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Collapse of the simple localized 3d1 orbital picture in Mott insulator
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The orbital degree of freedom of electrons greatly influences the physical properties of materials such as
magnetic order and unconventional superconductivity. An orbital is a minimal unit of “shape,” and the orbital
state can be unraveled by observing the spatial anisotropic distribution of electrons. However, it is difficult to
experimentally extract the orbital information in a crystal because of various technical problems. Here, the Ti-3d
orbital state in perovskite-type oxides RTiO3 (R = Y, Sm, and La) is directly determined by a core differential
Fourier synthesis (CDFS) method using synchrotron x-ray diffraction. The valence electron-density distribution,
including information on the anisotropy and the hybridization between atomic orbitals, can be extracted from
the CDFS analysis. Our study not only demonstrates the relationship between the magnetic- and orbital-ordered
states called the Kugel-Khomskii model, but also provides a nontrivial picture of the orbital state reconstructed
by the orbital hybridization.
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I. INTRODUCTION

The degree of freedom (DOF) of an electronic orbital,
which responds to the crystal electric field, is the minimal
unit of “shape” by localized valence electrons in a crystal, and
an important parameter determined using Neumann’s princi-
ple [1], which describes the relationship between anisotropic
physical properties and crystallographic point groups. For
example, the magnetic and orbital ground states are coupled
by the Kugel-Khomskii model [2]. However, some series of
systems show quantum phase transitions between different
ground states despite the same point group. In this case, deter-
mining the quantum parameters of electronic orbitals at local
magnetic sites is crucial.

In a crystalline material, among three DOFs of electrons
(charge, spin, orbital), the charge and spin can readily react
to external electric and/or magnetic fields. However, directly
observing the orbital is difficult, although it greatly influences
material anisotropic physical properties [3], such as uncon-
ventional superconductivity [4–7] and giant magnetoelectric
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effect [8–10]. If the electron orbital can be directly observed,
for example, it will provide an experimental research guide-
line for an electron nematic phase [11], where it is difficult
to extract the nematicity from the structural information. The
orbital state in materials has been studied by several ex-
perimental methods including polarized neutron diffraction
[12], resonant x-ray scattering [13,14], and multipole analy-
sis using x-ray diffraction (XRD) [15]. Most recently, a Co
orbital-ordered state at the surface in CeCoIn5 was observed
by scanning tunneling microscope [16], and orbital imag-
ing in Ni ions was achieved by nonresonant inelastic x-ray
scattering [17]. However, in these methods, the measurable
substances are limited and/or the results may depend on the
model constructed by the analysts. Therefore, an experimental
measurement or calculation tool is required that can easily
determine the orbital state without the assumed model.

Here, we focus on determining the orbital-ordered state
of an RTiO3 series, where R is a rare-earth element. The
Ti3+-3d1 orbital-ordered state in a TiO6 octahedron is char-
acterized by an electron localized in the t2g orbitals as a
Mott insulator by strong electron correlations. Although the
space group in this system is common (Pnma), the ground
state systematically changes from antiferromagnetic (AFM) to
ferromagnetic (FM) as the ion size of R decreases, as summa-
rized in phase diagrams [18,19]. In the RTiO3 series, various
theoretical studies on the orbital and magnetic ground states
have been performed by assuming a localized Ti3+-3d1 orbital
[20–23]. This series is a typical material for verifying (i) the
spatial resolution required for direct observation of the orbital
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state, and (ii) the dynamic range for extracting information of
one electron from all in the unit cell. However, despite various
experiments on the orbital state of RTiO3 [12–15,24,25], few
quantum parameters have been reported for substances other
than YTiO3.

For RTiO3 system, the crystal electric field around Ti3+
changes because the combined Jahn-Teller-type and GdFeO3-
type distortions change with the ion radius of R [20,22,26].
The Ti-3d orbital-ordered state is greatly affected by the dis-
tortions. Also, the significance of the Ti-O hybridization in
this system is pointed out [23,27]. However, all experimental
results were analyzed based on only a localized 3d orbital
model [12–15,24,25], in which the bonding/covalent electrons
between the Ti and O orbitals were not considered.

