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phase diagram of S = 1
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The anisotropy and magnetic ground state of hyperkagome dysprosium gallium garnet Dy3Ga5O12 are investi-
gated, along with that of its closest structural analog and archetypal Ising multiaxis antiferromagnet, dysprosium
aluminum garnet Dy3Al5O12, using a combination of neutron scattering techniques, including polarized neutron
powder diffraction. Results show a dramatic change from an Ising-like anisotropy in Dy3Al5O12, to a quasiplanar
one in Dy3Ga5O12. According to a point charge modeling, this is due to small variations of the oxygen positions
surrounding Dy3+ ions. The magnetic ground state of Dy3Ga5O12 is investigated for the first time and is found to
be similar to that of Dy3Al5O12, yet with a much lower TN. Mean-field calculations show that the dipolar inter-
action favors distinct magnetic ground states, depending on the anisotropy tensor: a multiaxis antiferromagnetic
state is favored in the case of strong Ising-like anisotropy, like in Dy3Al5O12, whereas a complex ferrimagnetic
state is stabilized in the case of planar anisotropy. The Dy3Ga5O12 crystal field parameters locate the latter close
to the boundary between those two ground states, which, alongside competition between dipolar and a small but
finite magnetic exchange, may explain its low TN. To widen the scope of these experimental results, we performed
mean-field calculations to generate the magnetic phase diagram of an effective anisotropic pseudospin S = 1/2,
characterized by general gxx , gyy, and gzz Landé factors. A very rich magnetic phase diagram, encompassing com-
plex phases, likely disordered, is evidenced when magnetic anisotropy departs from the strong Ising case. With
magnetic anisotropy being controllable through appropriate tuning of the rare-earth oxygen environment, these
results emphasize the potential of rare-earth hyperkagome networks for the exploration of new magnetic phases.

DOI: 10.1103/PhysRevResearch.2.033509

I. INTRODUCTION

Antiferromagnets with geometrically frustrated lattices of-
ten possess macroscopically degenerate ground-state spin
configurations, which satisfy local constraints imposed by the
underlying lattice structure [1]. The most famous examples
of two- (2D) and three-dimensional (3D) frustrated magnets
are the kagome and pyrochlore lattices, both built on corner
sharing units, triangles and tetrahedra, respectively. The 3D
array of corner-sharing triangles, coined hyperkagome lattice,
owing to the similarity with the 2D counterpart (see Fig. 1)
has remained largely underexplored in comparison.

The first compound to have triggered attention on this
topology is arguably Na4Ir3O8 [2]. In this compound, magne-
tization and specific heat measurements showed the absence
of long rang magnetic or orbital ordering down to a few
Kelvins, despite a negative Curie-Weiss temperature θCW =
−650 K expressing very strong antiferromagnetic interactions
between the S = 1

2 Ir4+ spins [2]. This discovery led to several
theoretical studies, dedicated to the behavior of Heisenberg
classical or quantum spins on this remarkable topology [3–6],
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which eventually converged towards a quantum spin liquid
ground state for the hyperkagome lattice of Na4Ir3O8 [7].

Another crystal structure hosting the hyperkagome net-
work is that of the rare-earth (RE) garnets R3A5O12 (R =
rare-earth, A = trivalent metal like Al or Ga, space group
Ia3̄d) [9], in which the corner-sharing triangles of rare-earth
form two intertwined hyperkagome networks. As in rare-earth
pyrochlores [10], competition between exchange and dipolar
interactions and the crystal field anisotropy of the rare earths,
are expected to lead to a rich variety of ground states. For in-
stance, Gd3Ga5O12 shows no long-range magnetic order down
to the lowest temperature [11,12], while in Yb3Ga5O12 [13],
the specific heat provides evidence for a transition around
50 mK, yet the corresponding magnetic order, if any, re-
mains unknown. Aside from these two cases, most of the
other rare-earth gallium and aluminum garnets studied so far
are, at first glance, conventional antiferromagnets. The re-
ported magnetic order is based on three magnetic sublattices,
with moments parallel or antiparallel to the three cubic axis
[14,15]. This kind of magnetic ordering (labeled subsequently
AFA) occurs when the crystal field gives a ground doublet
with an Ising character along the local Z axis, and can be
well understood within theoretical calculations using dipolar
coupling only [8]. One of the best existing illustrations within
the garnet family is Dy3Al5O12 (DyAG) [16]: in DyAG, the
magnetic ground state below TN = 2.49 K [17–19] is AFA, in
agreement with the strongly anisotropic ground-state dou-
blet of Dy3+ (gxx ≈ gyy � 1, gzz ≈ 18 [20,21]). The AFA
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FIG. 1. Intertwined hyperkagome networks (in blue and orange)
of rare-earth triangles in garnets R3A5O12 (A = Al, Ga). The net-
works are not connected to each other within the nearest-neighbor
distance. The magnetic ordering shown corresponds to the AFA one
[8] (Ia3̄d ′), with three magnetic sublattices having moments parallel
or antiparallel to the cubic axis (a, b, c in yellow, blue and red,
respectively), for each hyperkagome network. First-neighbor spins
are orthogonal to each other. In the grey area, local anisotropy axes
(X,Y, Z) are drawn as thin arrows (see text).

ordering is also observed in Tb3Ga5O12 [22], Ho3Ga5O12

[23], and Er3Ga5O12 [24].
Fewer studies deal with dysprosium gallium

Dy3Ga5O12 (DyGG). Several crystal-field investigations
based on paramagnetic resonance [25], optical absorption
[21,26,27], electronic Raman [28], or susceptibility
measurements [29], give somewhat contradictory g-tensors
for the DyGG ground-state doublet, including one
corresponding to a quasiplanar anisotropy for Dy3+. From
specific heat data, a sharp transition of magnetic origin, at
TN = 0.373 K, has been reported [30], but the ground state of
DyGG remains, to date, still unknown. The low value of the
critical temperature suggests that frustration may also play a
role, which remains to be elucidated.

The main motivation of this work is to assess the potential
of rare-earth garnets for the next development in the physics
of frustrated magnetism. To this end, it is essential to establish
the important parameters at play in garnets’ Hamiltonians, so
as to draw generic phase diagram, allowing one to distinguish
areas where it is legitimate to look for exotic physics, from
those areas which will be more classical.

To tackle this issue, this study first focuses on the
anisotropy and magnetic ordering of DyAG and DyGG. We
use to this end a combination of different neutron scatter-
ing techniques, including neutron inelastic scattering, powder
diffraction and polarized neutron powder diffraction (PNPD)
[31,32], a method which has been used in the past success-
fully to quantify axial and planar anisotropies in R2Ti2O7

pyrochlores [33,34]. To provide a new understanding of the
role of dipolar and exchange interactions in the model Hamil-
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FIG. 2. (a) DyAG flipping difference (y+ − y−) diffraction pat-
tern collected at 5 K in 5 T. The measured (calculated) 2D pattern is
shown in the top (bottom) panel. (b) Projection on the Bragg angle
2θ . Reflections positions are marked by vertical ticks. The black line
shows the difference between the experimental points (blue) and the
model (orange line). γ is the azimuthal angle and ν is the elevation
angle in the laboratory coordinate system (xyz), where x ‖ ki, z ‖ B.

tonians, magnetic phase diagrams are presented for DyAG
and DyGG, based on mean-field calculations using the crystal
electric field (CEF) parameters estimated from experimental
data. To go beyond the Dy3+ case and adopt a more general
point of view, valid for most rare-earth garnets (excluding
those with a magnetic atom on the A site of course), a gen-
eralized magnetic phase diagram, computed by mean-field
calculations for an effective S = 1/2 spin on a hyperkagome
lattice, is presented in the second part of this work. This
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FIG. 3. (a) DyGG flipping difference (y+ − y−) diffraction pat-
tern collected 5 K and 5 T. (b) Projection on the Bragg angle 2θ .
Notations are the same as for Fig. 2.
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FIG. 4. Magnetization components μ(110), μ(11̄0) and μ(001) ver-
sus temperature for DyAG (a) in 6 T, and for DyGG (b) in 5 T. The
insets show magnetic ellipsoids at 5 K. In both panels, dotted lines
show susceptibility calculations using the point charge model, and
solid lines represent calculations using the CEF model (CEF1 and
CEF2 models for DyGG are differentiated by thin and thick lines,
respectively). All calculations are based on the parameters given in
Table I.

magnetic phase diagram illustrates the nature of the magnetic
ground state for any given g-tensor, and reveals which regions
should be propitious to exotic physics in garnets. Exploring
this generic phase diagram with real garnet compounds will
offer great outcomes for the study of quantum disordered
phases on hyperkagome lattices; this will be made possible by
the appropriate design of the garnet rare-earth and metal sites,
as means to tune the rare-earth magnetic anisotropy away
from the common Ising case.

