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The states generated by the two-spin generalization of the two-axis countertwisting Hamiltonian are examined.
We analyze the behavior at both short and long timescales, by calculating various quantities such as squeezing,
spin expectation values, probability distributions, entanglement, Wigner functions, and Bell correlations. In the
limit of large spin ensembles and short interaction times, the state can be described by a two-mode squeezed
vacuum state; for qubits, Bell state entanglement is produced. We find that the Hamiltonian approximately
produces two types of spin Einstein-Podolsky-Rosen (EPR) states, and the time evolution produces aperiodic
oscillations between them. In a similar way to the basis invariance of Bell states and two-mode squeezed vacuum
states, the Fock state correlations of spin EPR states are basis invariant. We find that it is possible to violate a Bell
inequality with such states, although the violation diminishes with increasing ensemble size. Effective methods
to detect entanglement are also proposed, and formulas for the optimal times to enhance various properties are
calculated.
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I. INTRODUCTION

The concept of quantum squeezing has been central to
the development of quantum metrology and its applications
in quantum information science [1–4]. In a squeezed state,
it is possible to reduce the quantum mechanical noise (as
measured by the variance) of an operator at the expense
of another operator, according to the Heisenberg uncer-
tainty relation. The most common experimental realizations
of squeezing remain in optical systems [5–7]. In addition
to squeezed states for one mode, the two-mode squeezed
state [8] is one of the central ingredients of optical-based
quantum technologies, due to the entanglement that is pos-
sessed by this state. In a two-mode squeezed state, a linear
combination of variables involving the two modes experi-
ences suppression of quantum noise [2,3,9,10]. Observables
in the two modes obey Einstein-Podolsky-Rosen (EPR) type
correlations, which can be employed for various quantum
information tasks [9]. Squeezed states of light have found
applications in gravitational wave detection [11], quantum
computation [9], interferometry [12], quantum metrology
[13], and quantum cryptography [14], to name a few exam-
ples.
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Atomic gases are another system that exhibits quantum
mechanical squeezing. This includes atomic ensembles and
Bose-Einstein condensates (BECs), where the relevant de-
grees of freedom are the internal spin states of the atoms [15].
In contrast to the quantum optical case where the system is
described by bosonic modes, for atomic gases the appropriate
description is in terms of the collective spin of all the atoms.
The seminal theoretical works of Kitagawa and Ueda [16]
studied two main types of squeezed states in such atomic
ensembles, the one- and two-axis spin squeezed states. These
produce squeezing in the collective spin variables in a similar
way to optical states. Such squeezed spin states have been
observed in Refs. [17–20].

While squeezing on one spin has been studied in great
detail theoretically and experimentally, the analog of two-
mode squeezing for the spin case is relatively less developed.
The most widely known results for two spins are for atomic
ensembles pioneered by the group of Polzik and co-workers
[21–23]. In these works, while the physical system is an
atomic ensemble, the regime that is examined is where spin
variables can be approximated by bosonic modes, according
to the Holstein-Primakoff transformation. In these works the
entangled state that is produced can be described within this
approximation as a two-mode squeezed state. However, due to
the fundamentally different nature of the spins to modes, it is
well known that different dynamics can result for long evolu-
tion times, observed in effects such as oversqueezing [24–29].
Entanglement between different spatial regions of a single
BEC was experimentally observed [30–32]. The two-spin
version of one-axis squeezing was studied in Refs. [33,34]
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where it was found that a complex structure of entanglement
is present, with a time dependence showing fractal charac-
teristics. Methods to generate this state have been examined
in numerous works [33–39]. Procedures to generate other
types of entangled states have also been studied [40,41]. Such
entangled states have been studied for various applications
such as quantum computing [42,43] and quantum information
[17,19,20,44–46].

In this paper, we study the two-spin version of the two-
axis spin squeezed state, which we call the two-axis two-spin
squeezed (2A2S) state. Within the Holstein-Primakoff ap-
proximation, corresponding to small interaction times, this
state is equivalent to the two-mode squeezed state. In this
approximation, the state has been studied before [47]. Beyond
these times, the dynamics starts to differ significantly from the
two-mode squeezing interaction. We will particularly focus on
understanding the states for longer interaction times, where
the Holstein-Primakoff approximation is no longer valid. For
the one-spin case, longer interaction times were studied in
Refs. [26,48]. We will generally be interested in the regime
where the spin is large but finite, which is applicable for
atomic gases. Even for BECs where the atomic numbers are
much less than in thermal atomic ensembles, there can be
easily more than 103 atoms in an ensemble making the spins
very large [15,18,46]. We study the two-spin two-axis spin
squeezed state through various quantities, calculating corre-
lations and probability distributions (Sec. III), entanglement
(Sec. IV), Wigner functions (Sec. V), and Bell correlations
(Sec. VI). In addition to elucidating the nature of the dynamics
and the state, we interestingly find that the state can violate a
Bell inequality without parity measurements.

II. TWO-AXIS TWO-SPIN SQUEEZED STATE

The system that we shall consider consists of two neutral
atomic ensembles or BECs, where each atom has two relevant
internal states. A common choice for the internal states are
hyperfine ground states, such as the F = 1, mF = −1 and
F = 2, mF = 1 states in the case of 87Rb [15]. In the case of
BECs we denote the bosonic annihilation operator for the two
states as a j, b j , respectively, where j ∈ {1, 2} labels the two
BECs. These operators can be used to define an effective spin
using the Schwinger boson operators

Sx
j = b†

ja j + a†
j b j,

Sy
j = −ib†

ja j + ia†
j b j, (1)

Sz
j = b†

jb j − a†
j a j .

The commutation relation for the spin operators is

[S j, Sk] = 2iε jklS
l , (2)

where ε jkl is the completely antisymmetric tensor.
For atomic ensembles, the total spin operators are written

Sx
j =

N∑
l=1

σ x
j,l , Sy

j =
N∑

l=1

σ
y
j,l , Sz

j =
N∑

l=1

σ z
j,l , (3)

where σ k
j,l is a Pauli operator for the lth atom in the jth en-

semble. For simplicity, we take the total number of atoms N to
be equal in both ensembles. The total spin operators also have

the same commutation relation (2). For an atomic ensemble
where the initial state and the Hamiltonian are completely
symmetric with respect to particle interchange on a single
ensemble, exactly the same results are obtained with either
(1) or (3). Mathematically, the BEC form (1) is more conve-
nient for calculations, and hence we will use this throughout
this paper. However, it should be understood that our results
equally apply to the atomic ensemble case.

The two-axis two-spin (2A2S) Hamiltonian is then defined
as

H = H2A2S = J

2

(
Sx

1Sx
2 − Sy

1Sy
2

) = J (S+
1 S+

2 + S−
1 S−

2 ), (4)

where

S+
j = 1

2

(
Sx

j + iSy
j

) = b†
ja j,

S−
j = 1

2

(
Sx

j − iSy
j

) = a†
j b j, (5)

and J is an energy constant. This is a straightforward gen-
eralization of the two-axis one-spin (2A1S) countertwisting
Hamiltonian studied by Kitagawa and Ueda [16]:

H2A1S = J

2
[(Sx )2 − (Sy)2] = J[(S+)2 + (S−)2]. (6)

The 2A1S Hamiltonian produces squeezing and antisqueezing
in the transformed variables

S̃x = Sx + Sy

√
2

,

S̃y = Sy − Sx

√
2

, (7)

respectively [16]. We note that a similar generalization was
studied previously to generalize the one-axis one-spin (1A1S)
twisting Hamiltonian [49]

H1A1S = J (Sz )2 (8)

to the one-axis two-spin (1A2S) Hamiltonian [33,34]

H1A2S = JSz
1Sz

2. (9)

The benefits of the 2A1S Hamiltonian are that it can attain a
higher level of squeezing than the 1A1S Hamiltonian, and that
the axes for optimal squeezing are fixed [16].

