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Exciton-polariton interference controlled by electric field
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Linear-in-wave-vector K terms of an electron Hamiltonian play an important role in topological insulators
and spintronic devices. Here we demonstrate how an external electric field can control the magnitude of a
linear-in-K term in the exciton Hamiltonian. The effect of the electric field on interference of exciton polaritons in
a high-quality structure with a wide GaAs quantum well was experimentally studied by means of the differential
reflection spectroscopy. It is found that the interference pattern is strongly suppressed at certain electric field
and then it is reinstalled, but with an inverted phase, at the further increase of the field. This behavior of
the pattern is successfully explained by the electric-field-induced linear-in-K terms in the Hamiltonian of the
exciton propagating across the quantum well. An excellent agreement between the experimental data and the
results of calculations using semiclassical nonlocal dielectric response model confirms the validity of the method
and paves the way for the realization of excitonic Datta-Das transistors. In full analogy with the spin-orbit
transistor proposed by Datta and Das [Appl. Phys. Lett. 56, 665 (1990)], the switch between positive and negative
interference of exciton polaritons propagating forward and backward in a GaAs film is achieved by application
of an electric field having a nonzero component in the plane of the quantum well layer.
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I. INTRODUCTION

GaAs is the best studied direct band-gap semiconductor
nowadays. A remarkable progress of the epitaxial growth
technology made it possible to fabricate nearly ideal layers
of GaAs, where very fine quantum effects may be studied.
Engineering of quantum properties of quasiparticles in semi-
conductor heterostructures has led to a set of remarkable
discoveries in the past decades. Spin-orbit interaction in such
structures drastically changes the dispersion of an electron
moving in a crystal and leads to appearance of the effective
magnetic field, strongly related to the wave vector of the car-
rier, and affecting the electron spin [1,2]. These fundamental
properties have been originally understood by Dresselhaus
and Rashba as effects of the odd in the electron’s wave-vector
k terms for crystals with inversion symmetry breaking [3–6].

Linear-in-k terms of the electronic Hamiltonian are in the
heart of the spin Hall effect [7–9] and the Datta-Das [10] tran-
sistor proposal. They play a key role in topological insulators
[11] and are essential for the research on Majorana fermions
[12–14]. While the linear-in-k terms imposed by spin-orbit
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coupling in semiconductors are extensively studied by now
[2,5,15,16], less is known about spin-independent linear-in-k
terms that may be induced by strain or external electric field.
From the group theory point of view, the existence of such
terms is straightforward, however, their experimental detec-
tion in transport or optical measurements is still challenging.

Here we show that a good tool for the characterization of
spin-independent linear-in-K terms may be offered by the dif-
ferential reflectivity spectroscopy of semiconductor quantum
wells. The signatures of quantum-confined states of light-
matter quasiparticles, exciton polaritons, in reflectivity spectra
contain a precious information on the exciton kinetic Hamil-
tonian. We have found that varying the magnitude of the
linear-in-K terms by tuning the external electric field, one
should be able to invert the shape of excitonic resonances in
the reflectivity spectra. The presence of the phase-inverted res-
onances is the irrefutable evidence for the linear-in-K terms,
while the dependence of the shape of the resonances on
the applied field provides a quantitative information on the
magnitude of these terms. Moreover, the switching between
positive and negative interference of exciton-polariton modes
propagating in forward and backward directions induced by
the in-plane electric field constitutes a clear manifestation of
the Datta-Das effect for excitons.

Several previous studies were devoted to the excitonic
effects induced by linear-in-K terms. In particular, a K de-
pendence of the exciton g factor [17–19], an increase of
the exciton-light coupling in the longitudinal magnetic field

2643-1564/2020/2(3)/033510(12) 033510-1 Published by the American Physical Society

https://orcid.org/0000-0003-0651-9375
https://orcid.org/0000-0002-4004-7001
https://orcid.org/0000-0002-4270-4343
https://orcid.org/0000-0001-9879-5582
https://orcid.org/0000-0003-2713-1062
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033510&domain=pdf&date_stamp=2020-09-29
https://doi.org/10.1063/1.102730
https://doi.org/10.1103/PhysRevResearch.2.033510
https://creativecommons.org/licenses/by/4.0/


D. K. LOGINOV et al. PHYSICAL REVIEW RESEARCH 2, 033510 (2020)

directed along the heterostructure growth axis [20], and an
increase of the exciton effective mass in a transverse magnetic
field [21] are reported. In Refs. [22,23], an effect of a uniaxial
strain on the exciton states is experimentally and theoretically
studied for wide quantum wells (QWs). A nontrivial effect
of the phase inversion of the spectral oscillations has been
predicted. It is related to the appearance of the linear-in-K
terms in the exciton Hamiltonian in the presence of strain.

The effect of an electric field on the exciton states in
semiconductor crystals and heterostructures has been studied
already for several decades [24–34]. The works studying ef-
fects of the electric field on excitons mainly devoted to the
relatively narrow QWs. The application of an electric field
gives rise in this case to a modification of the relative electron-
hole motion in an exciton [31,32], thus causing the Stark shift
of exciton states [35–37] and inducing a static dipole moment
of excitons [38,39].

The wide QWs, however, are of particular interest because
they offer an opportunity to study the effect of an electric
field on the motion of the exciton as a whole particle. The
excitons with large wave vectors, K � q, where q is the
wave vector of light, can be experimentally observed due
to their quantum confinement in the wide QWs. The wave-
vector selection rules for optical transitions are broken by
the QW interfaces. The model of quantization of the exciton
motion across the QW layer is well verified for the wide QWs
[31,40–43]. In contemporary optical experiments with wide
QWs in high-quality heterostructures, one can observe many
quantum-confined exciton states. The states are typically ob-
served as resonant features (oscillations) in the reflectance
spectra of the heterostructures [40–51]. This allows one to
study the effects of the external fields on the propagating
excitons.

There are very few studies of the electric-field effects
for excitons with large-K vector. One can refer to the paper
by Zielinska-Raczynska et al. [52], where an electro-optical
function for P excitons in a thin Cu2O plate is theoretically
analyzed. However, only a particular case of the codirected
electric field and the exciton K vector, which are perpendic-
ular to the plate surface, has been considered. These effects
are studied in relatively small electric fields where the exciton
ionization is not important. In the QW structures, a relatively
strong electric field can be applied across the QW layer where
the ionization processes are effectively blocked by the barri-
ers. Application of a strong electric field along the QW layer
is impractical because of various secondary effects related to
the presence of resident or photocreated carriers. They are
accelerated by the electric field and destroy the exciton states.