To fully understand the physical properties in this sys-
tem, information on the spatial distribution of the valence
electron density (VED) is indispensable. Recently, we pro-
posed an electron-density (ED) analysis method called core
differential Fourier synthesis (CDFS) [28] using synchrotron
XRD. Using this method in an organic charge-transfer salt, we
succeeded in the direct observation of the VED distribution
formed by molecular orbitals as well as the determination
of the charge-ordering state [28]. The CDFS based on the
high-resolution data obtained from short-wavelength syn-
chrotron x ray is extremely effective for observing not only
spatially extended molecular orbitals but also atomic or-
bitals localized in one atom. In this paper, we revealed the
Ti-3d orbital-ordered state in RTiO3 (R = Y, Sm, and La)
from the localized VED distribution with a spatial resolu-
tion of ∼0.1 Å. Furthermore, through point-charge-model and
density-functional-theory (DFT) calculations, it is verified
that the CDFS method indeed extracts essential orbital infor-
mation.

II. METHODS

A. XRD experiments

The XRD experiments were performed on the BL02B1
beamline at the synchrotron facility SPring-8 in Japan [29]. A
helium-gas-blowing device was employed to cool the sample
to 25 K. A two-dimensional imaging plate, which had a dy-
namic range of ∼106, was used as the detector. The incident
energy of synchrotron x rays was E = 35 keV. For the crystal
structural analysis, we used original software for extracting
the diffraction intensity [30]. Diffraction intensity averaging
was performed using SORTAV [31]. Crystal structural and ED
analysis were performed using JANA2006 [32]. Crystal struc-
ture and ED distribution figures were visualized by using
VESTA [33].

B. CDFS method

The diffraction intensity I (K ) obtained from the XRD ex-
periment can be described as a Fourier transform of the ED
ρ(r) using the scattering vector K [Eq. (1)],

I (K ) = S

∣∣∣∣
∫

all
ρ(r)e−iK·rdr

∣∣∣∣
2

. (1)

Here, S is a scaling factor. The integration range [∫all in
Eq. (1)] corresponds to the range in which x rays can interfere

in the crystal. In the case of a crystal, it can be described
as Eq. (2) using Laue functions L(s), L(t ), L(u), where K =
sa∗ + tb∗ + uc∗,

I (K ) = S L(s)L(t )L(u)

∣∣∣∣
∫

unit cell
ρ(r)e−iK·rdr

∣∣∣∣
2

∝ |Fobs(K )|2.
(2)

Here, |Fobs(K )| is the absolute value of the experimentally
observed crystal structure factor. As is well known, if the
number of unit cells N in a crystal is sufficiently large, the
Laue function becomes N2 only when s, t, u are integers, and
when K = (s, t, u) �= (h, k, l ) (h, k, l are integers), I (K ) = 0.
In principle, the ED distribution can be reproduced by the
inverse Fourier transform of diffraction intensity according to

ρ(r) = 1

V

∞∑
K

Fobs(K )eiK·r, (3)

if the infinite diffraction data was observed. However, there
are generally three problems when calculating the ED. (i) To
extract the VED with anisotropic information, a sufficiently
wide dynamic range of intensity is required. (ii) |Fobs(K )| is
obtained from the experimental diffraction intensity because
of the relationship of I (K ) ∝ |Fobs(K )|2. In this case, |Fobs(K )|
does not include information of the phase term P = eiφ(K )

as Fobs(K ) = |Fobs(K )|P = |Fobs(K )|eiφ(K ), which is necessary
for the calculation of ρ(r). This phase retrieval problem has
been studied in various fields such as x-ray imaging [34,35],
surface x-ray diffraction [36], and x-ray holography [37].
(iii) Because the number of the Fobs(K ) data is finite, the
mathematical truncation effect appears prominently in the ED
distribution.