The 2A2S squeezed states are produced by a unitary evo-
lution according to the Hamiltonian (4) for a time t ,

|ψ (t )〉 = e−iHt/h̄|0, 0〉〉1|0, 0〉〉2

= e−i(S+
1 S+

2 +S−
1 S−

2 )τ |0, 0〉〉1|0, 0〉〉2, (10)

where we have defined a dimensionless time τ = Jt/h̄. The
initial states are maximally polarized states in the Sz direction,
the same as for the 2A1S Hamiltonian. Here we defined the
spin coherent states as

|θ, φ〉〉 j =
(

cos θ
2 e−iφ/2b†

j + sin θ
2 eiφ/2a†

j

)N

√
N!

|vac〉, (11)

where θ, φ are the angles on the Bloch sphere, and |vac〉 is the
vacuum containing no atoms, and j = 1, 2 label the BECs. We
also define the Fock states as

|k〉 j = (b†
j )

k (a†
j )

N−k

√
k!(N − k)!

|vac〉. (12)
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The Fock states are eigenstates of the Sz operator according to

Sz
j |k〉 j = (2k − N )|k〉 j . (13)

For small times we may expand the exponential in Eq. (10)
to second order, where the first terms in the expansion are

|ψ (t )〉 ≈ (1 − τ 2N2)|N〉1|N〉2 − iτN |N − 1〉1|N − 1〉2

− τ 2N (N − 1)|N − 2〉1|N − 2〉2 + · · · , (14)

where the states we have used are Fock states (12). All terms
in the superposition have the same Fock numbers for the
two BECs, hence, we immediately observe that the state is
perfectly correlated in Sz

j . We can also see that for |τ | � 1/N ,
the population of the a state will be small. A more precise
criterion will be obtained in the next section.

In contrast to the 1A2S Hamiltonian, for which it is
straightforward to find an analytical expression for the state
at arbitrary evolution times, the 2A2S Hamiltonian cannot
be diagonalized using a linear transformation of the bosonic
operators. Only recently, static solutions for the 2A1S Hamil-
tonian were found [50]. We thus resort to numerical methods
to study the state and its properties. For pure state evolution,
this involves evolving a vector of dimension (N + 1)2, hence,
reasonably large systems can still be accessed with numerical
methods.

In this paper we will focus on the theoretical state that
is produced by the 2A2S Hamiltonian. Although we will
not discuss the experimental procedures for generating the
2A2S Hamiltonian here, we note that several possibilities
exist for producing the state, where techniques to produce
the 2A1S Hamiltonian can be applied to the two-spin case.
Several works have considered techniques to generate the
2A1S Hamiltonian [51–53]. This can then be converted to the
2A2S Hamiltonian using a split-squeezing approach such as
that given in Refs. [39,54]. An alternative procedure is to gen-
erate the same correlations using optical interference methods
[21,40]. We plan to examine the experimental methods to
produce the 2A2S Hamiltonian in a later work.

III. CORRELATIONS
AND PROBABILITY DISTRIBUTIONS

A. Holstein-Primakoff limit

To obtain some intuition about the state (10), let us first
examine the state for small evolution times. For a system with
fixed particle number N , the Holstein-Primakoff transforma-
tion [55] between spin operators to a single bosonic mode can
be made according to

S+ =
√

N − a†aa,

S− = a†
√

N − a†a, (15)

Sz = N − a†a.

In our model, the initial state of the system is the spin coherent
state |0, 0〉〉, in which all atoms in the two BECs occupy
the respective internal state labeled by b. For N � 1 and
sufficiently small evolution times, the population of the a
state satisfies 〈a†a〉 � N . This allows us to approximate the

Holstein-Primakoff–transformed spin operators as

S+ ≈
√

Na,

S− ≈
√

Na†, (16)

Sz ≈ N.

Note that this approximation breaks down for larger evolution
times due to the finite number of atoms N . As the Hamiltonian
acts on the system, the occupation numbers of the a states
increase while those of the b states deplete. At a certain time,
which can be explicitly seen in the subsequent sections, the
condition 〈a†a〉 � N is no longer satisfied and the approxi-
mation fails.

Applying (16) to the 2A2S Hamiltonian, we have

H2 ≈ JN (a1a2 + a†
1a†

2). (17)

This is exactly the two-mode squeezing Hamiltonian [2,3,9]
considered in quantum optics. The transformation of the mode
operators is

eiH2t/h̄a1e−iH2t/h̄ = a1 cosh Nτ − ia†
2 sinh Nτ,

eiH2t/h̄a2e−iH2t/h̄ = a2 cosh Nτ − ia†
1 sinh Nτ. (18)

We can deduce the time for which the Holstein-Primakoff
approximation is valid by evaluating the population of the a1

and a2 states. The population of the two states is always equal
〈a†

1a1〉 = 〈a†
2a2〉 and we obtain

〈a†
1(t )a1(t )〉 = 〈0|(a†

1 cosh Nτ + ia2 sinh Nτ )

× (a1 cosh Nτ − ia†
2 sinh Nτ )|0〉

= sinh2 Nτ ≈ e2Nτ /4, (19)

where in the last step we assumed Nτ � 1. Demanding that
〈a†

1a1〉 � N , we have the criterion for the validity of the
Holstein-Primakoff approximation as

τ � ln(4N )

2N
. (20)

Now, let us define the canonical position and momentum
operators as

x j = a j + a†
j√

2
≈ S+

j + S−
j√

2N
= Sx

j√
2N

,

p j = −ia j + ia†
j√

2
≈ −iS+

j + iS−
j√

2N
= Sy

j√
2N

. (21)

For the choice of phase between the two terms in Eq. (17),
the relevant operators are those that are rotated by 45◦ with
respect to the quadrature axes

x̃ j = x j + p j√
2

≈ S̃x
j√

2N
,

p̃ j = p j − x j√
2

≈ S̃y
j√

2N
, (22)

where we used the definitions (7). The correlations for which
the quantum noise is suppressed are then x̃1 + x̃2 and p̃1 − p̃2
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FIG. 1. Variances of EPR-type observables in the two-axis two-

spin squeezed state. The variances of the (a), (b) squeezed variables
S̃x

1 + S̃x
2 and S̃y

1 − S̃y
2; (c), (d) antisqueezed variables S̃x

1 − S̃x
2 and

S̃y
1 + S̃y

2 are plotted as a function of the dimensionless interaction time
τ . The Holstein-Primakoff (HP) approximated variances are shown
by the dotted lines. (a), (c) Show timescales in the range τ ∼ 1/N
and (b), (d) show longer timescales τ ∼ 1. The number of atoms per
ensemble is taken as N = 20.