In this work we study the quantum-confined exciton states
in a wide QW in the presence of an electric field, which con-
tains a nonzero in-plane component. The electroreflectance
spectra were measured for a heterostructure with the 120-nm
GaAs QW. Multiple resonant peculiarities (spectral oscil-
lations) related to the quantum-confined exciton states are
observed in the spectra. The application of an electric field
F , tilted at a small angle to the structure growth axis, is found
to reduce the oscillations almost down to zero amplitude at
some critical value of the electric field Fc. However, the oscil-
lations appear again as the field increases beyond this critical
value. The phase of these oscillatory features in the spectra

becomes inverted with respect to that for the case of F < Fc.
In other words, the electric field can be used to control the
phase of the spectral resonances. It opens up an opportunity to
design the polariton interferometry devices similar to those
based on the electro-optical effect [10,53].

A theoretical model accounting for the interference of
polaritonic waves is developed to describe the spectra. The
inversion of the phase of spectral oscillations is shown to be
governed by the linear-in-exciton wave-vector K term of the
exciton Hamiltonian that is induced by the in-plane electric-
field component. The electroreflectance spectra simulated in
the framework of a polaritonic model well reproduce the main
features observed in the experiment. The only free parameter
of the model is the factor λ that defines the magnitude of
linear-in-K term. An estimate of this factor is also given.

II. EXPERIMENT

The studied semiconductor structure was grown on a n-
doped GaAs (001) substrate by the gas source molecular
beam epitaxy. It contains several heterolayers including QWs,
superlattices, and quantum dots. Here we consider only a
thick GaAs QW, which was grown between a short-period
GaAs/AlAs superlattice (SL) and a thin AlAs layer followed
by a thick In0.51Ga0.49P barrier layer. The nominal width of
the QW is 120 nm.

The sample was provided with a semitransparent indium
tin oxide (ITO) electrode (Schottky contact) on the top surface
and with an Ohmic contact on the back surface. Both the
applied bias Ubias and the electric current flowing through
the sample were controlled during the experiments. Measure-
ments have shown that the current exponentially increases as
the bias is approaching to +1 V. The absolute value of the
current also rises superlinearly at negative bias Ubias < −2 V.

Reflectrance spectra were measured using a tunable
continuous-wave titan-sapphire laser as a light source. The
laser beam was directed almost perpendicularly to the sam-
ple surface. It was focused in a relatively small spot with a
diameter of about 100 μm near the edge of the electrode. The
bias was applied to a point contact at the opposite edge of the
5-mm round electrode. A sketch of the sample with electric
contacts is shown in the inset of Fig. 1(a). Due to the relatively
large resistance of this thin electrode of about 3 k�/cm, the
voltage applied to the sample in the illuminated area deviated
from that applied under the contact. What is important for this
work, the electric field created by the voltage was directed
at some angle to the growth axis z, that is, it has a nonzero
in-plane component Fx. As we discuss below, this component
is responsible for the observed effect. To increase the detec-
tion sensitivity of the electric-field-induced variations of the
reflectance spectra, an alternative-current (ac) voltage with the
amplitude of 0.1 V at the frequency of 100 kHz was applied in
addition to the bias. Besides, the intensity of laser beam was
modulated at the frequency of 2 kHz. A double lock-in detec-
tion of the signal modulated at both frequencies allowed us to
detect small changes of reflection as low as 10−6. In fact, the
electroreflectance spectra were measured in our experiments
[54].

An example of an electroreflectance spectrum measured
at Ubias = −1.5 V is shown in Fig. 1(a). Many oscillations
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FIG. 1. (a) An example of the electroreflectance spectrum of
a heterostructure with the 120-nm GaAs QW at Ubias = −1.5 V.
Inset shows a sketch of the sample with electrodes. The blue lines
display the directions of the applied electrical field. The red cone
is the laser beam focused onto the semitransparent ITO electrode.
(b) Two-dimensional plot illustrating evolution of the spectra with
the bias varied from +1 V to −2.5 V. (c) Zoom to (a) showing the
effect of the phase inversion of the spectral oscillations.

in the wide spectral range 1.5–1.8 eV are observed in the
spectrum. In principle, there are several possible mechanisms
for the spectral oscillation formation. One of them is the light
interference at the thin transparent layers [41]. In our sample,
however, there are no such layers with required thickness of
order of several tens of micrometers. Besides, the oscillations
should be insensitive to the applied electric field. Another
possible origin of spectral oscillations is the Franz-Keldysh
oscillations [55]. These oscillations appear in the presence
of an electric field and their period strongly depends on the
field strength and decreases with the photon energy rise. This
behavior of the oscillations is not observed in our experiments.

We attribute the oscillations to the quantum-confined ex-
citon states in the QW. Similar oscillations were measured
in reflectance spectra of heterostructures with wide QWs by
many authors [18,41,42,44–46]. However, such oscillations
are typically observed in a relatively narrow spectral range,
of order of several tens of meV. Here, due to the strongly
increased sensitivity, we managed to measure the oscillations
in the broader spectral range.

The energy distance between the oscillations gradually
increases. An analysis of the experimental data gives rise
to a phenomenological dependence for the oscillation ener-
gies: En ≈ Eg + an5/3 where Eg = 1.52 eV is the band gap
in GaAs and n is the oscillation number. It is well known
that quantization of the exciton motion as a single particle
leads to quadratic dependence of the energy on its number
[44,46]. This dependence comes from the assumed parabolic
dispersion for the electron and hole energy states. However,
for the broad energy range, the dispersion, in particular the
electron dispersion, deviates from the parabolic law [16]. It
explains the observed energy dependence of the oscillations.
We take into account this dependence in our theoretical mod-
eling below.

The application of voltage in the range Ubias = 0 . . .

−1.5 V does not considerably affect the spectral oscillations
[see Fig. 1(b)]. Only small energy shifts and variations of the
oscillation amplitudes are observed at these values of bias.
However, further increase of the bias (in absolute value) is
followed by a dramatic decrease of the oscillation amplitude.
Such an effect would be expected due to fast ionization of
excitons in the electric field with a subpicosecond character-
istic time. This is, however, not the case for the experimental
data under discussion. Indeed, the spectral oscillations appear
again at Ubias < −2 V. The phase of the appearing oscillations
is opposite to that for small bias, i.e., the spectral maxima and
dips are inverted at the strong bias. This effect is illustrated
in detail in Fig. 1(c). We should note that the experimental
observation of the phase inversion effect has not been reported
in the literature so far.

