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Two-body mobility edge in the Anderson-Hubbard model in three dimensions:
Molecular versus scattering states
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Most of our quantitative understanding of disorder-induced metal-insulator transitions comes from numerical
studies of simple noninteracting tight-binding models, like the Anderson model in three dimensions. An impor-
tant outstanding problem is the fate of the Anderson transition in the presence of additional Hubbard interactions
of strength U between particles. Based on large-scale numerics, we compute the position of the mobility edge for
a system of two identical bosons or two fermions with opposite spin components. The resulting phase diagram in
the interaction-energy-disorder space possesses a remarkably rich and counterintuitive structure, with multiple
metallic and insulating phases. We show that this phenomenon originates from the molecular or scatteringlike
nature of the pair states available at given energy E and disorder strength W . The disorder-averaged density of
states of the effective model for the pair is also investigated. Finally, we discuss the implications of our results
for ongoing research on many-body localization.
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I. INTRODUCTION

A central concept in the physics of disordered systems
is Anderson localization [1], namely the absence of wave
diffusion in certain random media as a result of interference
effects between the multiple scattering paths generated by the
impurities. To date, this phenomenon has been reported for
different kinds of waves, including light waves in diffusive
media [2,3] or in disordered photonic crystals [4,5], ultra-
sound [6], microwaves [7], and atomic matter waves [8,9], to
cite a few.

Being an interference effect, Anderson localization cru-
cially depends on the spatial dimension of the system and
the underlying symmetries of the associated model, which
determines its universality class. In the absence of magnetic
fields and spin-orbit couplings, the Hamiltonian of a quan-
tum particle exhibits both time-reversal and spin-rotational
symmetries and therefore belongs to the orthogonal class
[10]. For an uncorrelated disorder, all wave functions are
then exponentially localized in one and two dimensions. In
three dimensions, however, the energy spectrum contains one
or more critical points, called mobility edges, separating
localized from extended states. At these points the system
undergoes a metal-insulator phase transition, known as An-
derson transition [11], which is characterized by universal
critical exponents. Mobility edges have been reported [12–14]
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in experiments with noninteracting ultracold atoms in three-
dimensional (3D) speckle potentials. Analogous transition for
light waves, despite several claims, have not yet been unam-
biguously observed, mainly due to the vector character of light
[15].

Anderson transitions are difficult to describe analytically
and our quantitative understanding relies heavily on numer-
ics. The most studied example of a disordered system is a
tight-binding model with random onsite energies, known as
the Anderson model. In first quantization notation, the latter
writes

Ĥ sp = −J
∑
〈n,m〉

|m〉〈n| +
∑

n

Vn|n〉〈n|, (1)

where J is the tunneling rate between two nearest neighboring
sites n and m, while Vn are random variables denoting the
local value of the disorder potential. For simplicity, the disor-
der is assumed to be spatially uncorrelated, 〈VnVn′ 〉 = 〈V 2

n 〉δnn′

and obeying a uniform onsite distribution

P(V ) = 1

W
�(W/2 − |V |), (2)

where �(x) is the Heaviside function and W is the disorder
strength. The position of the mobility edge for the model
(1) was first computed in Ref. [16] using transfer matrix
techniques. These results, which extended previous work [17]
performed for zero energy of the particle, were instrumental to
develop approximate semianalytical theories of the Anderson
transition, including the self-consistent theory of localiza-
tion [18–20].

The Anderson model is currently investigated in three [21]
and higher dimensions [22,23] to pinpoint the precise position
of the mobility edge and to provide accurate estimates of
the universal critical exponents. The same model emerges
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from the discretization of the Schrödinger equation of a con-
tinuum system. In particular, approximating the Laplacian
by a second order finite difference yields Eq. (1) with J =
h̄2/(2m�2), where m is the particle mass and � is the lattice
spacing. This procedure has recently been applied to obtain
precise estimates [24–29] for the position of the mobility edge
of cold atoms in laser speckle potentials, taking into account
both the spatial correlations and the specific onsite distribution
of the disorder.

A main topic of current research is many-body local-
ization [30–32], namely the generalization of Anderson
localization to disordered systems of interacting quantum par-
ticles. Of particular interest are many-body mobility edges,
namely critical points at finite energy density, separating
the many-body localized phase at weak interaction from the
metallic, ergodic, phase at strong interaction. Evidence of
such critical points has been reported [33–36] in experiments
with ultracold atoms in disordered lattices, implementing ei-
ther the fermionic or the bosonic Anderson-Hubbard model
in various dimensions. From the theoretical side, numerical
studies of systems with a finite density of particles have
mainly focused on one-dimensional models [37–45], due to
the high computational effort. The existence of many-body
mobility edges in systems with space dimension larger than
one is currently debated [46]. Analytical arguments were
given [47,48] suggesting that the many-body localized phase
in the thermodynamic limit is inherently unstable against
the formation of thermal bubbles. This prediction contrasts
with numerical investigations of two-dimensional disordered
Hubbard models [49,50], providing evidence for a many-
body localized phase at strong disorder. Similar conclusions
have also been reached for 2D models of spinless fermions
with nearest-neighbor interactions [51,52] and of quantum
dimers [53].