Concerning (i), the number of electrons of Ti-3d1 respon-
sible for the orbital-ordered state is one per formula unit. On
the other hand, the number of electrons of YTiO3 is 85 per
formula unit. If I (K ) is simplified to be proportional to the
square of the number of electrons, it is necessary to have a
dynamic range that can accurately extract the 1/852 = 1/7225
to 10−4 of the measured maximum intensity. The important
point is that 10−4 signal information should be observed with
sufficient signal-to-noise S/N ratio. This requirement is suf-
ficiently fulfilled by using the current synchrotron radiation
facility, in which the dynamic range of 106 is guaranteed.

Concerning (ii), since the phase term can be assigned from
the calculated crystal structure factor

Fcal(K ) =
∑

j

f jTje
−iK·r j (4)

using P = Fcal(K )/|Fcal(K )|, Eq. (3) can be rewritten as

ρ(r) = 1

V

∞∑
K

|Fobs(K )|PeiK·r. (5)

Here, r j is the jth atomic position, Tj is the jth atomic
displacement parameter, and f j is the jth atomic scattering
factor, which is described as

f j (K ) =
∫

atom
ρ j (r)e−iK·rdr. (6)

For example, Fig. 1 shows the atomic scattering factor of
Ti as a function of sin θ/λ [38]. Here, λ is the wavelength
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FIG. 1. Atomic scattering factor of Ti [38]. Black, blue, and
orange lines indicate the contribution of the total, core, and valence
electrons, respectively.

of the incident x ray, and θ is the XRD angle. While the
contribution of the core electrons extends to the high-angle
region, the contribution of the valence electrons exists only in
the low-angle region (sin θ/λ � 0.5 Å−1). When calculating
the ED, it is necessary to determine Fcal(K ) with high accuracy
to obtain the correct phase term P. For this purpose, the struc-
tural refinement is performed using only the high-angle I (K )
(the so-called high-angle analysis), where the contribution of
the spatially spread valence electron is very small. In this
study, the high-order terms of anharmonic atomic displace-
ment parameters were not considered, because we measured
the crystal at an extremely low temperature.

Concerning (iii), the truncation effect of the Fourier syn-
thesis can be suppressed by using the CDFS method. The
equation of the inverse Fourier transform by the CDFS method
is described as

ρv (r) = 1

V

∑
K

{[
|Fobs(K )|P

−
∣∣∣∣∣
∑

j

f core
j Tje

−iK·r j

∣∣∣∣∣Pcore

]
eiK·r

}
+ nv

V
. (7)

Here, f core
j is the jth atomic scattering factor with only the

core electrons contribution, which corresponds to the blue line
in Fig. 1. Pcore is the phase term with only the core electrons
contribution calculated as P = F core

cal (K )/|F core
cal (K )|. nv is the

total number of valence electrons contained in the unit cell.
It is noted here that the 000 Bragg reflection intensity cannot
be observed experimentally. When ignoring the second term
nv/V in Eq. (7), the total number of electrons in the unit
cell becomes zero. Therefore, the VED distribution data are
corrected by adding the nv/V term.

In general, (sin θ/λ)max measured experimentally is
∼2.5 Å−1 (dmin ∼ 0.2 Å) even when using the short-
wavelength x ray obtained at the synchrotron radiation facility.
In Fig. 1, a nonzero value remains in fTi(= f core

Ti ) at sin θ/λ =

2.5 Å−1. Therefore, even if the short-wavelength x ray is used,
the mathematical truncation effect cannot be avoided from the
calculation using Eq. (5). On the other hand, in Eq. (7), the
inverse Fourier transform is performed on the term obtained
by subtracting the core electron contribution from |Fobs(K )|,
which contains the contribution of all electrons. Because most
of the contribution of the remaining f valence

Ti exists only in
sin θ/λ � 0.5 Å−1, it is possible to extract the VED with
little truncation effect of the Fourier synthesis by the CDFS
analysis. It is noted that, in this study, the structural model
Fcal(K ) [Eq. (4)] used to calculate the phase term does not
consider the anisotropic VED. Therefore, in the peculiar case
such that the orbital state that breaks the site symmetry in the
unit cell is realized, the phase recovery using a measurement
method which is different from the diffraction experiment is
necessary. At present, this problem is an open question, and
we think it is an issue for the future.