A similar effect of the phase inversion of spectral oscil-
lations related to the quantum-confined exciton states has
been theoretically predicted for reflectance spectra of the
heterostructures with wide QWs uniaxially compressed per-
pendicularly to the growth axis [22]. As it was found in that
work, the phase inversion is a result of the linear-in-K term
appearing in the exciton Hamiltonian of the strained QW
structure. We may assume, therefore, that the phase inversion
observed in the tilted electric field has a similar origin. The
theoretical analysis described below confirms this assumption.

III. THEORY

It is well known that spectral oscillations of the reflection
coefficient can be described as an interference of the forward
and backward polaritonic waves propagating in a wide QW
[22,31,32,45,48,56]. The phase inversion observed experi-
mentally at the bias of Ubias ≈ −1.8 V can, therefore, be a
result of the electric-field-induced phase shift between these
waves. Similarly to work [22], we assume that this phase shift
is due to the linear-in-K term in the exciton Hamiltonian. As
we show below, this term appears due to the modification of
the wave function of the relative electron-hole motion by the
in-plane electric-field component.

According to the model accounting for the interference of
the polaritonic waves, a reflectance spectrum is determined by
a dielectric function depending on the polariton wave vector
(the effect of spatial dispersion) [31,32]. Following the ex-
perimental conditions, we assume that the incident linearly
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polarized light-wave propagates perpendicularly to the het-
erostructure surface. The linear polarization is a superposition
of two circular components creating excitons with the angular
momentum projections Sz = +1 and −1. We consider the
dielectric function for one component only. The expression
for another component is similar.

The dielectric function, which takes into account the
exciton-light interaction, is described by the expression
[31,32,45,48]

ε(ω, K ) = εb + εbh̄ωLT(F )

H (F, K ) − h̄ω + ih̄�
. (1)

Here, εb is the background dielectric constant, h̄ωLT is
the longitudinal-transverse exciton splitting describing the
exciton-light interaction strength, ω is the frequency of light,
h̄� is the exciton damping rate. Term H (F, K ) is the exciton
energy depending on the electric field and the exciton wave
vector. This energy is obtained from the exciton Hamiltonian,
whose dependence on the electric field eventually determines
behavior of the reflectance spectra.

A. Exciton Hamiltonian in the presence of electric field

Let us consider an exciton moving along the z axis coincid-
ing with the [001] crystal axis and the growth axis of the wide
QW made of a semiconductor crystal having a zinc-blende
symmetry. Axes x and y are assumed to be directed along
the [100] and [010] crystal axes, i.e., along the QW plane.
The corresponding components of the exciton wave vector are
taken to be K = Kz, Kx = Ky = 0.

The exciton Hamiltonian includes the Hamiltonian of a
free electron, the Luttinger Hamiltonian of a free hole [16],
the term describing the Coulomb electron-hole interaction,
and the term describing the effect of an electric field. We
consider hereafter only the heavy-hole excitons because their
contribution into the reflectance spectra is considerably larger
than that of the light-hole excitons [42,48].

Since the QW width is much larger than the exciton Bohr
radius, we shall use the model of quantization of the exciton
center-of-mass motion. Rearranging the terms of the exciton
Hamiltonian, we can represent the energy operator as

Ĥ = Eg + ĤK + Ĥp + V̂ , (2)

where Eg is the band gap in GaAs. The second and the third
terms describe, respectively, the motion of the exciton center
of mass and the relative electron-hole motion. The last term
describes the mixing of the relative motion and the exciton
motion due to deviation of real crystal symmetry from the
spherical one. The QW potential is not included in the Hamil-
tonian because of the large width of the QW. The effect of the
QW interfaces will be discussed later (see Sec. III B), when
the exciton wave functions will be analyzed.

The Schrödinger equation with only the operator ĤK de-
termines the exciton motion in a crystal. The eigenstates of
this Hamiltonian can be represented as plane waves �K (z) =
�0 exp(iKz), where �0 is a normalizing constant, with the
kinetic energy Ekin = h̄2K2/(2M ). Here M = me + mh is a
sum of electron and hole effective masses.

The operator Ĥp in Hamiltonian (2) describing the relative
electron-hole motion includes also the effect of electric field:

Ĥp = − h̄2

2μ

∑
α=x,y,z

∂2

∂α2
− e2

εbr
+ e(F · r). (3)

Here, α = αe − αh, where α = x, y, and z denotes coordi-
nates of the relative electron-hole motion, μ = memh/(me +
mh) is the reduced exciton mass, and e is the electron charge.
The Schrödinger equation containing this operator will be
used to obtain a wave function of the relative motion in
Sec. III B.

The last term in the exciton Hamiltonian (2) plays an
important role for the discussed phenomenon. It contains the
cubic functions of the components of the free-electron and
hole wave vectors [5,16,57]:

V̂ =
∑

α=x,y,z

[
κ̂

(h)
α γv

(
a1Ĵα + a2Ĵ3

α

) + κ̂
(e)
α γcσ̂α

]
. (4)

Here, κ̂
(h)
α and κ̂

(e)
α are defined by κ̂z = k̂z(k̂2

y − k̂2
x ) and κ̂x

and κ̂y can be obtained by the cyclic permutation of indices.
Operators k̂α describe the components of the wave vector of
free electron or hole. Quantities γv , γc are the material con-
stants, whose values for the GaAs crystal are γc = 24.5 eV Å3,
γv = −74 eV Å3 [5]. Dimensionless factors a1 = 13

8 and a2 =
− 1

2 are defined by the symmetry of the crystal lattice. Matrices
σ̂α and Ĵα describe the electron and hole spin degrees of
freedom, respectively [16].

A transition from the operators κ̂
(e)
α and κ̂

(h)
α to the wave

vector of the center-of-mass exciton motion K = Kz and the
momentum of relative electron-hole motion p̂α = −ih̄∂/∂α is
carried out by a substitution of expressions

k̂(e,h)
z = ±1

h̄
p̂z + me,h

M
K,

k̂(e,h)
x,y = ±1

h̄
p̂x,y (5)

into Eq. (4). It gives rise to many terms containing different
combinations of K and k̂(e,h)

α in the first and second powers.
We consider here only the term V̂K , which includes the wave
vector K in the first power. This is the term which is required
for the description of the effect under discussion. As our
analysis shows, other terms only slightly affect the exciton
energy, obtained from the Schrödinger equation containing
the first three terms of Eq. (2).