[9,56]. This can be seen by evaluating

eiH2t/h̄(x̃1 + x̃2)e−iH2t/h̄ = e−Nτ (x̃1 + x̃2),

eiH2t/h̄( p̃1 − p̃2)e−iH2t/h̄ = e−Nτ ( p̃1 − p̃2), (23)

which become suppressed for large squeezing times. The cor-
responding antisqueezed variables are

eiH2t/h̄(x̃1 − x̃2)e−iH2t/h̄ = eNτ (x̃1 − x̃2),

eiH2t/h̄( p̃1 + p̃2)e−iH2t/h̄ = eNτ ( p̃1 + p̃2). (24)

B. EPR-type correlations

We now directly evaluate the correlations produced by
the 2A2S Hamiltonian numerically, without applying the
Holstein-Primakoff approximation. From (23) we expect that
the variances of the observables

Osq ∈ {
S̃x

1 + S̃x
2, S̃y

1 − S̃y
2

}
(25)

become suppressed, for short times when the Holstein-
Primakoff approximation holds. The observables in the
perpendicular directions (24)

Oasq ∈ {
S̃x

1 − S̃x
2, S̃y

1 + S̃y
2

}
(26)

are the antisqueezed variables.
In Fig. 1(a), the variances of the observables (25) are

plotted for short timescales τ ∼ 1/N . We see that the two
variances have exactly the same time dependence and take a
minimum at a time which we define as the optimal squeez-
ing time τ

(sq)
opt . In the time region 0 � τ � τ

(sq)
opt , the variance

agrees well with Holstein-Primakoff approximation, giving

Var(Osq, τ ) ≈ 2Ne−2Nτ , (27)

which follows from the relations (23) and the fact that
Var(Osq, τ = 0) = 2N . Beyond these times the variance in-
creases and no longer follows (27). For longer timescales, as

Sx
 Sy

 

(a)

(b)
0 0.10 0.20 0 1 2 3 4 5 6

0

-1
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0

-1

1
Sz

 

Sz
 

Sx
 

Sy
 Sj  

/N

Sj  
/N

FIG. 2. Expectation values of spin operators for the two-axis
two-spin squeezed state for (a) short timescales τ ∼ 1/N ; (b) long
timescales τ ∼ 1. The number of atoms per ensemble is taken as
N = 20.

shown in Fig. 1(b), the variance follows aperiodic oscillations
between low and high variance states. Some relatively low
variance states are achieved (e.g., particularly around τ ≈ 3),
although the minimum variance at the times τ

(sq)
opt is not at-

tained again.
The antisqueezed variables (26) are shown in Fig. 1(c)

for short timescales τ ∼ 1/N . Again, the two variables (26)
have exactly the same time dependence, and initially increase
according to

Var(Oasq, τ ) ≈ 2Ne2Nτ , (28)

which follows from (24). In contrast to genuine two-mode
squeezing, the variance does not increase unboundedly but
reaches a maximum. We call this time the optimal antisqueez-
ing time τ

(asq)
opt , which we find is not exactly at the same time

as the optimal squeezing time τ
(sq)
opt . As with the squeezed

variables, for longer timescales, as shown in Fig. 1(d), the
antisqueezed variables show aperiodic oscillations, with a
similar range to Fig. 1(b). Some low variances states are also
present with the antisqueezed variables, again around τ ≈ 3.
However, these states do not reach the low level of the vari-
ance attained with the squeezed variables (25).

The existence of a bound on the amount of squeezing,
as opposed to unbounded genuine two-mode squeezing, is
a consequence of the finite atom number N . In the large-N
limit, the Holstein-Primakoff approximation is valid and our
system is equivalent to two-mode squeezing. Restricting the
atom number N to a finite value renders the Fock space finite
dimensional and leads to oscillations of the populations be-
tween the north and south poles of the Bloch sphere, as will
be seen in the following section.

C. Expectation values

It is also instructive to examine the expectation values of
the spin operators in the 2A2S squeezed state. Figure 2 shows
the expectation values of the operators Sx

j , Sy
j , Sz

j . Due to the
symmetry between the initial state of the two ensembles and
the 2A2S Hamiltonian, identical values are obtained for the
two ensembles j = 1, 2. Furthermore, the expectation values
of two of the operators are always zero:

〈
Sx

j (τ )
〉 = 〈

Sy
j (τ )

〉 = 0. (29)

This can be seen from (14), where the Hamiltonian cre-
ates pairs of equal number Fock states. Since the Sx and Sy
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FIG. 3. Optimal squeezing times τ
(sq,asq,Sz ,F )
opt as extracted from

minimizing Var(S̃x
1 + S̃x

2 ), maximizing Var(S̃x
1 − S̃x

2 ), finding the first
zero of 〈Sz〉, and optimizing the fidelity of the spin EPR state (43),
respectively. (a) Plotted against N and (b) is plotted against 1/N for
the same data. Points show the numerically obtained values, lines are
fit lines using (a) spline interpolation, (b) the fit function (31). The
fit parameters for minimized squeezing are p0 = 0.467, p1 = 0.508,
maximum antisqueezing are p0 = 0.700, p1 = 0.530, zeros of 〈Sz〉
are p0 = 0.727, p1 = 0.536, the fidelities with the spin EPR state
are p0 = 0.803, p1 = 0.544.

operators shift the Fock states by one unit,

Sx
j |k〉 j =

√
(N − k)(k + 1)|k + 1〉 j

+
√

(N − k + 1)k|k − 1〉 j,

Sy
j |k〉 j = − i

√
(N − k)(k + 1)|k + 1〉 j

+ i
√

(N − k + 1)k|k − 1〉 j . (30)

The expectation values of Sx and Sy are zero for all time.
Meanwhile, the expectation value of Sz

j undergoes aperi-
odic oscillations and flips sign numerous times during the
evolution. In particular, a sign change is observed in the
vicinity of τ

(asq)
opt . This can be understood from (14), where at

τ ∼ 1/N the sum contains all terms with a similar magnitude.
Again, the time where 〈Sz

j〉 = 0 is not exactly the same as the

optimal squeezing time τ
(sq)
opt or antisqueezing time τ

(asq)
opt . We

label the first time that a sign flip of Sz
j occurs by τ

(Sz )
opt . We may

thus picture the type of state that is produced as a two-spin
version of the planar squeezed state, where the squeezing is
observed in the (Sx

j , Sy
j ) plane [57].

D. Optimal squeezing times

In order to maximize the correlations between the two
spins, it would be useful to have a general expression that
gives the optimal squeezing time τ

(sq)
opt . Unfortunately, we have

not been able to find an analytical expression to give this for
general N . However, it is possible to find approximate formu-
las that can give this to good accuracy. We will investigate this
in the following.

As can be seen from Figs. 1(a), 1(c), and 2(a), the optimal
squeezing time τ

(sq)
opt , optimal antisqueezing time τ

(asq)
opt , and the

time τ
(Sz )
opt of the first zero of 〈Sz〉 do not necessarily coincide.

The optimal times according to each criterion are shown in
Fig. 3(a). Generally, the optimal squeezing time tends to give
slightly smaller values than that for antisqueezing, or the time
for the first zero of 〈Sz〉. The latter two conditions give very
similar values of the optimal time.