The paper is organized as follows. Section II describes
neutron scattering experimental results on DyAG and DyGG
(see also Appendix A for full details on experimental meth-
ods). They confirm that the local anisotropy is Ising-like in
DyAG, but show that it is XZ-like in DyGG. Using point
charge calculations, this evolution is interpreted as the result
of distortions of the dodecahedral oxygen environment of Dy
ions. In both garnets, the magnetic ground state is multiaxis
AFA, but with a considerably reduced TN = 370 mK and
ordered moment in the DyGG case. Section III is devoted to
mean-field calculations. Unlike DyAG’s, the DyGG’s phase
diagram is dominated by the competition between isotropic
exchange and dipolar interaction, so that the singularly low
value of TN in DyGG can be explained taking into account

both its XZ planar anisotropy and a finite antiferromagnetic
exchange competing with dipole-dipole interaction. To go be-
yond these two cases, a generalized magnetic phase diagram is
presented in Sec. IV. Computed for an effective S = 1/2 spin
on a hyperkagome lattice, it shows that dipolar interaction,
when dominant, favors ordered phases, either of the AFA type,
in the case of Ising anisotropy, or of a ferrimagnetic (FC)
type, in the less anisotropic cases. The AFA-FC boundary
region is the one for which the anisotropy is of XZ type,
i.e., gxx ≈ gzz � gyy, as in DyGG. Introducing a moderate
isotropic exchange, slightly larger than the dipolar coupling,
stabilizes complex phases, possibly disordered, and reminis-
cent of the spin liquid phase predicted in Na4Ir3O8.

II. EXPERIMENTAL RESULTS

A. Polarized neutron powder diffraction

The PNPD study is based on the measurement of the
diffracted intensity distributed around the rings commonly
known as the Debye cones. The scattered intensities y+ and
y−, measured for the two different polarization states of the
incident neutron beam are represented as a function of two
independent variables, Bragg angle 2θ and polar angle ϕ of
the cone base: y±(2θ, ϕ) = S

∑
h mhLPh〈I±〉ψh(2θ − 2θh, ϕ),

where S is a scale factor, mh is the multiplicity of reflection,
L is the Lorentz factor, Ph is the density of (hkl) poles at the
scattering vector (preferred orientation), and ψh(2θ − 2θh, ϕ)
is the peak profile function normalized to the unit area. It
is well known that the flipping sum and difference of the
integrated intensities of polycrystalline samples can be written
as [35]

I+ + I− ∼ |N |2 + 〈|M⊥|2〉, (1)

I+ − I− ∼ 2
[N∗〈M⊥ · P〉], (2)

where N is the nuclear structure factor, M⊥ is the projection
of the magnetic structure factor M(k) perpendicular to the
scattering vector k, and P is the neutron polarization vector
parallel to the field H . Angular brackets show the powder
averaging over scattering crystallites. The expression for the
powder averaging of |M⊥|2 and (M⊥ · P) terms based on the
local susceptibility approach has been given in Ref. [31]. In
this approach a susceptibility tensor χ of rank 3 is assigned to
each of the crystallographically independent site occupied by
a magnetic atom. The tensor, which describes the anisotropy
on the rare-earth ion, can be determined by 2D Rietveld refine-
ment of the diffraction patterns. Refinements were performed
with the newly developed RHOHI program [32] . More experi-
mental details can be found in Appendix A.

Application of a magnetic field H on powder samples can
induce crystallite orientation, as the net moment of the crys-
tallites tends to align in the field direction. Since the resultant
preferred orientation can be determined from the 2D patterns,
one can use these “magnetically textured” samples in PNPD
[32]. Flipping difference (y+ − y−) diffraction patterns, col-
lected on DyAG and on DyGG in the paramagnetic state
(5 K) in a field of 5 T are shown in Figs. 2 and 3, along
with the corresponding 2D Rietveld refinements. One can see
that the Debye rings for DyGG remain homogeneous in these
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conditions, indicating the absence of preferred crystallite ori-
entation. In contrast, the Debye rings for DyAG at 5 K and
5 T are transformed progressively in a series of well-separated
diffraction spots above 1 T. Using a 2D Rietveld method and
the modified March model [36], it was found that magnetic
field induces preferred orientation of the [111] axes in DyAG.
The difference in the sensitivity of DyAG and DyGG to an
applied magnetic field suggests in itself distinct single-ion
anisotropies.

The diffraction patterns measured at various temperatures
and fields provide the local magnetization parameters μi j [31].
For measurements in a weak magnetic field H , the local sus-
ceptibility parameters χi j can be estimated by the ratio μi j/H .
In the garnet crystal structure, Dy ions occupy the 24c Wyck-
off site, whose point group symmetry is orthorhombic D2. The
symmetry constraints on the magnetization tensor imply that
only three independent parameters μ11, μ12, and μ33 need to
be determined, regardless of the field direction. The principal
axes of magnetization ellipsoid are oriented along the crys-
tallographic axes [110], [11̄0], [001], with μ110 = μ11 + μ12,
μ11̄0 = μ11 − μ12 and μ001 = μ33 (see Appendix C for addi-
tional information regarding local frames). The temperature
evolution of the main ellipsoid axes for both garnets is shown
in Fig. 4. In DyAG, the μ001 component is largely dominant,
which confirms the Ising character of the local Dy anisotropy.
In contrast, DyGG exhibits two components μ001 and μ11̄0
of similar magnitudes, thus yielding quasiplanar anisotropy.
The insets in Fig. 4 illustrates the Dy magnetization ellipsoid
constructed from the refined μi j parameters at 5 K, and clearly
show the Ising [001] local axis, and the easy plane (perpendic-
ular to the [110] axis) for DyAG and DyGG, respectively.

B. Inelastic neutron scattering and crystal electric
field determination

Such a drastic difference of the anisotropy of Dy3+ ion
originates mainly from the localized charges sitting in their
close neighborhood. Owing to the local D2 symmetry, the
crystal field Hamiltonian is in principle described by nine
independent coefficients:

HCEF =
∑

m=0,2

Bm
2 Ôm

2 +
∑

m=0,2,4

Bm
4 Ôm

4 +
∑

m=0,2,4,6

Bm
6 Ôm

6 .

The Ôm
n are the Wybourne operators [37] and the Bm

n are
the empirical coefficients to be determined. Several literature
studies on garnets have performed crystal field parameters
calculations taking into account a comprehensive set of elec-
tronic multiplets (see, for instance, [28]), yet, for the sake of
simplicity, the ground-state multiplet only shall be considered
here. Diagonalization of HCEF in the subspace spanned by
the kets of the form |Jz = −J, . . . , J〉, J = 15/2 determines
the wave functions ψn and energies En of the corresponding
electronic transitions.

In the case of DyAG and DyGG, the CEF ground state
is a doublet which defines an effective spin 1/2 degree of
freedom. Provided this doublet is well protected from the
first excited states, the low-energy properties are governed
by an anisotropic pseudospin half characterized by the Landé

TABLE I. CEF coefficients (in K) in DyAG and DyGG, obtained
from least-square fitting of the PNPD and INS data, and corre-
sponding Landé factors. Note that these are only representative sets,
as other solutions were found, leading to similar types of g-tensor
anisotropies.

Bm
n (K) DyAG DyGG(CEF1) DyGG(CEF2)

B2
0, 100 −4.61 −3.37 −3.29

B2
2, 100 −4.21 −1.43 −1.69

B4
0, 10−2 0.12 0.68 0.59

B4
2, 10−2 5.00 −0.67 −0.81

B4
4, 10−2 −1.64 −0.63 −0.64

B6
0, 10−4 −0.53 −0.65 −0.57

B6
2, 10−4 1.63 0.93 0.25

B6
4, 10−3 0.039 −0.46 −0.37

B6
6, 10−3 −0.89 2.37 2.49

gxx 0.4 7.40 4.65

gyy 0.01 2.35 2.38

gzz 18.0 12.5 14.2

tensor:

gJJα = gαασα,

where the σα are the Pauli matrices. This formula is valid in
the CEF frame, which means that the Cartesian coordinates of
the magnetic moment write:

J = R† g

gJ
σR

R being the (site dependent) matrix which transforms Carte-
sian to local coordinates.