The linear-in-K part of the operator (4) reads as

V̂K = 1

h̄2 K
(
p̂2

x − p̂2
y

)[
γv

mh

M

(
a1Ĵz + a2Ĵ3

z

) + me

M
γcσ̂z

]
. (6)

Here, Ĵz and σ̂z are the diagonal matrices of the hole angular
momentum and of the Pauli matrix. We should note that the
operators Ĵz, Ĵ3

z , σ̂z as well as the wave vector K change their
sign at the time inversion operation so that the operator V̂K

remains invariant with respect to this symmetry operation.
To describe the experimentally observed effect, we should

calculate the matrix element of the operator (6) on the exciton
wave function. In the calculation of the wave function, we
consider only the relative electron-hole motion described by
the Hamiltonian (3). Moreover, we consider exciton states
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with large wave vectors K � 1/aB, where aB is the exciton
Bohr radius in the bulk crystal. It means that we ignore the
mixing of the relative electron-hole motion and the exciton
center-of-mass motion. As it shown in Ref. [58], the mixing
weakly affects the wave function in the case of large wave
vectors. At the same time, even this simplified Schrödinger
equation with the Hamiltonian (3) is rather complex for
obtaining the wave function as it is described in the next
subsection.

The matrix elements of V̂K calculated with the exciton wave
function φ(F, r) acquire the form

V = ±λ(F )ζK. (7)

The dependence of these matrix elements on the electric field
is controlled by the factor λ(F ):

λ(F ) = 1

h̄2 〈φ(F, r)
∣∣ p̂2

x − p̂2
y

∣∣φ(F, r)〉 = 1

h̄2

(
p2

x − p2
y

)
. (8)

We should emphasize here that λ(F ) �= 0 only if the electric
field has a nonzero in-plane component. Indeed, if Fx = 0, the
cylindrical symmetry of the problem is preserved, therefore,
p2

x = p2
y and λ(F ) = 0 at any F .

The factor ζ in Eq. (7) has a form

ζ ≡
[
γv

mh

M

(
a1Jz + a1J3

z

) + me

M
γcσz

]
. (9)

Here, Jz = 3
2 , J3

z = 27
8 , and σz = 1

2 are the diagonal elements
of respective matrices. Signs “±” in Eq. (7) describe exciton
states with projections of their angular momenta, Sz = 1 and
−1, on the quantization axis (z axis). The physical origin of
the dependence of V on the projection is related to the splitting
of the electron and hole spin subbands in the GaAs crystal
because of the absence of the inversion symmetry [5,16,57].

Taking into account Eq. (7), we can finally rewrite the
exciton energy in an electric field as

H (F, K ) = Eg − R + h̄2K2

2M
± λ(F )ζK. (10)

Here, R is the interaction energy of electron and hole in the
exciton.

We should note here that the hole Hamiltonian described
in Ref. [5] includes also terms linear-in-hole wave vector k̂(h)

α .
They read as

V̂1 =
∑
α,β,δ

γ (1)
v Ĵα

(
Ĵ2
β − Ĵ2

δ

)
k̂(h)
α , (11)

where γ (1)
v is a constant, which value for GaAs is given in

Ref. [5]. Indices α �= β �= δ equal to x, y, z. Using Eqs. (5),
we can separate perturbation V̂1 into two parts. One of
them contains p̂α . Their matrix elements are zero because
〈φ(F, r)| p̂x,y,z|φ(F, r)〉 = 0. Another one reads as

V̂1z = γ (1)
v Ĵz

(
Ĵ2

x − Ĵ2
y

)mh

M
K. (12)

This perturbation mixes the heavy-hole and light-hole exciton
states giving rise to their energy shifts,

Ehh,lh = 1
2

[
Hh + Hl ±

√
(Hh − Hl )2 + 4V 2

1z

]
, (13)

where V1z = γ (1)
v (

√
3/2)(mh/M )K . These energy shifts do not

depend on the direction of the exciton propagation and on the

electric field. Thus, the linear-in-hole wave-vector terms do
not contribute to the effect of phase inversion of the spectral
oscillations.

B. Wave function of the relative electron-hole motion
in an electric field

In order to calculate the factor λ(F ) we need to find the
wave function φ(F, r) of the relative electron-hole motion
in the exciton. This function should be the solution of a
Schrödinger equation with the Hamiltonian (3) that contains
an applied electric field. A standard approach to the solution
of this equation is a transition to parabolic coordinates by
substitution ξ = r + z′, η = r − z′, and ϕ = tan−1(y′/x′) (see,
e.g., [59]). Here, the axis z′ is directed along the electric-field
direction, which is tilted by a small angle to our z direction.
Axes x′ and y′ are orthogonal with respect to z′. The wave
function φ(F, r) can be presented in this basis in the factorized
form [26,59]

φ(F, r) = A f (η)g(ξ )e±imϕ. (14)

Here, A is the normalization constant. Functions f (η) and
g(ξ ) are the eigenfunctions of the Hamiltonian (3) rewritten
in parabolic coordinates. More specific, they are the solutions
of the following equations obtained from the Schrödinger
equation with the Hamiltonian (3):

1

η

d

dη

(
η

df (η)

dη

)
+

(
− m2

4η2
− ν

η
+ μR

2h̄2 − μeFη

4h̄2

)
f (η) = 0,

1

ξ

d

dξ

(
ξ

dg(ξ )

dξ

)
+

(
− m2

4ξ 2
+ ν ′

ξ
+ μR

2h̄2 + μeFξ

4h̄2

)
g(ξ ) = 0.

(15)

In these equations, R is the interaction energy of electron and
hole in the exciton. In the absence of an electric field, it is the
exciton Rydberg constant R = Rb = μe4/2h̄2ε2. The parame-
ter ν is introduced in these equations to separate the variables
and ν ′ = ν + μe2/(εbh̄2). The value of ν should be chosen
manually so that the energies R obtained as the eigenvalues
of each equation in the system (15) coincide with each other.
Hereafter, we take into account that the reflectivity spectra
are formed by s-like excitons with m = 0, which efficiently
interact with the light wave. Therefore, we omit terms with m
in Eqs. (15).

