Fig. 8(b). The coordinates in the two frames are
related as (

z′
y′

)
=

(
cos φ sin φ

− sin φ cos φ

)(
z
y

)
. (28)

If the transport coefficients are denoted by L′
i j in this rotated

frame, then the transport coefficients in the laboratory frame,
Li j = {σi j, αi j, ᾱi j, κ̄i j}, are given by

(
Lzz Lzy

Lyz Lyy

)
=

(
cos φ − sin φ

sin φ cos φ

)(
L′

zz L′
zy

L′
yz L′

yy

)

×
(

cos φ sin φ

− sin φ cos φ

)
. (29)

For an electric field applied at an angle to the magnetic
field, there are two different effects at play. The parallel
component of the electric field (the component parallel to the
magnetic field: E‖ = E cos φ) makes the crystal momentum
time dependent: k′

z → kz + eE‖t/h̄. This modifies the NDF of
the electronic states as shown in Eq. (11), with the substitution
E → E‖. The perpendicular component of the electric field
(E⊥ = E sin φ) modifies the LL spectrum and the associated
DOS, as derived in detail in Appendix B. The modified LL
spectrum gives rise to a nonlinear (in E⊥) DOS as shown in
Eq. (B9). A similar approach was used in Ref. [51] to demon-
strate that the longitudinal planar conductivity has a cos6 φ

angular dependence, and the planar Hall component has a
cos5 φ sin φ angular dependence, arising from the nonlinear
terms in the DOS. However, in this work we work in the linear
response regime and focus on the quantum oscillation of the
planar thermal transport coefficients. Using the LL dispersion,
we calculate the velocity along the magnetic field (to zeroth

order in E⊥) to be

vnz′ = vF

⎛
⎝sn

kz√
2n
l̃2
B

+ k2
z

− sδn,0

⎞
⎠. (30)

Here, sn = sgn(n). There is also a Lorentz velocity component
along the x direction (perpendicular to the B − E plane),
vnx = E sin φ/B, which gives rise to the conventional Hall
effect. The velocity component along the y′ direction is zero.

Now, it is straightforward to calculate the transport coeffi-
cients in the rotated frame of reference, z′-y′. Using Eq. (29)
to revert back to the laboratory frame, we find that the
B-dependent part of the transport coefficients picks up the
familiar angular dependence given by

{σzz, αzz, ᾱzz, κ̄zz} = {σ ′
zz, α

′
zz, ᾱ

′
zz, κ̄

′
zz} cos2 φ, (31)

{σyz, αyz, ᾱyz, κ̄yz} = {σ ′
zz, α

′
zz, ᾱ

′
zz, κ̄

′
zz} sin φ cos φ. (32)

In deriving Eqs. (31) and (32), we have used the fact that
L′

yy = L′
yz = 0. This follows from the fact that the velocity

component along the y′ axis is zero. This clearly estab-
lishes that the planar Hall transport coefficients retain the B
dependence of the longitudinal transport coefficients in the
linear response regime. Consequently, they also display the
three regimes of (i) ultraquantum transport which is linear
in B, (ii) quantum oscillation transport regime, and (iii) the
semiclassical transport regime which is quadratic in B.

The B dependence of the longitudinal and the planar
(Righi-Leduc) thermal conductivity is shown in Figs. 8(c)
and 8(d), for different orientations of the magnetic field. The
quantum oscillations in both of these can be clearly seen.
Similar quantum oscillations will also be there in all other
transport coefficients.

VII. DISCUSSION

In this paper, we have presented all calculations within the
constant scattering time approximation. The energy and tem-
perature dependence of the scattering timescale can be easily
included and it does not change the qualitative features of the
discussed transport coefficients. However, we have to be more
careful in analyzing the magnetic field dependence of the scat-
tering timescale. For the short-range impurity scattering, real-
ized via neutral defects, the scattering rate is proportional to
the density of states [8,53,60]. Now, in the ultraquantum limit,
the DOS is proportional to B, and hence τv ∝ 1/B. Thus, the
transport coefficients may become completely independent of
the magnetic field in this regime. For the case of multiple
filled LLs, the magnetic field dependence of the scattering
timescale is more complicated. Additionally, the magnetic
field dependence for other scattering mechanisms like charged
impurities and phonons among others is still an open problem.
For an isolated system, the chemical potential can also depend
on the magnetic field strength. However in our case, the device
is connected to external leads (or reservoirs), which set the
chemical potential of the system [61].