1. Inelastic neutron scattering

CEF schemes can be studied by neutron inelastic scatter-
ing, as the neutron intensity is proportionnal to the spin-spin
correlation function S(Q, E ) (see also Appendix A):

S(Q, E ) =
∑
n,m

pn

∑
a,b=x,y,z

〈ψn|Ja|ψm〉
(
δab − QaQb

Q2

)

×〈ψm|Jb|ψn〉δ[(E − (Em − En)]

where Q and E are respectively the transfer wave
vector and energy, pn is the Boltzmann weight pn =
e−En/kBT /

∑
m e−Em/kBT , ψn and En are the CEF wave func-

tions and energies. Absorption peaks are expected at energies
E = Em − En, which, at low temperature, reduce to a set of
transitions from the ground state, at E = Em − Eo only. The
spectral weight contains furthermore significant information
on the appropriate wave functions ψn.

The S(Q, E ) of DyAG at 5 K is characterized by a set
of nondispersive excitations, whose intensities decrease as
the momentum transfer Q increases, characteristic of CEF
excitations. On Fig. 5(a), which illustrates the energy de-
pendence of a constant Q = 2.1 Å−1 scan, two well-defined
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FIG. 5. (a) Constant Q = 2.1 Å−1 cut of the S(Q, ω) of DyAG at
5 K (blue square symbols). In red is shown the neutron cross section
calculated for the CEF parameters of Table I. Green lines show the
excitation levels determined by optical spectroscopy in Refs. [21,28].
(b) Corresponding temperature evolution of constant Q = 1.5 Å−1

scans.

crystal-field transitions at energy levels 9 and 14 meV, and a
broader one around 23 meV, can be identified. No transition
at lower energy is evidenced, even when using a smaller k f .
The evolution of the CEF excitation spectrum with increasing
temperature is illustrated in Fig. 5(b). The most prominent
feature is the appearance of intensity around 5.5 and 6.5 meV,
thus consistent with transitions from thermally populated lev-
els. All these CEF transition values are in excellent agreement
with previous spectroscopy results [Fig. 5(a)].

The S(Q, E ) of DyGG at 5 K is, like DyAG, characterized
by a set of nondispersive CEF excitations. As can be seen on
Fig. 6(a), however, the first excited level is at much lower en-
ergy than in DyAG, ≈2.6 meV. Two well-defined crystal-field
transitions are also observed at energy levels ≈9 and 15 meV,
along with a broader one around 20 meV. These values are in
excellent agreement with previous spectroscopy results [green
lines Fig. 6(a)]. The evolution of the CEF excitation spec-
trum with increasing temperature is illustrated in Fig. 6(b).
It shows a collapse of the intensity of the lowest energy level,
concomitantly with the appearance of intensity around 6 meV,
consistent with transitions from thermally populated levels at
9 to 15 meV. Additional intensity is also observed around
11 meV, which could correspond to 9 to 20 meV transitions.

FIG. 6. (a) Constant Q = 2.1 Å−1 cut of the S(Q, ω) of DyGG
at 5 K (blue square symbols). In red is shown the neutron cross
section calculated for the CEF1 (dotted line) and CEF2 (continuous
line) parameters of Table I. Green lines show the excitation levels
determined by optical spectroscopy in Refs. [21,28,38]. (b) Corre-
sponding temperature evolution of constant Q = 2.1 Å−1 scans. The
inset focuses on the T evolution of the higher energy levels.

2. Empirical Stevens coefficients

To find a set of Stevens coefficients able to reproduce
the data, a least-square minimization routine was used (more
details in Appendix B). The χ2 criterion takes into account
the temperature dependent PNPD data obtained at 5 or 6 T, as
well as the energy levels and their relative spectral weights as
determined from INS results.

A large number of different CEF parameters solutions with
similar χ2 were obtained for DyAG and DyGG and represen-
tative sets are listed in Table I. For DyGG, two sets are given,
labeled thereafter CEF1 and CEF2. In each case, the computed
energies En and eigenstates |ψn〉 for both compounds are given
in Appendix B. Excellent agreement with PNPD data (solid
lines in Fig. 4) and reasonable agreement with the INS data
([red dotted and red dash lines on Figs. 5(a) and 6(a)] both
substantiate the validity of the refined parameters for both
garnets.

For DyAG, the calculated Landé factors derived from the
CEF scheme are strongly anisotropic, gxx ≈ 0.01, gyy ≈ 0.01,
gzz ≈ 18, and indicate a strong Ising-like single ion anisotropy,
in agreement with the polarised neutron diffraction and pre-
vious literature results. Following the same procedure for
DyGG, the corresponding g factors clearly indicate a strong
XZ planar anisotropy: gxx ≈ 7.40, gyy ≈ 2.35, gzz ≈ 12.5
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(CEF1), and gxx ≈ 4.65, gyy ≈ 2.38, and gzz ≈ 14.2 (CEF2).
Finally, the various sets of crystal electric field parameters
consistent with the experimental data for both DyAG and
DyGG allow one to estimate uncertainties on the g-tensor,
gxx, gyy � 1, gzz ≈ 18 ±1 for DyAG and gxx ≈ 6 ± 2, gyy ≈
2.6 ± 0.5, and gzz ≈ 13.3 ± 1.5 for DyGG.

3. Point charge model

As emphasized above, the crystal electric field experi-
enced by a given Dy3+ ion is created by surrounding charges,
and ligand environment thus strongly influences single-ion
anisotropy. In the highly symmetric Ia3̄d garnet structure,
metal ions occupy fixed positions 16a and 24d . Thus the vari-
ation of the Dy3+ environment is primarily due to the variation
of the oxygen positions on the 96h site. In the following, we
use the “point charge model” to investigate further this idea.
Indeed, the eight oxygen ions (with effective charge −2e)
form the corners of a dodecahedral configuration, and produce
an electrostatic field, which can be quantitatively evaluated.
This formalism is convenient when the ligand environment
has high symmetry, leaving only a limited number of crystal
field parameters. The influence of the oxygen bond geome-
try on the Dy3+ anisotropy was therefore studied with the
software package MCPHASE [39]. Since the diffraction data
resolution does not allow one to refine oxygen positions, those
were taken from the literature, as (x = 0.0304, y = 0.0507,
z = 0.6490) for DyAG [40] and (x = 0.0299, y = 0.0539,
z = 0.6495) for DyGG [41]. As the crystal field experienced
by a 4 f electron is shielded by the polarized adjacent filled
electronic shells, the shielding parameters from Ref. [42] were
included in the calculations.

The point charge model calculations correctly predict the
Ising-like anisotropy for DyAG, with the magnetization el-
lipsoid axis [001] largely dominating. In contrast, for DyGG,
a deviation from the Ising behavior was observed. Namely,
while the major ellipsoid axis [001] remained the largest,
sizable magnetization along the [11̄0] axis is predicted. The
major difference between ligand environments in these two
compounds resides in their oxygen y position, as the x and
the z positions are almost identical in both compounds. The
influence of this oxygen y-position parameter on Dy3+ mag-
netic anisotropy can be seen from Fig. 7, which shows the
evolution of the main ellipsoid axes under the variation of the
oxygen y coordinate (0.03, y, 0.65), as calculated by the point
charge model. One can see that increasing the oxygen y coor-
dinate results in progressive changes of the local anisotropy,
from Ising type along the [001] axis to the quasiplanar one,
followed by another Ising-type one (with local axis [110])
for larger y values. Variations of the y coordinate directly
relates to the bending of the face of the oxygen dodecahedra
(see bottom inset of Fig. 7). In DyAG, a strongly compressed
dodecahedron favors the classical Ising-type anisotropy along
the [001] direction. Increasing y, the face diagonal starts to
flatten, effectively making the oxygen environment more reg-
ular. This results in the quasiplanar XZ anisotropy of DyGG.