An exact analytical solution of Eq. (15) cannot be ob-
tained. Their eigenvalues and eigenfunctions can be found
numerically. This approach is based on the second-order
finite-difference approximation of the derivatives on the
equidistant grids over variables η and ξ . The obtained system
of linear equations is then solved by the iterative method
[43,60]. However, for the tilted electric field considered in our
case, the problem is more complicated and it cannot be de-
scribed just by Eqs. (15). Namely, the QW interfaces are tilted
relatively to the electric field direction and, therefore, they
reduce the symmetry of the problem so that the parabolic co-
ordinates cannot be used anymore. It seems that the numerical
solution of the initial Schrödinger equation with the Hamil-
tonian (3) is the most appropriate in this case. However, only
the three-dimensional Schrödinger equation corresponding to
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the cylindrical symmetry of the problem can be numerically
solved at present [43,61]. The tilted electric field breaks the
symmetry so that a Schrödinger equation of greater dimension
should be solved. Currently, this problem has not yet been
addressed in the literature as far as we know.

In order to evaluate the effect of the tilted electric field, we
consider two limiting cases. First, we study only the longitu-
dinal electric field, where the electric field is directed along
the structure growth axis (axis z). In this case, the cylindrical
symmetry of the problem is preserved. In such geometry the
effect of the phase inversion of spectral oscillations is absent
[see Eq. (8) and the respective text]. Nevertheless, the consid-
eration of this case is necessary because the z component of
the applied electric field determines the exciton wave function
profile across the QW layer. Furthermore, this component
considerably affects the exciton-light coupling constant h̄ωLT

in Eq. (1).
At the second step, we qualitatively consider the general

case of the tilted electric field, namely, taking into account the
electric field component directed along the QW plane (e.g.,
axis x) which is perpendicular to the growth axis. In this case,
not only the exciton wave function is changed, but also the
phase inversion in the calculated spectra is modeled. There
is, however, an evident problem with the boundary conditions
in this case because the function g(ξ ) may be nonzero at the
infinitely large distance. We consider the boundary conditions
for this case in a subsequent section. As we show below,
the calculations performed in these limiting cases allow us
to qualitatively explain the observed effect. Moreover, the
numerical results obtained with the use of reasonable values
of free parameters well agree with the experiment.

C. Longitudinal electric field

Using Eqs. (15) we have numerically calculated the exciton
wave function φ(F, r) for different values of the longitudinal
electric field Fz. Examples of the calculated wave functions
φ(F, r) for zero electric field and for Fz = 2 kV/cm are
shown in Figs. 2(a) and 2(b). As one can see, the application
of the electric field gives rise to the wavelike oscillations
of φ(F, r). The oscillating behavior of the wave function is
related to function g(ξ ) [see Eq. (14)], which describes the
spatial separation of the electron and the hole constituting
the exciton. The oscillations of the function g(ξ ) resemble
the oscillations of the Airy function describing the motion
of a free carrier in a uniform electric field. The increase of
the electron-hole distance is followed by the decrease of their
Coulomb attraction and an increase of the exciton Bohr radius
in the plane perpendicular to the z axis. This increase is seen
as a “blurry” of the wave function with increase of z [see
Fig. 2(b)].

To take into account the QW interfaces we assume that the
maximum distance between the electron and the hole along
the z axis cannot exceed the QW width, LQW = 120 nm. This
condition partially determines the boundary conditions for the
calculations (see Ref. [62] for details). But, in the parabolic
coordinates used in Eqs. (15), this boundary condition is
ambiguous. It corresponds to a parabolic surface, rather than
the flat one, where the exciton wave function acquires the
zero value. Unfortunately, an attempt to write the boundary
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FIG. 2. (a), (b) Cross sections of the wave function φ(F, r) in
the x-z basis calculated using Eqs. (14) and (15) in different electric
fields F = Fz given in each panel. (d) The cross section of φ(F, r) ob-
tained in the microscopic modeling (see the text for details). (c) The
energy of the relative electron-hole motion in the external electric
field (blue circles) calculated as the eigenvalue of the Hamiltonian
(3) and different contributions into this energy calculated as matrix
elements of the specific Hamiltonian terms: black squares show the
kinetic energy, red diamonds show the Coulomb energy, and green
squares show the potential energy in the electric field.

conditions for the flat interfaces inherent for QWs gives rise
to the coupling of parabolic coordinates η and ξ and, corre-
spondingly, Eqs. (15).

To accurately determine the exciton wave function in the
presence of the real (flat) QW interfaces and of the electric
field applied along the heterostructure growth axis, we have
numerically solved a Schrödinger equation for an exciton
in a QW. The wave function has been calculated using the
method described in Refs. [43,61]. This method is based on
the finite-difference approximation of the three-dimensional
Schrödinger equation for the radial part of the exciton wave
function. It allows us to accurately calculate energies as well
as corresponding wave functions of many quantum-confined
states in QWs of arbitrary widths. Here we should mention
that, when a strong enough electric field is applied, the lowest-
energy state corresponds to the electron and hole states in the
triangular potential wells, which much less interact with light.
To find the radiative exciton state, many low-energy states are
calculated and a radiative constant h̄�0 is determined for each
of them [31,42,43]. The state characterized by the highest
value of h̄�0 is chosen as the bright exciton state in the electric
field. In the numerical procedure, we assumed the QW barriers
to be high enough to avoid tunneling of the exciton wave
function beyond them.

The calculated wave function is shown in Fig. 2(d). One
can see the central peak due to Coulomb potential and the
Airy-like behavior for z > 0 where the QW potential becomes
inclined deeper due to the electric-field effect. With increase
of the electric-field strength, the number of Airy-like waves
is also increasing. The numerically obtained function (mi-
croscopic model calculation) is similar to that calculated in
the parabolic coordinates, though a noticeable difference is
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present. To evaluate the difference, we have calculated the
radiative constant using both types of the functions. These
constants coincide at zero electric field (h̄�0 = 130 μeV) and
become different as the electric field increases. For exam-
ple, h̄�0(micro) = 70 μeV and h̄�0(parabolic) = 71 μeV for
F = 1 kV/cm; h̄�0(micro) = 37 μeV and h̄�0(parabolic) =
46 μeV for F = 2 kV/cm. Nevertheless, this difference is not
dramatic and allows us to use the wave functions obtained
in the parabolic basis for a semi-quantitative analysis of the
phenomenon under discussion.