As shown in Fig. 1, the semiclassical or quantum transport
regimes are quantified by ωcτ or β h̄ωc. Now, if ωcτ � 1
along with β h̄ωc � 1, then the LL broadening caused either
by the impurities or by the thermal smearing is less than
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the LL separation, making them distinguishable. This is the
regime where the discreteness of the LLs manifests itself in all
physical quantities including transport coefficients. Here, the
shortest scattering timescale dominates the disorder-induced
broadening. This typically turns out to be the intranode scat-
tering time (τ ) in WMs. For a system with vF = 2 × 105

m/s and τ ≈ 10−12 s, we have B � 0.02 T for observing
quantized Landau levels in transport experiments. So a value
of B ≈ 1 T is very likely to show the quantum oscillation
regime. This corresponds to h̄ωc ≈ 5 meV, which is easily
much larger than the thermal energy scale for temperatures
T < 60 K. Furthermore, the use of Boltzmann transport equa-
tion assumes the presence of a weak disorder strength which
preserves the shape of the Fermi surface. This is specified via
the condition μ � h̄/τ . Thus, to explore the ultraquantum
limit, we have to be in the regime h̄/τ < μ < h̄ωc. For a
magnetic field of B = 10 T and τ ≈ 10−12 s, this translates
to 0.7 meV < μ < 16 meV.

VIII. CONCLUSIONS

The origin of longitudinal magnetoresistance is physically
very intriguing since the electrons do not feel any Lorentz
force along the applied electric field. Particularly in chiral
fluids such as WM, the longitudinal transport coefficients can
also originate from CAs, which makes longitudinal transport
in WM even more exciting [62,63]. In this paper, we have
presented a unified framework for calculating the transport
coefficients which captures all three transport regimes: (i)
ultraquantum, (ii) quantum oscillation, and (iii) semiclas-
sical. We derive explicit analytical expressions for all the
CA-induced magnetotransport coefficients in the regime of
multiple LL being occupied. We explicitly show that the
mixed chiral-gravitational anomaly induced longitudinal ther-
mal conductivity and the planar Righi-Leduc thermal conduc-
tivity display quantum oscillations with features similar to
that in the longitudinal conductivity. Additionally, we find a
linear-B dependence of all magneto-transport coefficients in
the ultraquantum limit, a quadratic-B dependence in the semi-
classical regime, and quantum oscillations in the intermediate
regime. Our work will be useful in analyzing and interpreting
the exciting magnetotransport experiments in Weyl metals.
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APPENDIX A: EQUILIBRIUM CURRENT

While the equilibrium current for each of the Weyl cone of
a specific chirality is nonzero, the total contribution from two
cones of opposite chirality add up to zero. In this Appendix,
we outline the calculation of the equilibrium currents for each
Weyl node. The equilibrium charge and energy currents are
defined via the equation

{
js
e,eq, js

E,eq

} = D
∑

n

∫
dkz

2π
vs

nz

{ − e, εs
n

}
f s
n . (A1)

Here, the integration limit is kz ∈ [−∞,∞]. The contribution
to both the currents from all LLs except for the n = 0 level
vanishes since the integrand is an odd function of kz for n �= 0.
A nonzero contribution arises only from the lowest LLs.

The n = 0 LL for each chirality is linearly dispersing and
extends to ±∞ in energy. For such systems, which have a
vacuum state of infinite negative-energy states occupied, the
physical currents have to be calculated by subtracting the
contribution of the vacuum states. This is generally done by
defining the current operators via normal ordering. We find
that this is equivalent to adopting the integration limit of kz ∈
[0,∞) for s = −1 (or kz ∈ [−∞, 0) for s = 1) in Eq. (A1).
Performing a variable change from kz → ε, and doing an
integration by parts, we obtain

js
eq ∝

[
g(ε) f (ε)

∣∣∞
0 −

∫ ∞

0
dεh(ε)

∂ f

∂ε

]
. (A2)

Here, g(ε) and h(ε) are power functions of energy ∝εn

with n = 1, 2 and the explicit form depends on whether we
calculate the charge or energy current. It is straight forward to
show that the first term in Eq. (A2) vanishes as g(ε) → 0 for
ε → 0 and fn(ε) → 0 for ε → ∞. The second term yields the
expression of the equilibrium charge current [Eq. (4)] and the
equilibrium energy current [Eq. (5)].