C. Low-temperature Neutron powder diffraction

Figure 8 shows the refinement of the NPD pattern of DyAG
at 1.5 K. The magnetic ordering below TN = 2.4 K is con-

FIG. 7. Evolution of the main ellipsoid axes with the oxygen y
position (0.03, y, 0.65) with effective charge −2e calculated by the
point charge model at 5 K in 5 T. The top inserts show the different
types of anisotropies obtained for various y coordinates (shown as
dots on the graph, of the same color scheme as the inserts). The
bottom inserts illustrate the y evolution of the oxygen environment
of Dy3+ ion.

firmed to be the AFA type described in the introductory part,
that is, a k = (0 0 0) antiferromagnetic multiaxis spin ordering,
the magnetic space group being Ia3̄d ′ (BNS 230.148), in
agreement with earlier descriptions of DyAG [18]. At 1.5 K,

FIG. 8. Rietveld refinement of DyAG at 1.5 K, using the mag-
netic space group Ia3̄d ′ (experimental: empty red circles, calculated:
black line, Bragg positions (crystal + magnetic contributions): green
ticks. The difference between the experimental and calculated pro-
files is displayed at the bottom of the graph as a blue continuous
line). The corresponding evolution of the Dy3+ magnetic moment
with temperature is shown in the inset. The ∗ symbol indicates a
non-magnetic impurity of unknown origin.
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FIG. 9. Rietveld refinement of DyGG at 32 mK, using the mag-
netic space group Ia3̄d ′ (Experimental: empty red circles, calculated:
black line, Bragg positions (crystal + magnetic contributions): green
ticks. The difference between the experimental and calculated pro-
files is displayed at the bottom of the graph as a blue continuous
line). The evolution of the Dy3+ magnetic moment with temperature
is shown in the inset.

the refined ordered magnetic moment reaches 7.1 μB, for an
expected theoretical value of gJJ = 10 μB for Dy3+(inset of
Fig. 8). It is important to stress out again here that moments
all point along their local main CEF axis, confirming once
again the picture of a strong Ising-like magnetic anisotropy of
Dy3+ in DyAG, and that nearest neighbors carry orthogonal
moments (see Fig. 1 and Appendix D).

In the case of DyGG, the Néel temperature is strongly
reduced with respect to DyAG, as magnetic intensity starts
to be seen on top of crystal Braggs on the NPD patterns below
TN = 0.37 K, in good agreement with earlier specific heat
results [30]. To test the prediction of Ref. [8], both k = (0
0 0) AFA and FC magnetic models were tried, the first one
being similar to that of DyAG (Ia3̄d ′), and the other one corre-
sponding to a ferrimagnetic structure, described by I41/ac′d ′
(BNS 142.567), as allowed by symmetry (see Appendix D).
In the latter, the Dy orbit is now split into two, on Wyckoff
sites 16e and 8b. The 8b moments have a single component
along the local Z CEF axis, while the 16e lie within local
XY CEF planes. In Cartesian coordinates, this translates into
a collinear component, which may remain finite, leading to a
net ferrimagnetic moment, or sum up to zero. The refinement
agreement factors are significantly worse for the FC than for
the AFA model (RBragg = 20% against 11.3% for Ia3̄d ′, for
χ2 = 3.6 in both cases). The refinement of the DyGG NPD
data at 32 mK using the AFA model is shown on Fig. 9. Within
the accuracy of the diffraction data, the ordered moment at
32 mK is strongly reduced, only 3.1 μB (to be compared with
7.1 μB for DyAG).

III. MAGNETIC PHASE DIAGRAMS

To investigate the interplay between magnetic anisotropy,
dipolar interaction and magnetic exchange in DyAG and

DyGG, mean-field calculations were performed, taking into
account the different CEF schemes determined previously for
each compound (see Table I).

A. Hamiltonian and approximations

The model Hamiltonian considered here writes

H = HCEF +
∑
〈i, j〉

∑
a,b=x,y,z

Kab
i, j Ja

i Jb
j , (3)

where Ki, j describes the interaction tensor between the com-
ponents of the total angular momentum Ja=x,y,z at sites i and
j. In the following, it is assumed that Ki, j is the sum of a
nearest-neighbor isotropic exchange term Ji, jδa,b on top of the
dipolar interaction, which is tuned artificially by a parameter
labeled xdip:

Ki, j = Ji, j + xdip Di, j .

The dipolar interaction writes

Da,b
i, j = μo

4π

(gJμB)2

r3
i, j

(
δa,b − 3

ra
i, j rb

i, j

r2
i, j

)
(4)

and is truncated to nearest neighbors. ri j is the vector join-
ing sites i and j. Using the nearest-neighbor distance dnn =
a
4

√
3/2 (a is the cubic lattice spacing, dnn ≈ 3.67 Å in DyAG

and ≈3.76 Å in DyGG [9]):

Da,b
i, j = D

(
δa,b − 3

ua
i, j ub

i, j

u2
i, j

)

with u = r/dnn,

D = μo

4π
(gJμB)2 1

d3
nn

= μo

4π

(gJμB)2

a3

128

3

√
2

3
,

which gives D ≈ 0.02 K.
Those mean-field calculations assume an ordered k =

(0 0 0) structure described by the expectation values 〈Ja
i 〉,

to be determined in an iterative manner. Each step involves
diagonalization of a local Hamiltonian, written in the (2J +
1) × (2J + 1) subspace:

HMF = HCEF +
∑

a

Ja
i

(∑
j,b

Kab
i, j

〈
Jb

j

〉)
. (5)

B. DyAG

It the range of (J , xdip) investigated values (0.5 � xdip �
1.5 and 0 � J � 0.1 K), the magnetic phase diagram of
DyAG shows that only one phase is stabilized, the multiaxis
AFA phase. This confirms that the AFA magnetic ordering
observed in this garnet is characteristic of the magnetic ground
state when in the presence of a strong Ising-like anisotropy.
This result originates from the relative orientation of the local
Zi direction and of the ui, j vectors in the garnet structure.
Writing the angular momentum as Ji = mzi

Zi, the dipolar
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FIG. 10. (J , xdip) magnetic phase diagram calculated for DyGG
crystal field parameters CEF1 and CEF2 (see Table I). AFA, FC and
(X0Z, 0Y Z ) labels are defined in the text. The dotted line and the ar-
row close to the boundary illustrate the fact that a finite J ≈ 0.02 K
leads to a position in the phase diagram consistent with a reduced TN

value, because of competition effects between different phases.

interaction behaves as an effective “ferromagnetic” coupling:

JiDi, j Jj = −D
2

mzi mzj .

It is noteworthy that this contrasts with the case of
pyrochlores, where the dipolar interaction gives a term
+ 5D

3 mzi mzj , at the origin of the “two in-two out” ice rule.
Furthermore, nearest-neighbor moments being perpendicular
in the AFA structure, exchange has little impact and magnetic
ordering is controlled by dipolar interactions only (as long
as J � xdipD, see Appendix D): in the range of investigated
magnetic exchange values, TN does not vary with J , but only
with xdip. For xdip = 1, i.e., close to the physical value of D,
the calculated TN is found to be 2.55 K, which matches well
the experimental TN of DyAG ≈2.4 K.

C. DyGG

The DyGG case is, in contrast with DyAG’s, much richer.
The magnetic phase diagrams, which were calculated for each
of the CEF1 and CEF2 solutions, are shown on Fig. 10. The
most striking result is that, despite both CEF parameter sets
being quite close (with Bm

2,4,6 values being identical within
≈15%), the magnetic ground states stabilized for J � xdipD
are different in each solution: CEF1 leads to a FC, while
CEF2 gives an AFA magnetic ground state (see Appendix D
for further details). This result is actually better understood if
one considers the form of the g tensor in each case: the FC
magnetic ordering is linked with the more planar tensor of
solution CEF1 (gxx = 7.40, gyy = 2.35, gzz = 12.5, a result in
agreement with Ref. [8]), while the AFA ordering originates
from the more axial one (gxx = 4.65, gyy = 2.38, gzz = 14.2,
solution CEF2).

In both cases, another important observation is that in-
creasing the magnetic exchange J value leads to a magnetic
phase transition towards a new type of magnetic ground state,
labeled (X0Z, 0XY ) on the phase diagrams (Fig. 10). It cor-
responds to randomly calculated magnetic orderings of low
symmetry, but all with a common 1:1 distribution of (X0Z )

FIG. 11. General magnetic phase diagram calculated for a pseu-
dospin 1/2 (J = 1 and xdip = 100 fixed) on a hyperkagome lattice,
as a function of Landé factors gxx , gyy, and gzz. AFA (purple), FC
(light blue), LS (light grey), and AFAy (orange) label different types
of magnetic ordering, as described in the text. The points correspond-
ing to the g values extracted from the CEF of DyAG and the CEF1
and CEF2 schemes of DyGG are indicated as red, dark green and
light green spheres, respectively.

and (0Y Z ) local magnetic anisotropies on the Dy sites. It is
difficult to assert from mean-field calculations only if this
magnetic ground state corresponds to a true magnetic order, or
is symptomatic of a more complex case, possibly degenerate,
and resulting from geometrical frustration of the antiferro-
magnetic exchange J . This requires further investigations
with more sophisticated numerical tools, like Monte Carlo for
instance.