XRD data must satisfy the following three conditions to
perform the CDFS analysis. Condition 1: a dynamic range of
at least six digits or more, and statistical accuracy to guarantee
this range, to obtain the spatial distribution of one electron
that dominates the orbitals with respect to the total number of
electrons in the asymmetric unit; condition 2: measurements
of the high-angle diffraction intensity corresponding to the
high real-space resolution, for reconstructing an ED that can
represent the spatial spread of the orbitals by the inverse
Fourier transform; and condition 3: 100% completeness of the
measured reciprocal-lattice space. An experiment satisfying
the above conditions was performed on the BL02B1 beamline
at SPring-8 [29]. In the present experiment, the resolution
limit was dmin = 0.25 Å [(sin θ/λ)max = 2.0 Å−1] and the
completeness (the ratio of measured regions in the indepen-
dent reciprocal-lattice space regions) was almost 100% that
allowed the CDFS analysis.

C. DFT calculation

The DFT calculations for ferromagnetic YTiO3 were
carried out using the full-potential linearized augmented
plane-wave method [39] as implemented in the HiLAPW
code and using the structural parameters determined in
the present XRD experiment (see Tables S1 and S2 in
Supplemental Material Sec. 1 [40]). The muffin-tin sphere
radii were set to 1.2 Å for Ti, Y and 0.8 Å for O. The Bril-
louin zone was sampled with 10 × 10 × 10 k-point mesh.
The local-density approximation plus Hubbard U (LDA + U)
method [41] was employed to account for the on-site 3d-3d
Coulomb interaction. The spin-orbit interaction is neglected
in our calculations because Ti is a light 3d transition metal.
The Slater integrals used were F0 = 4 eV, F2 = 7.719 eV,
and F4 = 4.383 eV [20] that corresponded to U = 4 eV and
J = 0.864 eV.

III. RESULTS

A. Structural analysis

First, we focus on YTiO3 (FM transition temperature is
Tc = 30 K), which is the most experimentally investigated for
the orbital state in this series [12,13,15,24,25]. The structural
analysis results using a single crystal of YTiO3 at 25 K (FM
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FIG. 2. (a) Crystal structure of YTiO3 at 25 K (ferromagnetic phase). (b) Valence electron-density distribution, which is calculated by the
diffraction data in 0 Å−1 � sin θ/λ � 2.0 Å−1, around Ti with internal coordinates (1/2, 1/2, 1/2) obtained from the CDFS analysis (isosurface
level: 3.2e/Å3). (c) Schematic illustration of the Ti3+-3d1 orbital-ordered state in YTiO3 system and the theoretical valence electron-density
distribution of the C1|yz〉 + C2|zx〉 orbital (C1 = 0.8 and C2 = 0.6).

phase) are shown in Tables S1–S3 in Supplemental Material
Sec. 1 [40]. Only high-angle reflections (0.6 Å−1 � sin θ/λ �
2.0 Å−1), to which valence electrons of oxygen do not con-
tribute [38], were used to refine structural parameters with
high accuracy (see Sec. II for details of the high-angle analy-
sis). Figure 2(a) shows the crystal structure of YTiO3 at 25 K.
The R value of the high-angle analysis was R1(I > 3σ ) =
1.96% (number of unique reflections: 5823). The obtained
structural parameters show agreement (within 1.5%) with pre-
vious reports of XRD at 127 K (within 1.5%) [42] and neutron
diffraction at 40 K (within 0.6%) [24]. In the TiO6 octahedron,
the Jahn-Teller-type distortion is realized, in which two of the
six O’s move away from Ti along the z-axis direction and four
O’s approach Ti in the xy plane.