In Fig. 1(a) we notice that the time that the Holstein-
Primakoff approximation starts to deviate from the exact
expression coincides with the optimal time for squeezing. This
suggests that the functional form of (20) may be a suitable
form to fit the optimal times in Fig. 3(a). Using the fitting
form

τopt ≈ p0 + p1 ln N

N
(31)

we fit the various optimal times as shown in Fig. 3(b). This
fitting function works very well, with the logarithmic term
accounting for the nonlinear behavior seen in the 1/N plot.
For the optimal time extracted for the squeezed variables
we obtain fit parameters p0 = 0.467, p1 = 0.508, close to
the theoretically calculated values of (20), p0 = ln 2, p1 = 1

2 .
Since (31) is guaranteed to approach τopt → 0 in the limit
of large N , we expect that this fit will interpolate the larger
N optimal times with good accuracy. The parameters for the
other optimal times are given in the caption of Fig. 3.

Using the optimal squeezing times, the maximal squeezing
that can be attained can be estimated from the Holstein-
Primakoff relation according to

min
τ

Var
(
S̃x

1 + S̃x
2, τ

) = min
τ

Var
(
S̃y

1 − S̃y
2, τ

)

≈ 2Ne−2Nτ
(sq)
opt

≈ 2N

e2p0 N2p1
, (32)

where in the last line we substituted the expression (31). The
minimal squeezing level tends to improve approximately as
1/N for larger ensemble sizes due to the factor of N2p1 in the
denominator, relative to the spin coherent state variance 2N .

E. Probability density of the two-axis cosqueezed state

Another way to visualize the correlations is to plot the
probability distributions when the state (10) is measured in
various bases. Specifically, we consider the Fock states which
are the eigenstates of the rotated operators (7):

S̃x|k〉(x̃) = (2k − N )|k〉(x̃),

S̃y|k〉(ỹ) = (2k − N )|k〉(ỹ), (33)

Sz|k〉(z) = (2k − N )|k〉(z).

These Fock states can be transformed from the Sz-eigenstate
Fock states (12) using the relations in Appendix A. The proba-
bility of a measurement outcome k1, k2 for various Fock states
is then

pl1l2 (k1, k2) = |〈ψ (t )|[|k〉(l1 ) ⊗ |k〉(l2 )]|2, (34)

where l1, l2 ∈ {x, y, z}.
The probabilities for two evolution times before and near

τ
(sq)
opt are shown in Fig. 4. The effect of the correlations is

seen in the (S̃x
1, S̃x

2 ) and (S̃y
1, S̃y

2) measurement combinations,
where the most likely probabilities occur when S̃x

1 = −S̃x
2 and

S̃y
1 = S̃y

2, respectively. This means that the quantities S̃x
1 + S̃x

2
and S̃y

1 − S̃y
2 always take small values and hence are squeezed.

The probability distribution for the measurements for the four
cases (S̃x,y

1 , S̃x,y
2 ) initially starts as a Gaussian centered around

S̃x,y = 0 and becomes increasingly squeezed. For the (Sz
1, Sz

2)
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FIG. 4. Probability distributions of the two-axis two-spin state
measured in various bases for (a) τ = 0.05 ≈ τ

(sq)
opt /2; (b) τ = 0.1 ≈

τ
(sq)
opt . The density plot legends for similar shaped distributions are the

same. In (a), the legend for the (S̃y
1, S̃y

2 ) basis is the same as (S̃x
1, S̃x

2 ).
In (b), the legend for the (S̃y

1, S̃x
2 ) and (Sz

1, S̃x
2 ) is the same as (Sz

1, S̃y
2 ).

The total number of atoms per BEC is N = 20 for all plots.

measurement, we see Fock state correlations arising from the
fact that the 2A2S Hamiltonian always produces Fock states
in pairs, as shown in Eq. (14).

Comparing the (S̃x
1, S̃x

2 ) and (S̃y
1, S̃y

2) in more detail reveals
some interesting effects. For the suboptimal squeezing time
in Fig. 4(a) we see that the peak of the distribution is at
S̃x

1 = S̃x
2 = 0, which is the original position of the Gaussian

before the Hamiltonian is applied. In Fig. 4(b), we see that the
maximum is at the ends of the distribution. Thus, the optimal
squeezing corresponds approximately to tuning the time such
that the (S̃x

1, S̃x
2 ) and (S̃y

1, S̃y
2) distributions are at their flattest.
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FIG. 5. Entanglement of the two-axis two-spin squeezed state,
as measured by the von Neumann entropy E normalized to the
maximum value Emax = log2(N + 1), as a function of the interaction
time τ . The number of atoms in each BEC is (a) N = 10, (b) N = 20.
The dots in each figure denote the times when 〈Sz

1〉 = 0 for each N .
(c) The maximum value of the von Neumann entropy as a function
of N . (d) Difference in the optimal time �τopt = τ

(E)
opt − τ

(sq,asq, Sz )
opt ,

where τ
(E)
opt is the optimal time according to von Neumann entropy,

τ
(sq)
opt is for the squeezed variables, τ

(asq)
opt is for the antisqueezed

variables, τ
(Sz )
opt is for zero of 〈Sz〉.

For the remaining correlation pairs, the distributions are al-
ways symmetrical in the variables S̃x and S̃y, hence, give zero
when averaged. Thus, there is no correlation between the re-
maining variables. The lack of correlations in the off-diagonal
combinations in Fig. 4 is also a feature of standard Bell states.
The type of state that is considered here is therefore a natural
generalization of the EPR correlated state for spin ensembles,
which we discuss further in Sec. IV B.

IV. ENTANGLEMENT

A. Time dependence of entanglement for pure states

We now turn to the entanglement that is generated in 2A2S
state. The entanglement that we consider is that present be-
tween the two BECs, which forms a natural bipartition in the
system. We will not consider other types of intraensemble
entanglement here, as have been considered for single ensem-
ble squeezed states [15]. For the 2A2S squeezed state, there
is no squeezing on a single BEC, hence, we do not expect
intraensemble entanglement to be a relevant quantity in this
context.

For pure states, bipartite entanglement can be quantified
using the von Neumann entropy

E (t ) = − Tr (ρ2log2ρ2), (35)

where

ρ2(τ ) = Tr1(|ψ (τ )〉〈ψ (τ )|) (36)

is the reduced density matrix for BEC 2. Figures 5(a) and
5(b) show the von Neumann entropy normalized to the maxi-
mum value Emax = log2(N + 1) for two N + 1 level systems.
We see that the entanglement first reaches a maximum at a
similar time to the optimal squeezing time τ

(sq)
opt , and reaches
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nearly the maximum possible entanglement between the two
BECs. For larger values of N , the oscillations have a higher
frequency, with a period that is ∼2τopt.