To agree with the AFA magnetic ground state determined
by NPD, the most appropriate CEF solution for DyGG is
clearly CEF2. Like in the DyAG case, mean-field calcula-
tions show that in the AFA phase, far from the (X0Z, 0XY )
boundary, TN is controlled by xdip only. For xdip = 1 and
J = 0, calculations give for example TN = 1.2 K, and an or-
dered magnetic moment ≈7 μB, therefore substantially larger
than the experimental TN of 370 mK and the ordered mag-
netic moment ≈3.1 μB determined experimentally. However,
should J be finite and slightly larger, e.g., J ≈ 0.02 K,
the representative point of DyGG in the phase diagram will
be shifted closer to the boundary with the (X0Z, 0XY ) phase
(Fig. 10). In this scenario, quantum fluctuations between the
AFA and (X0Z, 0XY ) phases are expected to reduce TN as
well as the ordered moment. This order of magnitude of the
antiferromagnetic exchange in DyGG provides a plausible
explanation for our experimental observations. It is worth
adding that a similar scenario was proposed in the case of
the pyrochlore antiferromagnet Yb2Ti2O7. Different studies
have shown that this material sits right at the border between
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FIG. 12. Evolution with J of the sum  (see text for definition) of the three moments on any given first-neighbor triangle of the
hyperkagome lattice in the FC phase. Calculations are performed for xdip = 100.

a ferromagnetic and an antiferromagnetic phase, suggesting
that the unconventional ground state of this material might
be governed by strong quantum fluctuations arising from the
competition between those phases [43,44].

IV. DISCUSSION: BEYOND DYAG AND DYGG

Several important results can be drawn from this investiga-
tion of two dysprosium garnets: (i) the Ising system picture for
DyAG is confirmed, (ii) replacing aluminum with the larger
gallium on the garnet A site leads to a change of the oxygen
environment, which in turns, according to point charge calcu-
lations, affects the single-ion anisotropy of Dy3+, the latter
evolving from axial in DyAG to planar in DyGG; (iii) the
magnetic ground state of DyGG is described for the first time,
as similar to that of DyAG but with a strongly reduced TN and
ordered magnetic moment. Mean-field calculations further
complete this picture, with two main conclusions: (i) the mul-
tiaxis AFA antiferromagnetic ordering is governed by dipolar
interactions only in DyAG and (ii) the consequences of the
Dy3+ planar anisotropy in DyGG are two-fold, as the DyGG
g-tensor places it near a boundary between two possible mag-
netic ground states, AFA and FC, and as magnetic exchange
becomes now a relevant parameter in the Hamiltonian. They
point out, moreover, that, depending on the g-tensor, different
magnetic ground states can stabilized, as exemplified by the
CEF1 (FC) and CEF2 (AFA) cases.

To go beyond those two garnets and address the more gen-
eral case of a spin of any given anisotropy on a hyperkagome
lattice, further mean-field calculations were performed. To
this end, an anisotropic pseudospin S = 1/2 was considered,
characterized by arbitrary Landé factors gxx, gyy, and gzz. The
full complexity of the CEF scheme was then absorbed using
the projection:

Ji = R†
i

gi

gJ
Riσi,

where the Ri matrices transform Cartesian to local coordinates
(this is arguably an oversimplification in the case of DyGG,

since the first excited level is only at 2.6 meV, as discussed in
Sec. IV). The effective Hamiltonian is then

H1/2 =
∑
〈i, j〉

∑
a,b=x,y,z

K′ab
i, jσ

a
i σ b

j ,

K′
i, j =

(
R†

i

gi

gJ
Ri

)†

Ki, j

(
R†

j

g j

gJ
R j

)
.

In the calculations, the three components of the g diagonal
tensor write

gxx = gJ cos φ cos θ,

gyy = gJ sin φ cos θ,

gzz = gJ sin θ,

where the θ and φ angles allow one to map out an “anisotropy
sphere sector,” covering all possible anisotropies. For the
pseudospin S = 1/2, the dipolar interaction writes

D1/2 = μo

4π
(gJμB)2 1

d3
nn

with gJ = 2, which gives D1/2 ≈ 0.05 K. The corresponding
interaction energy is then D1/2

1
22 . In the original garnet model,

however, D ∼ 0.02 K (see Sec. III A), and the typical energy
is DJ2. To work with more realistic numerical values, xdip was
then set to xdip = DJ2

D1/2
1

22
≈ 100, fixing the order of magnitude

of effective dipolar interactions between S = 1/2 spins to
xdipD1/2

1
22 ≈ 5 K.

Four distinct magnetic phases are distinguished depending
on the values of gxx, gyy, and gzz, as illustrated on Fig. 11. (i)
The AFA ground state is obtained, as expected, in the Ising
case (when gzz � gxx, gyy). (ii) The most common ground
state corresponds to the FC phase described previously, and
is found as soon as gzz � 0.8, and for any gxx, as long as gyy �
0.6. (iii) The third magnetic ground state that is identified,
AFAy, corresponds to a very narrow zone with an anisotropic
g-tensor characterized by gyy � gxx ≈ gzz. It is similar to the
AFA ground state, but the spins are aligned along the local Y
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TABLE II. θn(J ) and λnm coefficients entering the definition of
the Bm

n for the case of Dy3+.

λnm

n θn m = 0 2 3 4 6

2 −2
32 .5.7

1/2
√

6
2

4 −8
33 .5.7.11.13

1
8

√
40
2

−√
35

2

√
70
8

6 4
33 .7.112 .132

1
16

√
105
16

−√
105

8

√
126
16

√
231
16

axis instead of the local Z axis (see the fifth top inset of Fig. 7).
(iv) The last magnetic ground state on the phase diagram is
labeled LS, as it is a phase with low symmetry, possibly not
ordered, which is observed for an intermediate region of gyy �
0.6 with gxx � 0.4 and gzz � 0.4.

Tosupport the validity of this theoretical magnetic phase
diagram, the anisotropies corresponding to the g-tensors cal-
culated for DyAG and DyGG (CEF1 and CEF2) are shown
on Fig. 11. DyAG is unsurprisingly placed at the pole of
the sphere, right in the center of the AFA area. Consistantly
with previous results, the CEF1 (more isotropic) and CEF2
(more Ising-like) schemes of DyGG lead to the FC or the
AFA ground state, respectively. Relating to the dodecahedral
distortion around Dy3+ illustrated on Fig. 7, a compressed
environment will thus lead to an AFA ground state, while
more regular dodecahedra should lead to an FC phase, for
a rather large range of g’s (middle three insets of Fig. 7, and
even possibly to an LS one. As stated in the introduction, most
garnets exhibit an AFA related magnetic order (R = Tb, Ho
[14] in R3Al5O12 and R = Nd [45], Tb [46], Er [47], Ho [48] in
R3Ga5O12). According to this phase diagram, this means that
Ising-like anisotropy, possibly with a planar component as in
DyGG, is likely to be a sound description of the RE magnetic
anisotropy in these compounds.

The scenario described above holds for moderate magnetic
exchange only, however. The strong J case in particular, is
expected to be reminiscent of spin-liquid physics. The latter is
essentially governed by a local constraint, which states that
the (vector) sum of the moments on any given triangle of
the antiferromagnetic hyperkagome network,  = ∑

i∈� Ji,
should be zero [49]. With this in mind, it is instructive to
perform mean-field calculations with increasing J : indeed,

TABLE III. Energy levels determined from a least-square fit
based on a χ 2 criterion, which takes into account the position of
the energy levels, their relative spectral weight (INS data), and
PNPD susceptibility results. The Z quantization axis is given in
Appendix C.

n DyAG DyGG(CEF1) DyGG(CEF2)

2, 3 8.9 2.54 2.34
4, 5 13.6 8.86 8.94
6, 7 19.7 14.9 14.9
8, 9 28.5 19.4 19.4
10, 11 50.9 56.2 55.4
12, 13 65.1 61.9 62.9
14, 15 95.9 70.0 70.0

TABLE IV. Ground-state wave functions written as ψ =∑
j=−J,J a j |Jz = j〉. The other ket of the doublet is obtained as

φ = ∑
j=−J,J −a− j |Jz = j〉. The Z quantization axis is given in

Appendix C.

aj DyAG DyGG(CEF1) DyGG(CEF2)

−15/2 −0.80 0.72 0.75
−13/2 0 0 0
−11/2 0.59 0.29 0.36
−9/2 0 0 0
−7/2 0.046 0.48 0.43
−5/2 0 0 0
−3/2 0.019 0.08 0.03
−1/2 0 0 0
+1/2 0.061 −0.09 −0.12
+3/2 0 0 0
+5/2 0.032 −0.32 −0.29
+7/2 0 0 0
+9/2 0.024 −0.19 −0.11
+11/2 0 0 0
+13/2 0.012 −0.1 −0.03
+15/2 0 0 0

such calculations point out an interesting behavior beyond
a threshold Jc ≈ xdipD/2 ≈ 2.25 K (see further details in
Appendix D). This is illustrated in Fig. 12, which displays
the amplitude of  for two J values, below and above Jc.
While  remains large when the dipolar interaction dominates
(J � Jc), the phase diagram calculated for J � Jc clearly
shows the existence of a zone on the g sphere sector (in
purple), close to the isotropic case, for which  nears zero, a
feature which could be reminiscent of the hyperkagome rule.
This observation might be especially relevant in the case of
Yb3Ga5O12 [50] or Gd3Ga5O12 [51,52], where RE magnetic
anisotropy is easy-plane or quasiisotropic (Heisenberg spin).
According to the phase diagram shown in Fig. 12, such garnets
should have a FC magnetic order, yet close to this  ≈ 0
region, or might even fall in the LS area, and thus promise
to reveal rich new physics. Although it is beyond the scope of
this work, it is compelling to further study the nature of this
FC phase in this part of the g sphere, to understand how it is
related with spin-liquid physics.