In the simple 3d1 picture, the 3d orbital state of Ti can be
described as a linear combination of dyz, dzx, and dxy according
to Eq. (8):

ϕ(r) = C1|yz〉 + C2|zx〉 + C3|xy〉,
(|C1|2 + |C2|2 + |C3|2 = 1). (8)

When a crystal structure is obtained from the experiment,
the quantum parameter of the orbital can be extracted by
calculating the crystal field from the structural parameters. For
calculating the crystal field, it is convenient to calculate each
ion as a point charge. However, to calculate the anisotropy of
the crystal field with high accuracy, it is necessary to perform
convolution calculations of the point charge far away from
the required crystal field. In this case, the accuracy of the
structural parameters used for the calculation is very impor-
tant. In fact, the crystal structure of SmTiO3 [26] used in
calculations of Mochizuki et al. [22] is not in good agreement
with our results (described later), where their Ti-O(ii) bond
length [labeled in Fig. 6(a)] differs from our result by 0.013 Å.

To avoid the truncation effect of the calculation range, the
Q-mode method [43] or Ewald’s method [44] are known. In
this study, to extract the quantum parameters C1, C2, and C3

of the Ti-3d orbital with high accuracy, we performed the
point-charge model calculation using Ewald’s method [44],
in which the structural parameters obtained by the high-angle
analysis are used. Detailed calculation conditions and the
definition of the quantization axes are shown in Supplemen-

tal Material Secs. 4 and 3 [40], respectively. We obtained
that C1 = 0.7852, C2 = 0.6137, and C3 = −0.0828, which
are qualitatively consistent with the results of previous reports
[12,13,15,21,24,25].

B. CDFS analysis

To extract information on the Ti-3d orbital from the VED
distribution, the CDFS analysis was performed in YTiO3.
Figure 2(b) shows the VED distribution around Ti with in-
ternal coordinates (1/2, 1/2, 1/2) obtained from the CDFS
analysis, which simply subtracts the contribution of the core
electrons from the whole ED distribution using Eq. (7). When
using the CDFS analysis, the resolution of the expressible
ED distribution must be limited by the maximum value of
(sin θ/λ)max of the diffraction data. Figure 3 shows the VED
distribution [sectional view of the (1̄21) plane] around Ti
calculated by the diffraction data with a different (sin θ/λ)max

range. Although the valence electron contribution f valence
Ti ex-

ists only in sin θ/λ � 0.5 Å−1 in the atomic scattering factor
of Ti (Fig. 1), the anisotropy of the VED distribution is hardly
observed at (sin θ/λ)max = 1.0, and 1.5 Å−1. On the other
hand, the anisotropy of the VED distribution can be observed
clearly at (sin θ/λ)max = 2.0 Å−1. Because the CDFS method

FIG. 3. (a)–(c) Valence electron-density distributions of the
(1̄21) plane on Ti with internal coordinates (1/2, 1/2, 1/2) in
YTiO3, which are calculated by the diffraction data in 0 Å−1 �
sin θ/λ � 1.0 Å−1, 0 Å−1 � sin θ/λ � 1.5 Å−1, and 0 Å−1 �
sin θ/λ � 2.0 Å−1, respectively.
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FIG. 4. (a) Density of states of the Ti-4s and Ti-4p orbitals in YTiO3. (b), (c) Density of states of the Ti-3d orbitals. The zero energy refers
to the highest occupied level. (d) Valence electron-density distribution around Ti obtained from the DFT calculation, which corresponds to
valence electrons occupying the orbitals below the Fermi level (E = 0 eV).

is based on the inverse Fourier transform, how much fine
waves can be represented to express the VED distribution
depends on how high-order Fourier series terms can be in-
cluded in the calculation. In other words, even if most of
the contribution of f valence

Ti is included in the reflections of
sin θ/λ � 0.5 Å−1, the information on higher-order reflec-
tions up to (sin θ/λ)max = 2.0 Å−1 is essential to reproduce
the anisotropy of the 3d orbital. Therefore, to observe the
anisotropy of the ED distribution around Ti, short-wavelength
x rays and a diffraction system that can measure the high-
resolution diffraction data are indispensable.