Figure 5(c) shows the maximal entanglement as a func-
tion of N . For each N , we find the maximum value of
the entanglement by optimizing the time in the vicinity of
the first maximum. We call the time that this occurs the
optimal entanglement time τ

(E )
opt . We see that the optimized en-

tanglement approaches the maximum possible entanglement
Emax for large N . This is in agreement with estimates from
the Holstein-Primakoff approximated Hamiltonian, where the
maximum value is reached for N → ∞. The convergence to
the maximum value, however, does occur logarithmically (see
Appendix B), as observed by the slow approach of Fig. 5(c).
The entanglement oscillates between large and small values
and tends to occur at the values corresponding to 〈Sz〉 = 0.
This is true not only in the vicinity of the first maximum that
is reached at τ

(Sz )
opt , but for all τ . Figures 5(a) and 5(b) mark

all the times (with a dot in the figure) where 〈Sz〉 = 0. We
see that each peak in the entanglement occurs when 〈Sz〉 = 0.
This is reasonable to expect from the point of view that
zero values of 〈Sz〉 correspond to states that potentially have
large degrees of correlation in the 〈Sx〉 and 〈Sy〉 variables. In
Fig. 5(d) we compare the various optimal squeezing times to
the time to maximize the entanglement τ

(E )
opt . The time that

most closely approximates the maximal entanglement is τ
(Sz )
opt ,

which slightly overestimates the optimal entangling time, but
gives the closest approximation. We point out that 〈Sz〉 = 0
of course does not ensure that entanglement is present, par-
ticularly for mixed states, since this can equally occur for
dephased states. However, this is a convenient heuristic that
could be easily measured that coincides with large values of
entanglement.

B. Spin EPR state

We have seen in Fig. 5(c) that near-maximal entangle-
ment can be obtained at optimized evolution times of the
2A2S Hamiltonian. We have also seen in Fig. 4(b) that at
the optimized squeezing times, very flat distributions of the
correlations can be obtained. These facts suggest that a good
approximation for the state in the large-N regime is

|ψ (τopt)〉 ≈ |EPR−〉, (37)

where we defined the state

|EPR−〉 = 1√
N + 1

N∑
k=0

|k〉(x̃)
1 |N − k〉(x̃)

2 . (38)

This state has the maximum possible entanglement Emax be-
tween the two BECs, and exhibits squeezing in the variable
S̃x

1 + S̃x
2. Algebraic manipulation allows one to rewrite this

state equally as

|EPR−〉 = 1√
N + 1

N∑
k=0

(−1)k|k〉(ỹ)
1 |k〉(ỹ)

2 (39)

= 1√
N + 1

N∑
k=0

(−1)k|k〉(z)
1 |k〉(z)

2 , (40)
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FIG. 6. (a) Fidelities of the two-axis two-spin squeezed state (10)
with respect to the spin EPR states (40) and (45). Time dependence
of the fidelity for N = 20. (b) Optimized fidelity (40) as a function
of 1/N . Inset shows zoomed-in region for large N .

which have the correct S̃y
1 − S̃y

2 and S̃z
1 − S̃z

2 correlations, in
agreement with Fig. 4. Such a state is a type of spin EPR state
which exhibits correlations in a similar way to Bell states and
continuous variable two-mode squeezed states, in all possible
bases [9]. In fact, as we show in Appendix C, the correlations
are for any choice of basis such that

|EPR−〉 = 1√
N + 1

N∑
k=0

|k〉(θ,φ)
1 |k〉(θ,π−φ)

2 , (41)

where the Fock states rotated by a polar θ and azimuthal φ

angles are defined by

|k〉(θ,φ) = e−iSzφ/2e−iS̃yθ/2|k〉(z). (42)

In Fig. 6 show the fidelity of the 2A2S squeezed state with
reference to the spin EPR state, defined as

F− = |〈EPR−|ψ (τ )〉|2. (43)

We also plot the fidelity with respect to another spin EPR state
defined without phases:

F+ = |〈EPR+|ψ (τ )〉|2, (44)

where

|EPR+〉 = 1√
N + 1

N∑
k=0

|k〉(z)
1 |k〉(z)

2 . (45)

We see that the state attains high overlap with the |EPR−〉 at
a time τ

(E )
opt as expected, and oscillates with peaks at similar

times as the peaks in the antisqueezing parameters seen in
Fig. 1(d). On comparison with Fig. 5(b), we see that every
second peak in the entanglement corresponds to the peaks for
the fidelity F−. The remaining peaks occur for the fidelity
F+. The timing of the peaks in F+ also matches the peaks
in squeezing parameters in Fig. 1(b). This makes it clear
that the effect of the 2A2S Hamiltonian is to first generate a
state closely approximating |EPR−〉, which then subsequently
evolves to |EPR+〉, and this cycle repeats itself in an aperiodic
fashion.

In Fig. 6(b) we examine the scaling of the fidelity with N .
We optimize the interaction time τ such as to maximize F−
in the region of the optimal squeezing time. The time where
the first maximum in F− is attained is defined as τ

(F )
opt . The

optimal time τ
(F )
opt is again found to be most similar to τ

(Sz )
opt , but

not precisely the same (see Fig. 3). The fidelity approaches
F− ≈ 0.9 for the largest ensemble sizes that we examined
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(N = 160). While the data suggest a ∝1/N relation, we do
not perform an extrapolation for large N since we cannot
completely rule out that logarithmic corrections may exist due
to the fidelity being a sensitive quantity for large systems. It
does, however, appear that the dependence with N is rather
weak and it is not unreasonable to expect that high fidelity
with spin EPR states can be generated even for realistic BEC
sizes.

C. Entanglement detection

The results of Fig. 5 clearly show that the 2A2S squeezed
state is entangled for all times except for τ = 0. For pure
states, the von Neumann entropy completely quantifies the
amount of entanglement in a bipartite system. However, calcu-
lation of the von Neumann entropy relies on the availability of
the complete wave function |ψ (t )〉, which may be difficult to
extract experimentally, particularly for large dimensional sys-
tems. Tomographic reconstruction of the full density matrix
has a high overhead in terms of the number of measure-
ments that need to be made. Another potential experimental
constraint is that only particular types of measurements may
be feasible. The most common types of measurement in the
context of BECs are Fock state measurements. However, at
present the atom-number resolution is a limitation, hence,
quantities that are insensitive to single-atom fluctuations are
preferred. Thus, the experimentally preferred quantities are
low-order spin expectation values. In this section, we discuss
criteria which only involve low-order spin expectation values
and can show the presence of entanglement between the two
BECs.

We compare three potential criteria that can be used to
detect entanglement using low-order spin expectation values.
The first is the Giovannetti-Mancini-Vitali-Tombesi (GMVT)
criterion [58], which states that any separable state obeys

√
Var

(
gxS̃x

1 + S̃x
2

)
Var

(
gyS̃y

1 − S̃y
2

)

|gxgy|
(∣∣〈Sz

1

〉∣∣ + ∣∣〈Sz
2

〉∣∣) � 1. (46)

Here, gx, gy are parameters to be optimized, and we have
chosen operator combinations that attain small values near the
optimal squeezing times τ

(sq)
opt . We find that the optimum val-

ues of the parameters are in this case gx = gy = 1. The second
criterion is the Duan-Giedke-Cirac-Zoller (DGCZ) criterion
[59], which for the type of correlations that are present in this
state reads as

Var
(
S̃x

1 + S̃x
2

) + Var
(
S̃y

1 − S̃y
2

)

2
(∣∣〈Sz

1

〉∣∣ + ∣∣〈Sz
2

〉∣∣) � 1, (47)

which is true for any separable state. The third criterion is
the Hofmann-Takeuchi (HT) criterion [60] based on local
uncertainty relations for three spin operators

Var
(
S̃x

1 + S̃x
2

) + Var
(
S̃y

1 − S̃y
2

) + Var
(
Sz

1 − Sz
2

)

4N
� 1, (48)

which is true for any separable state. Violation of the inequal-
ities (46)–(48) signals the presence of entanglement.