The mean-field calculations presented in this work need
to be confirmed and completed using more appropriate and
advanced numerical tools, like Monte Carlo simulations for
example. Some of the simplifications which have been used in
the present work have known shortcomings indeed: truncation
beyond first-neighbor distance of the dipole interaction, for
instance, can introduce misleading spurious effects, accord-
ing to spin-ice pyrochlores studies [53–56] as well as recent
studies in garnets [57], and need to be implemented carefully
[58], which explains why the garnet LS ground state remains
rather poorly characterized in this study. It should be added
here, however, that in contrast with the spin ice case, the
dipolar interaction, combined with the Ising nature of the
rare-earth, is not “frustrating” in garnets. More precisely, as
documented in the abundant literature, the dipolar interaction
is “self-screened” in spin ice, which limits its ability to lift
the degeneracy within the spin ice manifold. In the case of
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FIG. 13. DyAG (left) and DyGG (right) INS experimental spec-
tra vs calculations, as obtained from the χ 2 minimization described
in the text. The data correspond to constant Q scans as a function
of temperature. See the main text for corresponding experimental
details.

garnets, the situation is very different, since the dipolar in-
teraction simply stabilizes classical ordered phases: including
long-range effects in the calculations should lead to similar
phase diagrams, and should not change dramatically garnet
physics, at least for Ising-like anisotropies.

Another simplification is the use of a pseudospin 1/2 to
describe the ground-state doublet (note that this is not the
case for the calculations presented in Sec. III, for which the
low lying doublet of Dy was taken into account), which might
not hold for all rare-earth garnets, depending on their CEF
schemes. It also remains to be properly understood whether
effects arising from the frustrating geometry of the hyper-

kagome lattice, as well as quantum effects, not taken into
account at the mean-field level as stated previously, could
lead to more exotic phenomena, especially in the case of a
large magnetic exchange. As a final remark, our results show
for the first time in garnets the impact of the dodecahedral
distortion of the RE environment on the RE anisotropy, and
hence on the magnetic ground state. Thanks to this extreme
sensitivity to oxygen environment, playing with the A site in
R3A5O12 undoubtedly offers a fabulous playground to tune the
single-ion anisotropy to the characteristics which will lead to
exotic magnetic ground states, yet to be discovered.

V. CONCLUSION

In conclusion, polarized neutron powder diffraction has
led to the first direct measurement of the Dy3+ anisotropy in
two hyperkagome compounds, Dy3Al5O12 and Dy3Ga5O12,
whose CEF schemes were also determined by inelastic neu-
tron scattering. It was found that replacing Al for Ga leads to
a flattening of the oxygen dodecahedron, which modifies the
Dy3+ local anisotropy from Ising to XZ , respectively. Neutron
diffraction was then used to determine the magnetic ground
state of both garnets, which was identified as the multiaxis
AFA type in both. Those experimental results served as the
basis for comprehensive mean-field magnetic phase diagram
calculations, including a generalized phase diagram of the
Landé tensor g evolution of the ground state of an anisotropic
pseudospin S = 1/2 on a hyperkagome lattice. These cal-
culations show that a quasi-Ising system will order with a
multiaxis ground state in which dipolar interactions only are
relevant, a perfect illustration of which is the Dy3Al5O12 case.
Departing from Ising anisotropy leads to different ground
states being stabilized, some possibly disordered. An addi-
tional instability, driven by antiferromagnetic exchange, also
favors complex magnetic phases, in which frustration is likely
at play. Proximity to these instabilities could be at the origin of
the low value of TN in Dy3Ga5O12. The sensitivity of the rare-
earth magnetic anisotropy to its oxygen environment, which
depends on the garnet metal site ionic size, combined with the

FIG. 14. Calculated magnetic specific heat for DyAG (left) and DyGG (right).
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TABLE V. Numbering, atomics positions, and local CEF axes.

N Position x axis y axis z axis

1 ( 1
8 , 0, 1

4 ) (0, 1, 1̄) (0,1,1) (1,0,0)

2 ( 3
8 , 0, 3

4 ) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

3 ( 1
4 , 1

8 , 0) (1̄, 0, 1) (1,0,1) (0,1,0)

4 ( 3
4 , 3

8 , 0) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

5 (0, 1
4 , 1

8 ) (1, 1̄, 0) (1,1,0) (0,0,1)

6 (0, 3
4 , 3

8 ) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

7 ( 5
8 , 1

2 , 3
4 ) (0, 1, 1̄) (0,1,1) (1,0,0)

8 ( 7
8 , 1

2 , 1
4 ) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

9 ( 3
4 , 5

8 , 1
2 ) (1̄, 0, 1) (1,0,1) (0,1,0)

10 ( 1
4 , 7

8 , 1
2 ) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

11 ( 1
2 , 3

4 , 5
8 ) (1, 1̄, 0) (1,1,0) (0,0,1)

12 ( 1
2 , 1

4 , 7
8 ) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

13 ( 7
8 , 0, 3

4 ) (0, 1, 1̄) (0,1,1) (1,0,0)

14 ( 5
8 , 0, 1

4 ) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

15 ( 3
4 , 7

8 , 0) (1̄, 0, 1) (1,0,1) (0,1,0)

16 ( 1
4 , 5

8 , 0) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

17 (0, 3
4 , 7

8 ) (1, 1̄, 0) (1,1,0) (0,0,1)

18 (0, 1
4 , 5

8 ) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

19 ( 3
8 , 1

2 , 1
4 ) (0, 1, 1̄) (0,1,1) (1,0,0)

20 ( 1
8 , 1

2 , 3
4 ) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

21 ( 1
4 , 3

8 , 1
2 ) (1̄, 0, 1) (1,0,1) (0,1,0)

22 ( 3
4 , 1

8 , 1
2 ) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

23 ( 1
2 , 1

4 , 3
8 ) (1, 1̄, 0) (1,1,0) (0,0,1)

24 ( 1
2 , 3

4 , 1
8 ) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

existence of disordered magnetic phases on the generalized
hyperkagome phase diagram, promise fruitful research.

APPENDIX A: EXPERIMENTAL METHODS

The DyAG powder was synthesised from stoichiometric
amounts of predried Dy(NO3)3 and Al(NO3)3, mixed thor-
oughly and prereacted at 1000 ◦C. Pressed pellets were then
heated up to 1200 ◦C for 48 hrs with intermediate regrindings.
The DyGG powder was prepared from a mixture of stoi-
chiometric amounts of Dy2O3 and Ga2O3 (previously dried
at 500 ◦C), pressed into pellets and heated up to 1200 ◦C
for 48 hrs, with regular re-grindings. Formation of the pure
phases was confirmed by laboratory x-ray powder diffraction;
an impurity of unknown origin was detected in the DyAG
sample. Bothsamples crystallize with the same cubic space
group Ia3̄d , with a ≈12.04 Å and a ≈12.31 Å for DyAG and
DyGG, respectively, in agreement with literature results [9].

Polarized neutron powder diffraction measurements were
performed on the 5C1 diffractometer (DyAG, λ = 0.84 Å)
and the 6T2 diffractometer (DyGG, λ = 1.4 Å) at LLB-
Orphée, Saclay, France. Detailed description of the instrument
scattering geometry and typical measurement conditions can
be found in Ref. [32]. Initially the powder was introduced in a
vanadium container of 6 mm diameter without compressing,
and a powder diffraction diagram was collected at 5 K in zero
field. The crystal structure was refined in space group Ia3̄d
using the measured structure factors. Subsequently,a series of
powder patterns for I+ and I−, for both compounds, in the
temperature range 2–100 K in an applied field of 1, 5 and 6 T
was collected.