Figure 2(c) shows the electric-field dependencies of vari-
ous contributions to the total exciton energy described by the
matrix elements of different terms in the Hamiltonian (3). One
can see that the kinetic energy of the relative electron-hole
motion described by the first term of the Hamiltonian (3)
slightly drops down at the electric field of about 1 kV/cm
and then it almost linearly rises with the electric field. The
drop is caused by the decrease (in an absolute value) of the
electron-hole Coulomb interaction 〈φ(F, r)|e2/(εbr)|φ(F, r)〉,
due to the increase of the average distance between the carriers
in the electric field.

The linear rise of the kinetic energy at F > 1 kV/cm
points out that the electron and the hole are accelerated al-
most as free carriers. Simultaneously, the potential energy
〈φ(F, r)|eFz|φ(F, r)〉 of the carriers decreases in these elec-
tric fields so that their algebraic sum is almost zero. The total
energy is mainly determined by the Coulomb energy, which
remains nonzero even at large electric fields. This unexpected,
at first glance, effect is explained by the restriction of the
carrier movement across the QW. Indeed, the electron-hole
distance cannot be larger than the QW width, L = 120 nm.
The calculations show that, at the fixed, large enough elec-
tric field, the Coulomb energy decreases as the QW width
increases.

D. Effect of the transverse electric field

The transverse component of the electric field reduces the
symmetry of the problem and makes it more complicated.
Thus, we can discuss its effect only qualitatively. In the pres-
ence of the transverse component directed along the QW
layer, say along the x axis, there are no restrictions for the
electron and the hole to run away from each other at the large
enough field. In other words, there are, in principle, no zero
boundary conditions along x for the function g(ξ ) and, hence,
for the wave function φ(F, r). An example of the functions
f (η) and g(ξ ) obtained by the numerical solution of Eqs. (15)
taking into account only the component Fx is shown in Fig. 3.
One can see that the function f (η) rapidly decays to zero with
the increase of the coordinate η. The function g(ξ ), however,
noticeably oscillates even at ξ close to 1500 nm. This gives
rise to a problem of normalization of the function φ(F, r), in
particular, finding of the coefficient A [see Eq. (14)].

Unfortunately, the problem of normalization of the wave
function describing the infinite motion along the x axis has
no strict quantum-mechanical solution. Therefore, we have to
impose the boundary conditions on the wave function using
an approximate semiclassical consideration. This approach
is generally used, and it allows us to evaluate the factor λ.
To solve this problem, we have to manually introduce the
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FIG. 3. Functions f (η) (blue curve) and g(ξ ) (red curve) in an
electric field Fx = 1 kV/cm. The inset shows the electric-field de-
pendence of the factor λ(F ) (points) calculated by means of Eq. (8).
The solid line is a phenomenological fit by the function λ(F ) = cF 5,
with c = 2.1 × 1010 (kV/cm)−5 cm−2.

boundary conditions. For this purpose we take into account
the finite exciton lifetime. For the excitons in the ground state,
it is limited by the radiative decay time of several picoseconds
in wide QWs [43]. The application of an electric field partially
suppresses the radiative decay and other processes, e.g., the
exciton ionization and the phonon-mediated relaxation, limits
the exciton lifetime τX by approximately the same value. Dur-
ing the time τX the electron and the hole may tunnel through
the Coulomb potential barrier inclined by the applied voltage
and run away to some distance. We evaluate the maximum dis-
tance between the electron and the hole considering a classical
relation between the time and the distance for the uniformly
accelerated carriers:

xmax = eFxτ
2
X /(2μ). (16)

The exciton wave function is influenced by both compo-
nents of the electric field that causes the function oscillations
along both the z and x axes (see Figs. 2 and 3). The z com-
ponent of the applied electric field in the experiments under
discussion is considerably stronger than the x component.
Therefore, we should take into account a strong modulation
of the wave function along z axis when analyzing its behavior
along the x axis. A simple analysis shows that the modulation
gives rise to the shrinkage of the wave function at small
values of z, |z| � aB, where aB is the exciton Bohr radius.
In other words, the probability to find the electron and the
hole at the small distance z is relatively high at any distance x
between them. Besides, the absolute value of the probability
decreases in the presence of the longitudinal component by
a factor Az = ωLT(Fz )/ωLT(0). The dependence of ωLT(Fz ) is
discussed in the next section. We take into account these ef-
fects by normalizing the wave function to a quantity Az rather
than to unity and consider this function only in the cylindrical
volume limited by the xmax along the x axis and ±aB along z.

The limitation by the cylindrical volume leads to the in-
crease of the amplitude of the oscillating “tail” of the wave
function along the x axis that results in the increasing factor
λ(F ) calculated by means of Eq. (8). In the calculations,
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we have taken aB = 15 nm [42] and xmax = 1100 nm at the
electric field of F = 4 kV/cm. The latter quantity corresponds
to the exciton lifetime τX ≈ 2.5 ps which appears to be rea-
sonable in our case. The electric-field dependence of λ(F ) is
shown in the inset of Fig. 3. As we show below, the magnitude
of λ(F ) is sufficient to explain the observed phase inversion
of the spectral oscillations.

IV. MODELING OF THE ELECTROREFLECTANCE
SPECTRA

As it is already discussed above (see Sec. III), a reflectance
spectrum can be calculated in the framework of the model
of polaritonic waves [31,32,45,48]. This model considers the
lower (excitonlike) and upper (photonlike) polariton branches.
Their dispersions are determined by the equation [31,32,41]

ε(ω, K ) = c2K2

ω2
, (17)

where c is the speed of light. This equation, together with the
expression (1), gives rise to a polynomial of the fourth order
relative to the wave vector K . Its roots determine the disper-
sion dependencies for the four polaritonic waves Kj (ω). Two
of these waves correspond to the upper polariton states and the
other two to the lower ones. Two waves, one corresponding
to the upper state and one to the lower state, propagate in
the forward direction and two other waves propagate in the
backward direction.