The VED distribution around Ti has a characteristic but-
terflylike shape reflecting the t2g orbital [Fig. 2(b)]. In the
simple 3d1 picture of this system [Fig. 2(c)], the t2g orbitals
split into two |yz〉, |zx〉 orbitals and one |xy〉 orbital due to
the Jahn-Teller-type distortion in a TiO6 octahedron. Fur-
thermore, the orbital-ordered state shown as C1|yz〉 + C2|zx〉,
which corresponds to the VED distribution with butterflylike
shape, is realized by the exchange interaction with surround-
ing orbitals. However, a closer observation of Figs. 2(b) and
3(c) reveals that the VED remains positive at the center of
Ti, which is originally a node of the d orbitals [Fig. 2(c)].
This result is supposed to vanish in the simple 3d1 picture.
The VED observed from the CDFS analysis may include the
spatial distribution of bonding/antibonding electrons such as
molecular orbitals [28]. Ignoring the ED in the central part,
the butterflylike VED can be fitted by Eq. (8). When the evalu-
ation function s, defined as Eq. (9), is minimized, the quantum
parameters are C1 = 0.7902, C2 = 0.6092, and C3 = 0.0668,

s =
∑

r |ρ(r) − |ϕ(r)|2|∑
r |ρ(r)| . (9)

These values show good agreement with Ewald’s method
calculation. It is noted that the s value obtained here, s =
0.435, is relatively large. This result reflects the nonvanishing
ED at the center of Ti. The linear combination of the t2g

orbitals alone cannot fully explain the whole image of the ED

obtained from the CDFS analysis, particularly concerning the
high ED around the center of Ti.

C. Electronic structure

The important point here is that we do not assume any
orbital model when performing the CDFS analysis. As the
contribution of the core electrons of each atom is simply
subtracted from the total ED information, this method extracts
the valence electrons including bonding/covalent electrons,
without any bias of the model. For this reason, complementary
interpretation using first-principles calculations rather than
model calculations is extremely effective. Thus, we performed
a DFT calculation. Figures 4(a)–4(c) show the partial den-
sity of states (DOS), where the energy E = 0 refers to the
highest occupied level. The 3d states mainly reside around
E = 0 eV. In particular, the states immediately below E =
0 eV that form a sharp peak with a narrow bandwidth of
0.62 eV [Fig. 4(c)] consist exclusively of spin-up t2g states
and host the 3d1 orbital ordering. These orbital-ordered states
produce a butterflylike VED as observed in the CDFS analysis
[Fig. 2(b)]. In contrast, in the deeper energy region [Fig. 4(a)],
relatively large 4s and small 4p DOS’s of both spins are seen
around E = −7.0 and −6.0 eV, respectively. This clearly sug-
gests that the covalency between Ti-4s and O-2s/2p orbitals
is not negligible [23,27,45]. These 4s-like electrons produce
a spherical density distribution peaked at the center of Ti,
which corresponds well to the high density around the Ti
nucleus found in the CDFS analysis [Fig. 3(c)]. It may be
worth adding that a small number of the eg states (d3z2−r2 and
dx2−y2 ) of both spins are occupied in the deep energies around
E = −5.5 eV [Fig. 4(b)], where the O-2p states are dominant.
These occupied eg states are there to form pdσ bonding states,
and to produce a density distribution around Ti that spreads
towards the O atoms (see Fig. S8 in Supplemental Material
Sec. 5 [40] for details). Because this ED is low, however, it is
difficult to recognize its trace from the total VED in the CDFS
analysis results.
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FIG. 5. (a) Crystal structure of RTiO3 in the ac plane of y = 0. (b)–(d) Difference of the orbital arrangements in YTiO3 at 25 K
(ferromagnetic phase) (isosurface level: 3.2e/Å3), SmTiO3 at 30 K (antiferromagnetic phase) (isosurface level: 2.5e/Å3), and LaTiO3 at
30 K (antiferromagnetic phase) (isosurface level: 3.5e/Å3), respectively. Valence electron-density distributions around Ti obtained from the
CDFS analysis in the y = 0 plane are shown. The size of the valence electron-density distribution obtained by the CDFS analysis is represented
twice as large. The pink dot lines show the a-glide plane.