Inelastic neutron scattering (INS) experiments were carried
out on the thermal triple-axis 2T spectrometer at LLB-Orphée,
between 5 and 300 K. On such an instrument, the neutron
intensity recorded in the (single) detector writes

I (Q, E ) ≈ η R ∗
(k f

ki
S(Q, E )

)
, (A1)

where k f and ki are the outgoing and incident neutron wave
vectors, R is the experimental resolution function, ∗ denotes
a convolution product, η is the efficiency of the monitor and

FIG. 15. Powder averaged magnetization vs magnetic field H for DyAG (left) and DyGG (right) at different temperatures. The black lines
show the calculations as described in the text.
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TABLE VI. Lists of atoms defining the triangles in the garnet
unit cell. The atom located at the shared corner is given in the first
column.

N Triangle 1 Triangle 2

1 (1,3,5) (1,6,10)
2 (2,3,12) (2,10,11)
3 (1,3,5) (2,3,12)
4 (4,5,8) (4,7,12)
5 (1,3,5) (4,5,8)
6 (1,6,10) (6,8,9)
7 (4,7,12) (7,9,11)
8 (4,5,8) (6,8,9)
9 (6,8,9) (7,9,11)
10 (1,6,10) (2,10,11)
11 (2,10,11) (7,9,11)
12 (2,3,12) (4,7,12)

S(Q, E ) is the spin-spin correlation function. Since there is
a single detector, its efficiency is not considered unless mea-
surements in absolute units are required. k f and ki are selected
by an analyzer and a monochromator respectively, made of
single crystals of pyrolytic graphite in the present case. The
monitor is a low efficiency detector (η varies as 1/ki) placed
in the incident beam to conduct the experiments while keeping
constant the number of incident neutrons for each (Q, E )
point. This allows one to automatically take into account the
corrections due to power fluctuations of the neutron source, as
well as the reflectivity of the monochromator (which depends
on ki). Furthermore, the experiment is carried out using a fixed
k f , so as to avoid any correction due to the reflectivity of
the analyzer. The convolution product widens the apparent
energy width of the excitations. This effect is characterized
by an energy resolution �E , which corresponds to the FWHM
of an infinite lifetime excitation represented by a δ(E ) func-
tion [59,60]. R also involves a normalization coefficient r ≈
(ki k f )3. In the considered energy range, the overall correction
turns into a nearly constant coefficient, which leads to an
almost direct measurement of S(Q, E ). The data shown in this
work are thus raw data. To eliminate harmonics 2k f , 3k f , . . .

from the scattered beam, two pyrolytic graphite filters and
a final constant wave vector k f = 2.662 Å−1 were used.
Furthermore, experiments were carried out with open colli-
mations, in combination with a vertically and horizontally
bent monochromator and analyzer, to optimize the flux at
the sample position. This set up yields an energy resolution
�E ≈ 1.2 meV. S(Q, E ) at 5 K, up to E = 40 meV, was
recorded, and several constant-Q scans were also measured
at increasing temperatures between 5 and 300 K, for both
samples.

Additional measurements were also carried out on the
4F2 cold triple axis spectrometer (LLB-Orphée), with k f =
1.55 Å−1 and a cooled Be filter. This setup allows a better
resolution �E ≈ 0.25 meV.

Neutron powder diffraction (NPD) vs. temperature was
performed on the G4.1 diffractometer (λ = 2.426 Å) at LLB-
Orphée. Diffractograms were recorded between 1.5 and 300 K
using an orange cryostat environment for DyAG, and between
32 and 600 mK for DyGG, in a dilution fridge environment.

To ensure proper thermalisation of the sample at subKelvin
temperatures, the sample was set in a dedicated vanadium
cell filled with 40 bars 4He gas, which explains the de-
graded signal to noise ratio for diffractograms recorded in this
setup. Rietveld refinements were performed with the FULL-
PROF program [61]. Symmetry analysis was carried out using
the FULLPROFSUITE software and the Bilbao Crystallographic
Server [62,63]. No sign of partial substitution of Dy on the Al
or Ga octahedral site (and vice versa) was evidenced within
the resolution of the experiment (�1%).

APPENDIX B: EMPIRICAL CEF SCHEMES

As explained in the main text, diagonalization of HCEF,
with

HCEF =
∑

m=0,2

Bm
2 Ôm

2 +
∑

m=0,2,4

Bm
4 Ôm

4 +
∑

m=0,2,4,6

Bm
6 Ôm

6

in the subspace spanned by the kets of the form |Jz =
−J, . . . , J〉, J = 15/2 determines the wave functions ψn and
energies En. The Ôm

n are the Wybourne operators [37] and
the Bm

n are the empirical coefficients to be determined. Since
the CEF is calculated in the ground multiplet approximation,
Stevens equivalent operators are used. They differ from the
Wybourne operators by a multiplicative factor θn(J ) × λnm

(see Table II). The Bm
n provided in this work have been divided

by these factors.
To determine the Bm

n , we used a homemade Metropolis-like
algorithm. A number of Bm

n sets are randomly generated and
kept, if they minimize a χ2 or, equivalently, an “energy,” or
if the energy loss is not too unfavorable. This χ2 criterion is
defined as the sum of squared differences between calculated
and experimental quantities normalized to uncertainties. It
takes into account the magnetic moment ma which appears
under an applied field (and measured by PNPD), the CEF
levels En, and the spectral weight of the CEF transitions:

χ2 =
∑

a=x,y,z

(ma(mes) − ma(calc)

δma

)2

+
∑

n

(En(mes) − En(calc)

δEn

)2

+
∑
n,m

( Inm(mes) − Inm(calc)

δInm

)2

.

The METROPOLIS algorithm eventually converges to a set of
Bm

n which minimizes χ2. Importantly, owing to uncertainties
(δma, δEn, δInm), this set is not unique. The Bm

n found in this
work may thus vary by 10% to 15%, typically. The spectral
weight is determined based on the expression giving the neu-
tron cross section for a powder sample:

S(Q, E ) =
∑
n,m

pn

(∑
a

|〈ψn|Ja|ψm|2〉
)

δ[(E − (Em − En)].
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FIG. 16. Variation with gxx , gyy, and gzz of the mx , my, and mz components written in the local bases of phases AFA and FC (in the latter,
mx , my correspond to the 16e site, mz to the 8b site). Calculations are performed calculated for a pseudospin 1/2 with J = 1 and xdip = 100
fixed.

By analogy, the experimental data is thus fitted to a model,
which includes N modes at the energies εN . We define a “par-
tition function” Z (T ) = ∑

n=1,N exp −εn/kBT and as many
Gaussian profiles g(E ) as observed peaks, hence

S(Q, E ) = b + S0 + S1 + S2 + · · · ,

S0 =
∑

n=1,N

1

Z (T )
i0→ng(E − εn),

S1 = e−e1/kBT

Z (T )

∑
n=2,N

i1→ng(E − (εn − ε1)),

S2 = e−e2/kBT

Z (T )

∑
n=3,N

i2→ng(E − (εn − ε2)).

S1 and S2 contribute significantly to S(Q, E ) when the tem-
perature is comparable to ε2 and ε3 respectively. At low
temperature, S(Q, E ) is essentially given by S0. b is a
flat background. This fit provides the energies εn = En and

spectral weights (
∑

a |〈ψn|Ja|ψm|2〉) = in→m which enter the
above definition of χ2. Since the scattering is not measured
in absolute units, the spectral weights are normalized to the
intensity of a particular transition. Crystal field scheme results
determined following this algorithm (energy levels and wave
functions) are given in Tables III and IV and Fig. 13.

The magnetic specific heat versus T , as well as the magne-
tization versus H , have been calculated for the different sets
of CEF coefficients determined in this work. To this end, a
Zeeman term gJμB J. H is added to HCEF yielding new wave
functions ψn and new energies En. The magnetization and
specific heat then write

m = gJ

〈
J.

H
H

〉
,

C = 1

T 2
〈(E − 〈E〉)2〉,
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where 〈. . . 〉 stands for the expectation value defined by

〈O〉 =
∑

n e−En/kBT 〈ψn|O|ψn〉∑
n e−En/kBT

(B1)

As shown in Fig. 14, the specific heat essentially shows broad
maxima at half the energies of the CEF levels, hence close to
30 and 90 K for DyGG, and 90 K for DyAG.