Figure 7(a) plots the left-hand sides of the criteria (46)–
(48) as a function of the interaction time τ , in the short time
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FIG. 7. Entanglement criteria for the two-axis two-spin squeezed
state for a (a) short time range, (b) long time range. Three entangle-
ment criteria are calculated: the Giovannetti-Mancini-Vitali-Tombesi
(GMVT) criterion (46), the Duan-Giedke-Cirac-Zoller (DGCZ)
criterion (47), and the Hofmann-Takeuchi (HT) criterion (48). En-
tanglement between the two BECs is detected for all values below
the separability bound, represented by the shaded area.

range. Initially, all three criteria detect entanglement success-
fully. However, the GMVT and DGCZ criteria fail at times
near the optimal squeezing time τ

(sq)
opt due to the fact that at

these times 〈Sz
j〉 becomes small. The HT criterion does not

fail in these regions since it does not rely on a comparison
with 〈Sz

j〉. For longer times [Fig. 7(b)], all criteria are generally
less successful at detecting entanglement, only detecting some
specific time regions. For times which show strong squeezing,
the entanglement criteria are able to detect entanglement. The
most successful criterion is the HT criterion, hence, for this
particular state (48) appears to be the method of choice for
correlation-based entanglement detection.

V. WIGNER FUNCTIONS

A. Definitions

In this section, we further analyze the 2A2S squeezed
state by visualizing its Wigner function. The Wigner function
represents the state as a quasiprobability distribution on the
Bloch sphere and for two-mode BECs can be defined as [61]

W (θ, φ) =
2 j∑

l=0

l∑
m=−l

ρlmYlm(θ, φ), (49)

where j = N/2, the spherical harmonics Ylm(θ, φ), and ρlm

given by

ρlm =
j∑

m1=− j

j∑
m2=− j

(−1) j−m1−m

×〈 jm1; j − m2|lm〉〈 jm1|ρ| jm2〉. (50)

Here, ρ is the density operator of the state being analyzed and
〈 j1m1; j2m2|JM〉 are the Clebsch-Gordan coefficients cou-
pling two angular momentum eigenstates | jm〉. These states
can be expressed in terms of the Sz eigenstates using the
relation

| jm〉 = |k = j + m〉. (51)

The Wigner function as in Eq. (49) is defined for a two-mode
BEC with fixed atom number and thus cannot be directly ap-
plied to our case of two BECs involving four modes. Instead,
we calculate the marginal and conditional Wigner functions
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FIG. 8. Marginal Wigner function for four different interaction
times (a) τ = 0; (b) τ = τ

(sq)
opt /2; (c) τ = τ

(sq)
opt ; (d) τ = 2τ

(sq)
opt . The

Bloch sphere is projected on a plane using the Cassini projection
according to the transformation θ = sin−1(sin x cos y) + π/2 and
φ = tan−1( cos x

tan y ), where −π < x < π and −π/2 < y < π/2 are the
coordinates on the Cassini projected map. The number of atoms in
each BEC is N = 10 for all plots, where τ

(sq)
opt = 0.165.

where a tracing or projective operation is performed to obtain
the Wigner functions on a single BEC.

B. Marginal Wigner functions

To calculate the marginal Wigner function, we take the par-
tial trace of the two-BEC state (10) over BEC 1 to obtain the
reduced density matrix ρ2. The state (36) is then used to cal-
culate the Wigner function according to (49). Figure 8 shows
the marginal Wigner function for four different interaction
times τ . The initial state [Fig. 8(a)] starts as a Gaussian at the
north pole of the Bloch sphere. As the 2A2S Hamiltonian is
turned on [Fig. 8(b)], the diameter of the Gaussian increases,
until the distribution nearly covers the whole Bloch sphere
at the optimal squeezing time τ

(sq)
opt [Fig. 8(c)]. At this point

the average value of all spin variables is small, in agreement
with Fig. 2. For longer squeezing times, the probability dis-
tribution becomes more concentrated at the south pole of the
Bloch sphere [Fig. 8(d)], at which point 〈Sz〉 turns negative
as seen in Fig. 2. The flipping between the north and south
poles continues for longer times, as seen in Fig. 2(b). The
Wigner function is completely rotationally symmetric around
the Sz axis at all times. In a similar way to the two-mode
squeezed state, there is no squeezing for a single BEC, and
the squeezing only appears in variables involving both BECs.

C. Conditional Wigner functions

For the conditional Wigner function, we first project the
two-BEC state (10) onto a Fock state (42) of one of the BECs
(say, BEC 1), for a particular basis specified by (θ, φ). This
would correspond to performing a Fock state measurement
in a given basis on BEC 1, where a random collapse occurs,
then examining the measured state of BEC 2. The resulting
quantum state is

|ψk (θ, φ, τ )〉 = Pk (θ, φ)|ψ (τ )〉√〈ψ (τ )|Pk (θ, φ)|ψ (τ )〉 , (52)

where the projector onto a Fock state on BEC 1 is

Pk (θ, φ) = |k〉(θ,φ)
1 〈k|(θ,φ)

1 . (53)

(a)

(b) (d)

0 1.5

1.
0

0.
0

-1
.0

0
1.

5(c)

FIG. 9. Conditional Wigner function for after projecting the
2A2S squeezed state at the time τ = τ

(sq)
opt . The Wigner function

is plotted with a Mercator projection in the basis (S̃x, S̃y, Sz ).
For example, the state such that 〈S̃x〉 = N has a Wigner function
peaked at θ = π/2, φ = 0. The projection parameters in Eq. (52)
are (a) θ = π/2, φ = π/2, k = N ; (b) θ = π/4, φ = −π/2, k = N ;
(c) θ = π/4, φ = π/2, k = 0; (d) θ = π/2, φ = π/2, k = N − 1.
The legends are shown adjacent to each subfigure except for (a) and
(b), which are common. The number of atoms in each BEC is N = 10
for all plots.

To calculate the conditional Wigner functions, the state ρ =
|ψk (θ, φ, τ )〉〈ψk (θ, φ, τ )| is substituted into (49).

The resulting conditional Wigner functions for projections
in various bases are shown in Fig. 9. From the form of the spin
EPR state (41), we expect that the resulting state is

|ψk (θ, φ, τopt )〉 ≈ |k〉(θ,π−φ)
2 (54)

on BEC 2. For projections with k = N [Figs. 9(a) and 9(b)],
the projected state appears as a Gaussian Wigner function,
characteristic of a spin coherent state, centered at the angular
parameters (θ, π − φ). This is in agreement with (54), using
the fact that

|k = N〉(θ,φ) = |θ, φ〉〉. (55)

Similarly, for a projection with k = 0 the resulting state is a
spin coherent state centered at (π − θ, φ − π ), using the fact
that

|k = 0〉(θ,φ) = |π − θ,−φ〉〉. (56)

In the case shown in Fig. 9(c), the resulting spin coherent
state is more distorted than those shown in Figs. 9(a) and
9(b) because parameters are chosen such that the final state
is located at θ = 3π/4, φ = −π/2. From the (Sz

1, Sz
2) plot

in Fig. 4(b), we see that the probability distribution tends
to diminish for negative Sz, i.e., near the south pole of the
Bloch sphere. We attribute the distortion of the distribution
in Fig. 9(c) to the generation of an imperfect spin EPR state
due to the relatively small ensemble sizes N = 10 considered
here.