Figure 4(d) shows the VED distribution around Ti obtained
from the DFT calculations. The ED corresponding to the 4s
states exists at the center of Ti, which is surprisingly similar
to the result of the CDFS analysis [Fig. 3(c)]. As the bare 4s
orbital is more spatially spread than the 3d orbital, the VED
localized at the center of Ti corresponds to the rich-density
area of electrons in the bonding orbital formed by the hy-
bridization between the Ti-4s and O-2s/2p orbitals. From the
perspective of ligand field theory [46], which is well applied
to transition-metal complex compounds, it is natural to antic-
ipate that the Ti orbitals are covalently bonded to surrounding
ligand orbitals and some of the electrons occupy the bond-
ing orbitals. However, in real space it is not obvious where
the electrons occupying the bonding orbitals exist. Further-
more, the orbital-ordered state in this system is realized not
only by the hybridization but also by the complex combined
Jahn-Teller-type and GdFeO3-type distortions [20,22,26]. The
CDFS analysis clearly shows this nontrivial picture.

D. Orbital arrangements

Figures 5(b)–5(d) show the orbital arrangements of Ti
in YTiO3 at 25 K (FM phase), in SmTiO3 at 30 K (AFM
phase), and in LaTiO3 at 30 K (AFM phase), respectively,
obtained from the CDFS analysis. Although the space group
is common (Pnma) in RTiO3 (R = Y, Sm, and La), each
shape and arrangement of the VED distributions is different
depending on the orbital-ordered states. The directions in
which the ED distribution extends differ between neighbor
sites in YTiO3 (FM phase), whereas the directions are uni-
form in SmTiO3 and LaTiO3 (AFM phase). The former looks
like the antiferro-orbital-ordered state, and the latter looks
like the ferro-orbital-ordered state. These orbital arrangements
depend not only on the quantum parameters but also on the
relationship between their parameters and the direction of
the symmetry operation (a-glide plane). Our results are in
good agreement with the Kugel-Khomskii model [2], which
predicts the ferromagnetic and antiferromagnetic interactions
working on the antiferroic and ferroic orbital orders, respec-
tively.

IV. DISCUSSION

From the results of our structural analysis, the quantum
parameters of SmTiO3 are calculated as C1 = 0.7665, C2 =
0.5635, and C3 = 0.3081 by the point-charge model calcula-
tion using Ewald’s method [44]. These values are not in good
agreement with the previous report [22], where C1 = 0.73,
C2 = 0.64, and C3 = 0.24, due to the different precision of
the crystal structure used in the calculations, as described
above. On the other hand, we determined the quantum param-
eters C1 = 0.9300, C2 = −0.0403, and C3 = 0.3653 of Ti in
SmTiO3 from the VED distribution [Fig. 5(c)] using Eq. (9),
where s = 0.49. Furthermore, as the VED distribution of Ti
in LaTiO3 can no longer be represented by the linear combi-
nation of the 3d orbitals [Fig. 5(d)], the quantum parameters
could not be extracted from the VED. These complex VED
distributions of R = Sm and La may be related to the fact that
there are few experimental reports on the quantum parameter
in the RTiO3 system, except in the case of R = Y.