The M(H ) curves were measured at different tempera-
tures on powder samples using a commercial dynacool PPMS
(VSM option). It is compared to an averaged calculation [64]
taking into account simulations with the magnetic field paral-
lel to (111), (110), and (100), to capture the powder averaging
of the measurement:

m = 3m100 + 6m110 + 4m111

13
. (B2)

The agreement is overall satisfactory (see Fig. 15), yet imper-
fections appear at large fields at low temperature.

APPENDIX C: LOCAL BASIS CONVENTION

As in rare earth pyrochlores, it can be quite convenient
to work in local bases. In the garnet structure, the subset of
magnetic ions is composed of 2 × 12 atoms which form two
interlaced hyperkagome networks. The 24c site occupied by
magnetic ions in the Ia3̄d space group has D2 orthorhombic
local symmetry; the main axis are one of the cubic axes. Those
local bases are identical for the two networks. Each block of
12 ions is constructed on two equivalent groups of 6 atoms,
separated by a translation (1/2, 1/2, 1/2). Atomic positions,
numbering and local CEF axes are given in Table V.

Importantly, each hyperkagome network is made of corner
sharing triangles. In contrast to the 2D kagome, these triangles
are not coplanar, but twisted, and form large loops containing
ten triangles. Table VI gives the list of nearest-neighbor ions
which form those triangles (note that a given ion belongs to
two different triangles).

APPENDIX D: REMARKABLE MAGNETIC STRUCTURES

This section describes the remarkable structures high-
lighted by mean-field calculations.

1. AFA Ia3̄d ′ and Ia′3̄′d structures

These structures, in which the spins point along the three
cubic crystallographic axes, are the two most symmetric ones.
As shown by Capel [8], and further confirmed in the present
study, they are favored in Ising-like systems and are stabi-
lized by dipolar interactions. Using the conventions described
previously, the spins are identical, with a unique non zero
component mz along the main local CEF axis. In Ia3̄d’, the
two hyperkagome networks are identical with mz1 = mz2 , but
opposite in Ia’3̄’d with mz1 = −mz2 . Analytic calculations
show that the molecular field at a site i due to the dipolar
interaction is also along the main CEF axis and given by
hz = −2Dmz, hence the total classical energy writes E =
−24D(m2

z1
+ m2

z2
). The two structures are thus degenerate (the

two hyperkagome networks are not coupled). Up to the next-

nearest neighbors, the molecular field becomes:

hz = −D
(

2 mz1 + 12
(3

7

)5/2

mz2

)

and the energy

E = −24D
(

m2
z1

+ m2
z2

+ 12
(3

7

)5/2

mz1 mz2

)
.

The energy is thus minimized when mz1 = mz2 , that is, for
Ia3̄d’. Only when including the third-nearest neighbors comes
the isotropic exchange into play, adding a term E ′ to the total
energy:

E ′ = −48J3
(
m2

z1
+ m2

z2
− mz1 mz2 3

)
The latter term, in contrast, favors mz1 = −mz2 . There-
fore, with increasing antiferromagnetic exchange, a transition
should occur from and Ia’3̄’d to Ia3̄d’, approximately above
the threshold:

J c
3 > 6

(3

7

)5/2

D.

2. FC I41/ac’d’ structure

As predicted by Capel [8,65], a ferrimagnetic structure
labeled FC also appears in the garnet phase diagrams. The
Cartesian coordinates of the spin are given by

S1 = S7 = (0, y1, z1),

S2 = S8 = (0,−y1, z1),

S3 = S9 = (y1, 0, z1),

S4 = S10 = (−y1, 0, z1),

S5 = S11 = (0, 0, z2),

S6 = S12 = (0, 0, z2).

As a result, a net magnetic moment M = 4z1+2z2
6 arises along

the c axis (note that domains with magnetization along a and
b also exist). The nature of this phase is better understood by
translating these coordinates in local bases:

S1 = S7 = (mx, my, 0),

S2 = S8 = (mx, my, 0),

S3 = S9 = (−mx, my, 0),

S4 = S10 = (mx,−my, 0),

S5 = S11 = (0, 0, mz ),

S6 = S12 = (0, 0,−mz ),

with

y1 = (mx + my)/
√

2,

z1 = (my − mx )/
√

2,

z2 = mz,

and conversely

mx = (y1 − z1)/
√

2,

my = (y1 + z1)/
√

2.
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FIG. 17. Evolution with J (from J = 2 to J = 2.75) of the magnetic phase diagrams as a function of gxx , gyy, and gzz. Same color code
as Fig. 11. Calculations are performed for a fixed xdip value = 100.

Local coordinates of the form (0, 0,±mz ) correspond to spins
at 8b sites, while the spins lying in the local XY plane occupy
16e sites. In other words, two ions of the structure are along
their main CEF axis, while the four others have components
in the XY plane. As a result, these states are likely favored as
soon as the anisotropy departs from the Ising case. Analytical
calculations show that the dipolar and exchange interactions
give the following contributions:

JiDi, j Jj = D
(
z2

1 − 1
2 (y1 − 2z1)2

)
.

JiJi, j Jj = J z2
1,

if i and j are both on a 16e site and

JiDi, j Jj = D(z1 + (y1 − z1/2))z2,

JiJi, j Jj = J z1z2,

if i and j belong to two different sites 16e and 8b. Each 16e
spin has two 16e and two 8b nearest neighbors while 8b spins
have only 16e nearest neighbors, so the total energy is

E = 32(J + D)
(
z2

1 + 2z1z2
)

− 16D
[
(y1 − 2z1)2 − 4

(
y1 − z1

2

)
z2

]
,

which is equivalent to

E = 32(J − D)z2
1 − 16Dy2

1 + 64Dy1z1

+ 64z2

[(
J + D

2

)
z1 + Dy1

]
.

Since the energy is linear in z2, E is minimized if z2 is
saturated, i.e., z2 = m. Meanwhile, we introduce the auxil-
iary angle φ so that y1 = m cos φ, z1 = m sin φ, hence mx =
m cos(φ + π/4), my = m sin(φ + π/4). Minimization with
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respect to φ leads to the condition:

(D
2

+ J
)

cos φ − D sin φ

=
(D

2
− J

)
sin φ cos φ − D cos 2φ.

This analysis shows that two different regimes ought to be dis-
tinguished. In the “antiferromagnetic exchange” regime, J �
D/2, energy is mimimized if φ = −π/2, which corresponds
to a nearly collinear state with z1 = −z2 = −m, y1 = 0. The
“dipolar regime,” for J � D/2, corresponds to a complicated
noncollinear structure with φ ≈ π − ε, i.e., y1 ≈ −m, z1 ≈
0, z2 = m. The change between the two regimes occurs at
the threshold Jc = D

2 . Close to this threshold, ε ≈ Jc−J
Jc+J .

This analysis also demonstrates that the FC phase is flexible
enough to accommodate two very different magnetic orders
with the same underlying symmetries, which both satisfy
dipolar and the exchange interactions.

APPENDIX E: ADDITIONAL COMMENTS ON THE
GENERALIZED S = 1/2 MAGNETIC PHASE DIAGRAM

As explained above, in the AFA phase, the spins have local
coordinates of the form (0, 0, mz ), mz being identical on all
sites. In the FC phase, the 8b spins have local coordinates of

the form (0, 0,±mz ), while the 16e lie in the local XY plane,
with local coordinates (mx, my, 0), (mx, my, 0), (−mx, my, 0)
and (mx,−my, 0). Figure 16 displays mx,y,z on the “anisotropy
sphere sector” using a color code ranging from −1 to +1. In
the AFA phase, moments are given by mx = my = 0, mz = 1.
In the FC phase, |mz| �= 0, except close to a thin line cor-
responding to gzz ≈ 0. Furthermore, the planar component
essentially points along X or Y , following the dominating gxx

or gyy value.
Mean field calculations were also performed to inves-

tigate the dependence with magnetic exchange J of the
stability range of the different phases. The results are pre-
sented in Fig. 17. Interestingly, the stability range of AFA is
slightly extended from Ising to XZ anisotropies, in a narrow
range of J values, close to the threshold Jc ≈ xdipD/2 ≈
2.25 K. For J slightly above this threshold, this stability
range shrinks again back to the Ising case. On the other
hand, the extend of AFAy and LS phase is seemingly not
strongly affected by J , at least in the investigated range.
This behavior is rather puzzling and remains to be further
studied.

The LS phase is also observed for XZ anisotropies around
Jc, as an intermediate state between AFA and FC. This sup-
ports the idea that this LS state encompasses a large range
of various low symmetry states, possibly disordered, whose
relationship, if any, with the (X0Z , 0Y Z) state of the DyGG
phase diagrams needs to be elucidated.
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