A second and complementary approach to interaction-
induced Anderson transitions focuses on few-body systems,
starting from the solution of the two-particle problem in the
presence of disorder. The corresponding Hamiltonian can be
written in second quantization as Ĥ = Ĥ0 + Û , where Ĥ0 =
Ĥ sp ⊗ 1̂ + 1̂ ⊗ Ĥ sp is the noninteracting part and

Û = U
∑

m

|m, m〉〈m, m| (3)

is the onsite Hubbard interaction of strength U . For 1D
systems, the problem of two-particle localization was first
addressed by Shepelyanski [54]. Using results from random
matrix theory, he showed that, in the presence of disorder, two
particles coupled via short-range interactions can spread over
a distance much larger than the single-particle localization
length before being ultimately localized. This surprising ef-
fect has been confirmed by several numerical studies [55–65]
during the last 25 years, although the analytical formula de-
scribing the enhancement of the pair localization length at
weak disorder is still debated. The localization properties
of a one-dimensional system of few (two, three) interacting
bosonic atoms subject to a laser speckle disorder have recently
been addressed [66].

Anderson localization of few interacting photons states in
a disordered chain has been discussed theoretically for both
linear [61] and nonlinear [67] photonic lattices. Remarkably,

signatures of interaction-induced delocalization have been
recently observed [68] experimentally in a chain of super-
conducting qubits simulating the disordered Bose-Hubbard
model. Quantum correlations in the dynamics of two inter-
acting particles moving in a disordered lattice have also been
investigated [69–71] with application to nonclassical light and
ultracold atoms.

In Refs. [72,73] it was argued that all two-particle states
remain localized in one and two dimensions (although the
pair localization length can be extremely large), whereas in
three dimensions an Anderson transition to a diffusive phase
could occur even when all single-particle states are localized.
These claims are in clear contrast with subsequent numeri-
cal works [74,75], providing evidence of 2D metal-insulator
transitions of the pair induced by the Hubbard interactions
(although finite-size effects can be an important issue).

Based on large scale numerical simulations, we recently in-
vestigated [76] the two-particle problem in three dimensions,
focusing on a pair with zero total energy, E = 0. We addressed
the localization properties of the system by mapping the orig-
inal Hamiltonian onto an effective single-particle model [see
Eq. (5) below] describing the center-of-mass motion of the
pair, following the lines of Ref. [77]. We found that Anderson
transitions of the pair were consistent with the orthogonal uni-
versality class, although the inclusion of irrelevant variables
in the finite-size scaling analysis was crucial to obtain accu-
rate results for the mobility edge. Interestingly, single-particle
excitations in a disordered electronic system with Coulomb
interaction have also been shown [78] to undergo an Anderson
transition which belongs to the noninteracting universality
class.

In Ref. [76] we derived the phase diagram in the
interaction-disorder plane for a pair with zero total energy,
E = 0. For a given value of the interaction strength U , we
found a single critical disorder amplitude Wc separating the
extended states (W < Wc) from the localized ones (W > Wc).
Moreover, we showed that the metal-insulator transition for
the pair occurs in a regime where all single-particle states are
localized, confirming that interactions favor the delocalization
of the pair, irrespective of their attractive or repulsive nature.
The opposite effect, that is interaction-induced localization
of the pair, is also possible. Indeed two particles can form
attractively or repulsively bound states. For sufficiently strong
interactions, so that E � U , these states behave as pointlike
particles with reduced tunneling rate 2J2/|U |. As a conse-
quence, they tend to localize already in the presence of a very
weak disorder, as previously observed [77] for 1D quasiperi-
odic lattices.

Scope of the paper

Building on the results of Ref. [76], in this work we in-
vestigate pairs with nonzero total energy and map out the
phase boundary between localized and extended states in the
interaction-energy-disorder space. This will be done by con-
sidering different cuts of the three-dimensional phase diagram
along specific planes. Some of these cuts are displayed in
Fig. 1(a). We see that the critical disorder strength along the
plane E = U (blue line) exhibits an s-like behavior as a func-
tion of the interaction strength, signaling that in a window of
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FIG. 1. (a) Critical disorder strength Wc for pair localization as
a function of the Hubbard interaction U and the total energy E . The
orange and the blue data curves are cuts along the planes E = 0 and
E = U . For vanishing interactions, the phase boundary (violet data
curve) coincides with the single-particle mobility edge calculated in
Ref. [16], under the change of variable E = −2ε, where ε is the
energy of a single particle. (b) Nature of the pair state as a function of
energy and disorder. The two (brown) solid lines define the numerical
band edges E = ±2εbe(W ) of the noninteracting two-particle energy
spectrum for a given disorder strength W . They divide the plane in
three regions, corresponding to scattering states, attractively and re-
pulsively bound states. For |E | > 12J , the nature of the state changes
from molecular to scatteringlike as the disorder strength increases
(solid vertical arrow), generating multiple Anderson transitions.

intermediate U values the system undergoes three Anderson
transitions as W increases, in contrast with the E = 0 case
(orange line).