To investigate the origin of the complex orbital-ordered
states, the crystal structures in the TiO6 octahedron in R = Y,
Sm, and La were investigated. The change in volume of the
TiO6 octahedron is less than 0.3%, regardless of the type of
R, indicating that there are almost no changes in the valence
of Ti ions. The O-Ti-O angles in the TiO6 octahedron change
significantly with the changes in R [Fig. 6(b)]. Of the three
Ti-O bonds in the TiO6 octahedron, the Ti-O(iii) bond length
changes the most (∼1.4%) with changes in R [Fig. 6(c)].
These structural changes correspond to the changes in the
crystal field around Ti. It is necessary to confirm whether the
Ti-O covalency depends on R in the RTiO3 system. Unfortu-
nately, as the CDFS analysis is based on the inverse Fourier
transform of finite data [Eq. (7)], it is difficult to discuss the
absolute value of the obtained ED. Therefore, the ratios of the
number of electrons within the ionic radius of each of Ti and O
(Ti3+ : 0.67 Å; O2− : 1.35 Å) [47] were compared in R = Y,
Sm, and La [Fig. 6(d)]. These ratios increase in the order of
R = Y, Sm, and La. This result corresponds to the fact that
more electrons move from O to Ti, that is, the hybridization
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FIG. 6. (a) a TiO6 octahedron at Ti with internal coordinates
(1/2, 1/2, 1/2). O atoms are labeled with (i)–(iii) in the ascending
order of the Ti-O bond length. (b) Change in the O-Ti-O angles in the
TiO6 octahedron. (c) Change in the Ti-O bond length. (d) Change in
the ratio of the number of electrons around Ti and O atoms.

is stronger in the order of R = Y, Sm, and La, which is
consistent with the previous report using x-ray photoemission
spectra [27]. Due to the stronger Ti-O hybridization, the VED
distribution in R = Sm and La may be further away from the
simple 3d1 model than that in R = Y.

In our results for YTiO3, the Ti-O bonding orbital consists
of not only the 4s orbital but also the eg orbitals (Fig. S8 [40]).
The quantum parameters of the 3d orbital could be determined
relatively easily in the case of YTiO3 because the contribution
of the hybridized orbital with O is presumed to be mainly
for the spherical Ti-4s orbital. The anisotropy of the spatial
distribution of electrons in the Ti-O bonding orbitals changes
according to the nature of the Ti-O hybridization, which can
affect the crystal field of its own Ti-3d orbitals. In fact, in the
case of LaTiO3, because the ED around the center of Ti is very
thin [Fig. 5(d)], the contribution of the 4s orbital seems to be

small. The strong Ti-O hybridization in LaTiO3 [Fig. 6(d)]
may suggest the anisotropy of the hybridized orbitals. The
complex VED distributions of Ti in R = Sm and La obtained
from the CDFS analysis cannot be described by the simple
combination of the d orbitals [Figs. 5(c) and 5(d)]. In the
present study, it has not been possible to describe the VED
distribution that reflects the whole orbital state in R = Sm and
La by the DFT calculations.

V. SUMMARY

We revealed the orbital-ordered state, including the Ti-O
hybridization, in the RTiO3 system directly from the VED dis-
tribution obtained from the CDFS analysis using synchrotron
radiation x rays. The CDFS method can determine the or-
bital state regardless of the physical properties and can be
applied to almost all elements without the need for difficult
experiments or analysis techniques if a high-stability top-up
operation mode and high-resolution/short-wavelength x-ray
source are used. In particular, because the CDFS analysis is
based on the inverse Fourier transform equation [Eq. (7)], the
bias introduced by analysts is minimal. Only the quality of the
XRD data and the accuracy of the structural analysis are re-
flected in the results. Our results may signal a breakthrough in
the study of orbital states in materials. The CDFS analysis will
provide a touchstone for a complete description of the elec-
tronic state by first-principles or other theoretical calculations.
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