Finally, projecting on k = N − 1 [Fig. 9(d)] produces a
single-particle Fock state centered around (θ, π − φ). The
resulting state shows a distribution that is similar to that of
a single-particle Fock state, with a negative central region,
surrounded by a positive ring. Again, deviations from the
exact spin EPR state cause some differences to an ideal Fock
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state Wigner function. For larger ensembles, we expect that
the distributions will more closely follow the distributions of
the Fock states.

VI. BELL’S INEQUALITY

In this section, we show that the 2A2S squeezed state
violates a Bell inequality using only experimentally accessible
correlations of total spin operators (1). Recently, the viola-
tion of a multipartite Bell inequality has been experimentally
achieved with a single two-mode BEC [62]. The measurement
of violations of a bipartite Bell inequality using two spatially
separated BECs, however, has not been reported yet. Previous
studies on 1A2S entangled states suggested that parity mea-
surements (i.e., ±1 depending on whether |k〉 is even or odd)
are required for violating a Bell inequality [54]. Parity mea-
surements are currently experimentally challenging because
they are sensitive at the single-atom level. Methods to violate
a Bell inequality without the use of parity measurement are
therefore of interest.

We use the Bell-CHSH inequality [63] for two observers
with two local measurement choices. Every local realist the-
ory must satisfy

C = ∣∣〈M (1)
1 M (1)

2

〉 + 〈
M (1)

1 M (2)
2

〉

− 〈
M (2)

1 M (1)
2

〉 + 〈
M (2)

1 M (2)
2

〉∣∣ � 2, (57)

where M (i)
1 , M ( j)

2 are local measurement choices on BEC 1
and BEC 2, respectively, and i, j ∈ {1, 2} label the two mea-
surement choices. The measurement operators leading to a
violation of (57) are given by

M (i)
n = sgn

(
S̃x

n cos θ (i)
n + S̃y

n sin θ (i)
n

)
. (58)

Here the meaning of the sgn function is that the sign of the
eigenvalues of the spin operators are taken:

sgn(S̃x cos θ + S̃y sin θ ) =
N∑

k=0

sgn(2k − N )|k〉(θ,0)〈k|(θ,0),

(59)
where |k〉(θ,φ) are the eigenstates of the rotated spin opera-
tor S̃x

1 cos θ + S̃y
1 sin θ and is defined in Eq. (42). Taking the

sgn function of the rotated operators produces dichotomic
(i.e., two-valued) measurement outcome as needed for the
Clauser-Horne-Shimony-Holt (CHSH) inequality. But impor-
tantly, this way of mapping the collective spin measurement
to a dichotomic observable does not require single-atom pre-
cision since the variation of the eigenvalues is split into two
broad regions, k < N/2 and k > N/2.

The choices of the parameters θ (i)
n and the interaction time

τ should generally be optimized such that a maximal violation
is obtained. First, we have found that the largest violations oc-
cur for interaction times τ ≈ τ

(sq)
opt . This is reasonable from the

point of view that the Bell-CHSH inequality (57) is correlation
based, and the maximal squeezing tends to maximize the
correlations. For the angular parameters, we have found that a
strong violation can be found using the parameter choices

θ
(1)
1 = 0, θ

(2)
1 = θB,

θ
(1)
2 = θB/2, θ

(2)
2 = −θB/2. (60)
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FIG. 10. (a) Optimized violation of the Bell-CHSH inequality
C-2 as a function of 1/N for the 2A2S squeezed state. Dots show the
numerically calculated values and the solid line is the linear fit (61).
(b) Optimal Bell angles θB with the basis choices (60) as function of
1/N . Dots show the numerically calculated values and the solid line
is the Padé approximant (62). Interaction times of τ = τ

(sq)
opt are used

throughout.

For the qubit case N = 1, the above basis choice reduces
to the well-known optimal CHSH measurements by taking
θB = π/2. For larger values of N , the sign-binned operators
(58) no longer coincide with the spin operators. We find that
the Tsirelson bound can no longer be reached for N > 1,
possibly due to the loss of information caused by the binning
process. We do, however, find violations of (57) for angles
θB significantly smaller than π/2. Both the violations and the
optimal angle θB diminish with increasing N .

Figure 10(a) shows the optimized Bell-CHSH violations
with respect to the angles θB. The amount of violation is found
to empirically have scaling that agrees very well with the
relation

C ≈ 2 + 0.55

N
. (61)

The fact that the effect diminishes for large N is expected
as our system can be described by continuous variable mode
operators in the limit of large N , according to the Holstein-
Primakoff approximation. For two-mode squeezed states, it is
known that no Bell violation is possible with measurements
that are linear combinations of quadrature operators [9]. Max-
imal violations of the CHSH inequality with EPR states have
been reported with parity measurements, e.g., in Ref. [64],
suggesting that single-atom resolution measurements may be
needed to achieve maximal violations with the spin EPR state.

In the limit of large N we therefore expect that the
Bell-CHSH expression with the coarse-grained measurement
operators (58) approaches 2, which can be attained if θB = 0,
such that all four correlators are 〈sgn(Sx

1Sx
2 )〉 → 1. Interpo-

lating small and large N , and from the highly linear nature
of Fig. 10(a), we expect that violations can be found for
any finite value of N , although they will become smaller and
increasingly challenging to measure for larger N .

The optimal angles to violate the Bell-CHSH inequalities
are given in Fig. 10(b). The angle does not follow a simple
power-law relation, and thus we fit it with a Padé approximant

θB ≈ 6.1/N − 0.67/N2

1 + 2.45/N
, (62)

which gives a close approximation to the numerically obtained
angle.
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VII. SUMMARY AND CONCLUSIONS

We have examined the 2A2S squeezed state from multiple
points of view: squeezing, spin expectation values, probability
distributions, entanglement, Wigner functions, and Bell corre-
lations. A consistent picture emerges from studying various
quantities. Starting from two BECs which are polarized in
the positive Sz direction, the 2A2S Hamiltonian produces the
spin EPR state |EPR−〉, the analog of the two-mode squeezed
state for spins. This state then evolves to the state of two
BECs polarized in the negative Sz direction, from which then
the spin EPR state |EPR+〉 is produced. After returning to
two BECs polarized in the positive Sz direction, the process
repeats itself. The picture that we describe here is not exact,
even for the decoherence-free case that was examined in this
paper. As can be seen in Figs. 1, 2, 5, and 6, the oscillations
are not perfectly periodic in amplitude or period. For such
imperfect oscillations one may expect that the oscillations
die out relatively quickly. However, the oscillations are re-
markably persistent for the times that we have examined, and
the fidelities to the spin EPR states remain high after a large
number of oscillations.