APPENDIX B: CROSSED ELECTRIC
AND MAGNETIC FIELDS

The configuration of crossed fields where magnetic field
is applied perpendicular to the bias voltage is common in the
context of classical Hall effect. In this section, we solve the
LL spectrum for such scenario. Let us consider the magnetic
field to be Bẑ and electric field to be E ŷ. The corresponding
electromagnetic potentials we choose as A = (−By, 0, 0) and
φ = −Ey. Now, the LL spectrum can be obtained by solving
the wave equation Ĥ� = ε� with

Ĥ = vF [σx( p̂x − eBy) + σy p̂y + σz p̂z] + eEyσ0. (B1)

Here, σ0 is a 2 × 2 identity matrix. Following Ref. [58], we
can recast this wave equation in the four-momentum language
with p0 = ε/vF and make the Lorentz transformation as
[51,59] (

p̂0

p̂1

)
=

(
cosh θ sinh θ

sinh θ cosh θ

)(
ˆ̃p0
ˆ̃p1

)
. (B2)

Here, tanh θ = E
vF B . This Lorentz transformation takes us to

a frame which moves along the positive x direction with ve-
locity vF tanh θ . In this frame, there is no electric field. Now,
using the identities σ 2

x = σ0 and (σ0 cosh θ − σx sinh θ ) =
exp(−θσx ), we rewrite the wave equation as

vF

[
σx

(
ˆ̃px − eB

cosh θ
ỹ

)
+ σy ˆ̃p2 + σz ˆ̃pz − σ0 ˆ̃p0

]
�̃ = 0.

(B3)

Here, �̃(t̃, x̃, ỹ, z̃) = exp(−σxθ/2)�(t, x, y, z). Equation (B3)
represents the familiar wave equation in the presence of a
magnetic field only and its eigenvalue and wave functions are
known. The only difference is the strength of the magnetic
field is modified as B → B/ cosh θ . Using B̃ = B/ cosh θ and
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sn = sgn(n), the LL spectrum is obtained to be

ε̃n( p̃z ) = sn

√
(vF p̃z )2 + 2|n|h̄eB̃v2

F − svF p̃zδn,0. (B4)

After doing the inverse Lorentz transformation, we obtain

εs
n(kx, kz ) = 1

η2
h̄vFKs

n(kz ) + h̄vF kx tanh θ. (B5)

Here, we have defined η−2 =
√

1 − tanh2 θ and

Ks
n(kz ) = sgn(n)

√
2|n|

(lBη)2
+ k2

z − skzδn,0. (B6)

The most notable effect of the perpendicular electric field is
the second term in Eq. (B5). As a result of this, the carriers
have finite velocity along the x axis, perpendicular to the E–B
plane. It is straightforward to calculate

vnz = vF

η2

⎛
⎝sn

kz√
2n
l̃2
B

+ k2
z

− sδn,0

⎞
⎠; vnx = E

B
. (B7)

We note that the x component of the velocity is simply the
Lorentz velocity, which is a constant and identical for all the
LLs. This is what gives rise to the classical Hall effect.

We emphasize that Eq. (B3) represents a harmonic oscilla-
tor with center at y = (l̃B)2 p̃x/h̄. In the laboratory frame, this

can be written as

y′
c = l2

Bkx + l2
BKs

n(kz ) sinh θ. (B8)

The perpendicular electric field in this expression lifts
the degeneracy of LLs, and consequently it modifies the
DOS. Using the general formula of DOS, ρ(ε) = ∑nc

n=0
1

(2π )2∫∫
dkxdkzδ(εs

n − ε), a small calculation yields

ρ(ε) = η2ρ0

[
2

nc∑
n=0

λn(ε,+) − λn(ε,−)

eELy
− 1

]
. (B9)

Here, we have defined

λn(ε,±) =
√(

ε ± eELy

2

)2

− 2|n|(h̄ωcη−3)2. (B10)

Equation (B9) is a nonlinear function of the electric field
strength.

In the limit of eELy � ε, expanding Eq. (B10) in powers
of the strength of the electric field we obtain the DOS to be
ρ(ε) = η2ρ0
0. Here,


0 = 2
nc∑

n=0

1√
1 − 2|n|(h̄ωcη−3)2

− 1. (B11)

This expression of the DOS was used in Ref. [51] to calculate
the angular dependence of the planar Hall conductivity. How-
ever, in this paper, we will focus on the linear response regime
and retain only the term independent of the electric field. To
the lowest order in E , we have η → 1, and Eq. (B9) reduces
to the expression of the DOS derived in Eq. (21), which was
independent of E .
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