The dispersions introduce the polarizability of the medium
χ (ω, Kj ), which is related to the dielectric function (1) via the
expression

ε(ω, Kj ) = εb + 4πχ (ω, Kj ). (18)

To find the amplitudes of polaritonic waves, the Pekar’s
additional boundary conditions (ABCs) are typically used
[31,32,45,48]. They imply that the relation∑

j

χ (ω, Kj )Ej = 0 (19)

is fulfilled at the QW interfaces. Here, Ej =
E (0)

j exp[−i(KjZ + ωt )] is the electric field of the jth
polaritonic wave and Kj is its wave vector; Z is the exciton
center-of-mass coordinate. The condition (19) means that the
total excitonic contribution into the polarizability at the QW
boundaries should be zero. Besides, the standard Maxwell’s
boundary conditions (MBC) at the QW interfaces are used.
These are the continuity of the tangential components of the
electric field and of the magnetic induction of light waves.

The ABC and the MBC couple the amplitudes of the
incident, transmitted, and reflected light waves with those
of polaritonic waves in the QW. There are three equations
for each interface that add up to six equations in total. This
system of equations is sufficient to find the amplitudes of four
polaritonic waves inside the QW as well as the amplitudes
of the transmitted and reflected light waves. The amplitude
of the incident wave can be chosen arbitrary. The solution of
this system allows one to find the ratio of the amplitudes of
the reflected (Er) and incident (Ei) light waves. Their ratio
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squared yields the reflection coefficient

R(ω, F ) =
∣∣∣∣Er

Ei

∣∣∣∣
2

. (20)

The developed theory allows us to model the reflectance
spectra of the heterostructure with the QW using Eqs. (1),
(10), (17), (18), (19), and (20). The modification of the spectra
by the electric field is described by the factor λ(F ) shown in
the inset of Fig. 3, as well as by the longitudinal-transverse
splitting constant h̄ωLT(F ) entering in Eq. (1). The constant
h̄ωLT(F ) is calculated in a standard way [31]:

h̄ωLT =
(

2eP1

Eg

)2
π

εb
|φ(F, 0)|2. (21)

Here, φ(F, 0) is the wave function of the relative electron-hole
motion taken at the coinciding coordinates of the electron
and the hole in the exciton; P1 = h̄pcv/m0 where pcv is the
interband matrix element of the electron momentum. For the
GaAs crystal, P1 = 10.3 × 10−5 meV cm [5]. Figure 4 shows
the dependencies of ωLT(F ) on the longitudinal and trans-
verse components of the electric field. We have found that
Fz considerably affects the behavior of ωLT(F ). For exam-
ple, for the field of Fz = 2 kV/cm, ωLT(F ) drops down to
0.37ωLT(0). The effect of the transverse component of the
electric field is noticeably weaker. It reduces ωLT(F ) only
down to 0.87ωLT(0) at F = 2 kV/cm.

In the calculations of the reflectance spectra, we have to
introduce into Eq. (1) a nonradiative broadening h̄� = 2 meV
to describe the experimentally observed relatively broad reso-
nances (see Fig. 1). This broadening is probably caused by the
electric-field-induced exciton ionization as well as by the fast
energy relaxation of the excited quantum-confined exciton
states with emission of phonons. Some additional broadening
may be also caused by the generation of an electric current if
the electric field is applied.
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FIG. 5. (a) A calculated differential reflectance spectrum at the
electric field F = 1.5 kV/cm and (b) two-dimensional plot of the
differential reflectance as a function of the photon energy and the
applied electric field. (c) An enlarged fragment of the plot demon-
strating the phase inversion effect of the spectral oscillations.

For comparison with the experiment, the electroreflectance
spectra �R(ω, F ) are calculated using the numerical deriva-
tive of the total reflection R(ω, F ) over F . The slowly varying
background signal is subtracted. Figure 5 shows the results of
the calculations. One can see that the obtained dependence of
�R(ω, F ) on the electric field well reproduces main features
observed in the experiment (see Fig. 1). In particular, the
phase inversion at F = Fc ≈ 3.5 kV/cm is clearly seen in
Fig. 5(c).

It should be emphasized that the dependence λ(F ) is calcu-
lated using a semiclassical approach. Therefore, we consider
our theoretical consideration as the qualitative, rather than
quantitative, confirmation that the linear-in-K terms, which
come from the cubic-in-k terms in the Hamiltonians of free
electrons and holes [see Eq. (4)], are responsible for the phase
inversion effect. The quantitative description of the effect
requires a strict quantum mechanical solution of the problem,
which is beyond the scope of this work.

V. DISCUSSION

The microscopic origin of the phase inversion effect may
be understood in the framework of the approach described in
Ref. [22]. Let us assume that a light wave falls onto the QW
from the left side [see Fig. 6(a)]. The polariton mode excited
by the light wave in the QW is a composition of the upper
and lower polariton modes. These modes are characterized
by the wave vectors Kp and Kex, respectively. Their reflection
from the right interface creates four waves because each mode
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(d) Derivatives of the amplitudes over F multiplied by (−1) to match
their sign with the experiment.

can create both the upper and lower modes. Thus, multiple
polariton modes can propagate through the QW layer. They
are discussed in Ref. [22] in detail.

At the QW interfaces, the polaritons are partially trans-
formed into the outgoing light waves, which interfere with
each other. The phases of these waves are determined by
the number of passes of polaritons through the QW as the
upper (Np) and lower (Nexc) modes ϕ = Npϕp + Nexcϕexc =
NpKpL + NexcKexcL. The exciton and photon components of
the polariton state are defined by the Hopfield coefficients
[32,63]. For the polariton states, whose energies are far from
the anticrossing point of the exciton and photon dispersion
curves, the fraction of light component is close to unity for
the upper mode and to zero for the lower one. The efficient
conversion of the upper polariton mode into the outgoing
light wave leads to a relatively large background signal in
reflectance spectra, which slowly varies with energy due to
a small change of Kp and, hence, of the phase ϕp. The main
contribution to this signal comes from the one-time propaga-
tion of the upper mode in both directions. It is indicated as a
Ch.0 in Fig. 6(a).

The coupling of the lower modes to the photonic contin-
uum is less efficient and they are able to create relatively small
peculiarities in the spectra. An analysis shows [22] that the
main contribution to the peculiarities comes from the polari-
tons, which propagate as a lower mode in one direction and
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as an upper mode in the opposite direction. These channels of
propagation are indicated as Ch.I and Ch.II in Fig. 6(a).