The optimal times to produce the largest amounts of
squeezing, entanglement, Bell correlations, and fidelities with
the spin EPR states are found to be similar, but not precisely
the same. Thus, each quantity must be optimized separately
in order to obtain the optimal values. Approximate formulas
for the optimal times were obtained using a suitable fitting
function which should be accurate particularly for large N
since it is determined by interpolating between numerically
determined intermediate N and N → ∞. It is found that opti-
mal times for the entanglement and fidelities with spin EPR
states are closely approximated by the times that 〈Sz〉 = 0.
Meanwhile the optimal times to violate the Bell-CHSH in-
equality are closest to the optimal squeezing time. Since the
measurement of 〈Sz〉 is relatively simple, this is a convenient
heuristic that can be used to generate the desired state.

One interesting feature of the 2A2S squeezed states is
that they are able to violate a Bell-CHSH inequality, and it
appears that this is possible for all finite N . We deduce this
from the fact that in the limit of large N , the 2A2S squeezed
state should approach a two-mode squeezed state. The level
of violation is rather small, dropping off as 1/N , which makes
it more difficult to observe for large ensembles. However, we
conjecture that this may be the best that can be done for a
two-measurement, two-outcome CHSH inequality that only
uses first-order correlators of coarse-grained collective spin
operators since it is known that quadrature operator measure-
ments alone cannot detect nonlocality in two-mode squeezed
states [9].
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APPENDIX A: EXPRESSION FOR PROBABILITY OF
TWO-AXIS TWO-SPIN STATE MEASURED IN VARIOUS

SPIN BASES

The Fock states of the spin operators corresponding to S̃x

and S̃y are given by

|k〉(x̃) = e−iSzπ/8e−iSyπ/4|k〉(z),

|k〉(ỹ) = e−iSz3π/8e−iSyπ/4|k〉(z). (A1)

Here the matrix elements of the Sy rotation are given by

〈k|e−iSyθ/2|k′〉
=

√
k′!(N − k′)!k!(N − k)!

×
∑

n

(−1)n cosk−k′+N−2n(θ/2) sin2n+k′−k (θ/2)

(k − n)!(N − k′ − n)!n!(k′ − k + n)!
, (A2)

where |k〉 = |k〉(z).

APPENDIX B: ENTANGLEMENT SCALING UNDER THE
HOLSTEIN-PRIMAKOFF APPROXIMATION

In this Appendix, we derive the entanglement at the
optimal times under the Holstein-Primakoff approximation.
Starting from the Holstein-Primakoff approximated Hamilto-
nian (17), the two-mode squeezed wave unction is given as
[9]

e−iH2t |0〉 = c
∞∑

n=0

dn|n〉|n〉, (B1)

where the coefficients are

c = 1 − tanh2(Nτ ) ≈ 4e−2Nτ ,

d = i tanh2(Nτ ) ≈ i(1 − 2e−2Nτ )2. (B2)

We take the time to be the right-hand side of (20). Evaluating
the entropy for the state (B1) gives a general expression

E = c[|d| log2(c/|d|) − log2 c]

(|d| − 1)2
. (B3)

Substituting the approximated values gives

E

Emax
≈ 4[(1 − 2N )2 − N (1 − 4N ) ln N]

(1 − 4N )2 ln(N + 1)

≈ 1 + 1

ln N
, (B4)

where in the second line we further approximated the ex-
pression for large N . We see that for large N , E/Emax

logarithmically approaches 1.
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APPENDIX C: BASIS INVARIANCE OF THE SPIN
EPR STATES

1. Zero-phase spin EPR state

First let us consider the spin-EPR state using the standard
phase convention

|EPR+〉 = 1√
N + 1

N∑
k=0

|k〉(θ,φ)|k〉(θ,−φ), (C1)

where the rotated Fock states are defined in Eq. (42). The state
(C1) is not the same state (38) as that is initially produced by
the 2A2S Hamiltonian; we consider the above form first to
simplify the presentation. We will relate (C1) to the 2A2S case
in the next section. The aim here is to show that the spin EPR
states (C1) are independent of the choice of the basis angles
θ, φ.

Consider the matrix element of the spin EPR state

(〈k| ⊗ 〈k′|)|EPR+〉

= 1√
N + 1

N∑
k′′′=0

〈k|e−iSzφ/2e−iS̃yθ/2|k′′′〉

× 〈k′|eiSzφ/2e−iS̃yθ/2|k′′′〉

=
N∑

k′′′=0

ei(k′−k)φ

√
N + 1

〈k|e−iS̃yθ/2|k′′′〉〈k′|e−iS̃yθ/2|k′′′〉, (C2)

where we have evaluated the Sz phases to the left. Now note
that the matrix element 〈k|e−iS̃yθ/2|k′′′〉 is real from (A2). We
may then write

(〈k| ⊗ 〈k′|)|EPR+〉

= 1√
N + 1

N∑
k′′′=0

ei(k′−k)φ〈k|e−iS̃yθ/2|k′′′〉〈k′′′|eiS̃yθ/2|k′〉

= 1√
N + 1

ei(k′−k)φ〈k|e−iS̃yθ/2eiS̃yθ/2|k′〉

= 1√
N + 1

ei(k′−k)φ〈k|k′〉

= 1√
N + 1

ei(k′−k)φδkk′

= 1√
N + 1

δkk′ . (C3)

This is the coefficient of spin EPR state when θ = φ = 0:

|EPR+〉 = 1√
N + 1

N∑
k=0

|k〉(z)|k〉(z). (C4)

Thus, starting from a state with Fock states in an arbitrary
basis, we have obtained the equivalent expression in the Sz

basis. It then follows that

|EPR+〉 = 1√
N + 1

N∑
k=0

|k〉(θ,φ)|k〉(θ,−φ)

= 1√
N + 1

N∑
k=0

|k〉(z)|k〉(z)

= 1√
N + 1

N∑
k=0

|k〉(θ ′,φ′ )|k〉(θ ′,−φ′ ), (C5)

where θ ′, φ′ are another choice of parameters. This means that
the state (C1) can be written equivalently for an arbitrary basis
choice θ, φ of the Fock states.

2. Two-axis two-spin EPR state

We now relate the state (C1) to the state generated by the
2A2S Hamiltonian. Taking the specific case of θ = π/2, φ =
0 in Eq. (C1), we have

|EPR+〉 = 1√
N + 1

N∑
k=0

|k〉(x)|k〉(x). (C6)

Comparing this to (38), we observe that the difference is that
the second BEC’s labels must be changed to k → N − k. This
can be achieved using the transformation

eiSzπ/2|k〉(x) = iN |N − k〉(x), (C7)

where we ignore irrelevant global phase factors. This suggests
that the 2A2S EPR state can be related to the spin EPR state
in the standard phase convention according to

|EPR−〉 = eiSz
2π/2|EPR+〉. (C8)

From (C8), and using θ = π/2, φ = π/2 in Eq. (C1), we
obtain the form (39), where we used the fact that

eiSzπ/2|k〉(y) = (−1)k|N − k〉(y). (C9)

Similarly, using (C8) and θ = 0, φ = 0 in Eq. (C1), we obtain
Eq. (40). Finally, using the fact that

eiSzπ/2|k〉(θ,−φ) = |k〉(θ,π−φ), (C10)

we obtain the most general form (41).
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