The constructive (destructive) interference of the polari-
tonic waves propagating via channels Ch.0 and Ch.I, Ch.2
gives rise to the resonant peaks (dips) observed in the spectra.
In our case of the 120-nm QW, whose width approximately
equals to a half of the light wave, the phase acquired by the po-
lariton propagating via Ch.0, ϕ0 = 2KpL ≈ 2π . In this regime
the constructive interference occurs for the exciton states with
wave vector Kexc = (2N − 1)π/L, where N is a positive in-
teger number. This is because the phase acquired in Ch.I and
Ch.II, ϕI,II ≈ π + (2N − 1)π , that is multiple of 2π . For the
states with Kexc = 2Nπ/L, the phase ϕI,II ≈ (2N + 1)π , the
interference is destructive, and the exciton states are observed
as dips in the spectra. For the high-energy exciton resonances
where the parabolic dependence of the exciton dispersion is
a good approximation, the condition of the constructive or
destructive interference coincides with that of quantization of
the exciton center-of-mass motion [32,40].

In the tilted electric field, the linear-in-K term in the ex-
citon Hamiltonian (2) and (6) makes the propagation of the
lower polariton waves in the forward and backward directions
inequivalent. This term causes a constant shift by �K of
the paraboliclike exciton dispersion along the K axis [see
Fig. 6(b)]. The value of �K is determined by the minimum
of the exciton kinetic energy T = h̄2K2/2M ± λ(F )ζK [see
Eq. (10)]. Its derivative over K gives rise to the required
expression �K (F ) = ∓λ(F )ζM/h̄2. The sign of this shift
depends on the z projection of the exciton angular momentum
Sz [see discussion after Eqs. (7)]. For excitons with Sz = +1
created by the σ+-polarized light, the exciton dispersion curve
is shifted toward the positive values of K and, for Sz = −1
(σ−-polarized excitation), this shift is negative [see blue and
red curves in Fig. 6(b), respectively].

Let us consider a jth quantum-confined exciton state with
energy E (X j ). For the right-hand shifted dispersion curve
[blue curve in Fig. 6(b)], there are two types of excitons
propagating in the forward and backward directions with
effective vectors Kj± = Kj ± |�K (F )|, where Kj = (π/L) j.
Correspondingly, the phase acquired by polaritons propagat-
ing via the I and II channels is

ϕ j± = [Kj ± |�K (F )|]L + ϕp. (22)

The last term in this expression, ϕp = KpL, corresponds to the
phase of the upper polariton mode, which is predominantly
independent of the electric field. The outgoing light waves ErI

and ErII [see Fig. 6(a)] acquire these phases. The sum of these
waves is proportional to

Er j (F ) = 2AjωLT(F )ei(Kj L+ϕp) cos[�K (F )L]. (23)

Here, amplitude Aj is determined by the amplitude of the
incident light wave and by the coupling efficiency of the
polariton waves to the continuum of the light waves [22].
The quantities depending on the electric field are explicitly
specified in this expression. The light wave created by Ch.0 is
E0 = A0 exp(i2ϕp).

The intensity of the reflected light detected in the experi-
ments is governed by the sum of the light waves E0 and Er j :

Ir j = |E0 + Er j (F )|2 = A2
0 + 4A0Aj

×ωLT(F ) cos(π j + ϕp) cos[�Kj (F )L]

+{AjωLT(F ) cos[�K (F )L]}2. (24)

The amplitude of the exciton resonances is much smaller
than the background reflection amplitude. Therefore, we can
neglect the last term in Eq. (24). Taking into account that
ϕp ≈ π , we finally obtain an expression for the amplitude of
an exciton resonance:

�Ir j = Ir j − A2
0 ≈ ±4A0Aj ωLT(F ) cos[�K (F )L]. (25)

Figure 6(c) shows the electric-field dependence of �Ir j

for even and odd exciton states. At the electric field of
F < 3.2 kV/cm, the amplitude of exciton resonance is pos-
itive for the odd number j of the exciton state and negative
for the even number that reflects the constructive (destructive)
interference of the corresponding light waves. At larger fields,
the amplitude oscillates with an increasing rate, which is due
to the rapid increase of the factor λ(F ) ∝ F 5 (see the inset in
Fig. 3).

In the experiments, the derivative of the reflection ampli-
tude over the electric field is detected. The corresponding field
dependencies are shown in Fig. 6(d). They are multiplied by
(−1) to match with the phase of the experimentally detected
signal (see Fig 1). As seen in Fig. 6(d), there is a critical value
of the electric field, Fc ≈ 3.5 kV/cm, at which the amplitudes
of the even and odd oscillations change their sign. This is the
phase inversion effect, demonstrated in Fig. 5.

Theoretically, multiple phase inversions could be possible
with a further increase of the electric field. Figures 5 and 6
show the next critical field for the phase inversion at about
4 kV/cm. However, we could not observe it experimentally
because an electric current through the heterostructure grows
superlinearly at the large applied bias.

A similar analysis can be performed for polaritons with
the angular momentum projection Sz = −1. The dispersion
curve for these excitons is shifted in the electric field to the
left side in the reciprocal space [see Fig. 6(b)]. Because of
the symmetry of the problem, the phase inversion for this
case should occur exactly at the same critical electric field.
Thus, the phase inversion effect should be observed at any
polarization of incident light, in particular, for the linearly
polarized light, as it can be represented as a superposition of
the σ+- and σ−-polarized components.

VI. CONCLUSION

The experimental study of electroreflectance spectra of
a semiconductor structure containing a wide GaAs QW in
the presence of an electric field applied at some angle to the
growth axis has revealed a new effect. We have observed
that the spectral oscillations related to the quantum-confined
exciton states invert their phase at some critical electric-field
strengths. This phenomenon is theoretically analyzed in
the framework of the polaritonic model. The analysis has
shown that the phase inversion effect is caused by the
electric-field-induced shift of the exciton dispersion curves,
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which is, in turn, described by the linear-in-K term in the
exciton Hamiltonian. The theoretical modeling of the spectra
allowed us to reproduce all the essential spectral features
observed in the experiment.

We note that the electric-field-induced switching of
exciton-polariton interference from the constructive one to
the destructive one and return is an analog of the Datta-Das
effects that is in the heart of the spin transistor proposal [10].
A similarity can also be found between the observed switching
and the concept of the excitonic transistor based on the an
Aharonov-Bohm ring [64]. One can expect that results of this
work may be important for designing an exciton-polariton
topological insulators, such as one discussed in Ref. [11].

Tuning the in-plane electric field, one should be able to
observe a transition from a trivial to a topological insulator
regime for excitons.
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