As we shall see, this surprising effect can be explained
by the change in the nature of the pair state for increasing
disorder. Neglecting Lifshitz-tail regions, where the single-
particle density of states is exponentially suppressed, the
energy band of a single particle broadens with disorder ac-
cording to −εbe(W ) � ε � εbe(W ), where the numerical band
edges ±εbe(W ) are computed for a given disorder strength as
explained in Appendix B. As a consequence, the energy spec-
trum of two noninteracting particles is bound to the interval
−2εbe(W ) � ε1 + ε2 � 2εbe(W ). For given values of E and
W , we say that a state is scattering-like if the total energy of
the pair lies inside the two-particle noninteracting spectrum,
that is −2εbe(W ) � E � 2εbe(W ). These states correspond
to the yellow region in the energy-disorder plane shown in
Fig. 1(b). States which are not scatteringlike are called molec-
ular. In this case we further distinguish between attractively
bound states, occurring for E < −2εbe(W ) and repulsively
bound states, which are defined for E > 2εbe(W ); in Fig. 1(b)
these states are represented by the cyan and orange regions,
respectively.

We see from Fig. 1(b) that for |E | < 12J the pair is de-
scribed by scattering states for any disorder. The resulting
phase diagram at fixed energy is then fairly similar to the
E = 0 case already investigated. For |E | > 12J , however, the
nature of the pair states changes from molecular to scatter-
inglike at the disorder threshold W ∗, given by the condition
E = ±2εbe(W ∗) (vertical arrow). We therefore expect Ander-
son transitions of molecular states at weak disorder, with Wc <

W ∗, followed by a delocalization transition of scattering states
at intermediate disorder, with Wc > W ∗. The exploration of
these novel metal-insulator transitions of the pair will be the
main goal of the present work.

The paper is organized as follows. In Sec. II we review the
underlying theoretical formalism, which amounts to mapping
the two-particle Schrodinger equation onto an effective single-
particle model with long-range hopping. In Sec. III we present
our numerical results for the two-body mobility edge based on
transmission-amplitude calculations for elongated bars, while
in Sec. IV we discuss the properties of the disorder-averaged
density of states of the effective model. Section V provides
a conclusion and an outlook. In Appendix A we present in
detail the numerical procedure used to efficiently compute
the matrix K of the effective Hamiltonian. In Appendix B
we recall the calculation of the numerical band edge for the
(single-particle) Anderson model based on the coherent po-
tential approximation.

II. EFFECTIVE SINGLE-PARTICLE MODEL
FOR THE PAIR

Hereafter we fix the energy scale by setting J = 1. We ad-
dress the localization properties of the two-body system via a
mapping onto an effective single-particle model describing the
center-of-mass motion of the pair. The mapping is exact in the
subspace of orbitally symmetric wave functions, describing
either two bosons or two fermions in the spin-singlet state
(Hubbard interactions have no effect for two fermions in the
spin-triplet state).

We start by writing the two-particles Schrödinger equation
as (E − Ĥ0)|ψ〉 = Û |ψ〉, where E is the total energy of the
pair. From Eq. (3), we find that the wave function obeys the
following self-consistent equation

|ψ〉 =
∑

m

UĜ(E )|m, m〉〈m, m|ψ〉, (4)

where Ĝ(E ) = (EÎ − Ĥ0)−1 is the noninteracting two-particle
Green’s function. Equation (4) shows that for contact interac-
tions the wave function can be completely determined once its
diagonal amplitudes fm = 〈m, m|ψ〉 are known. By project-
ing Eq. (4) over the state |n, n〉, we see that these terms obey
a closed equation [56,76,77,79]:

∑
m

Knm fm = 1

U
fn, (5)

where Knm = 〈n, n|Ĝ(E )|m, m〉. Equation (5) can be inter-
preted as an effective single-particle problem with Hamilto-
nian matrix K and pseudoenergy λ = 1/U , corresponding to
the inverse of the interaction strength. Since K depends explic-
itly on the total energy, the phase boundary between localized
and extended states of the pair will represent a surface in the
U − E − W space.

The effective model differs from the Anderson model,
Eq. (1), in two respects. First, the matrix elements of K
are unknown and must be calculated numerically. When ex-
pressed in terms of the eigenbasis of the single-particle model,
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Ĥ sp|φr〉 = εr |φr〉, they are given by

Knm =
N∑

r,s=1

φnrφ
∗
mrφnsφ

∗
ms

E − εr − εs
, (6)

where φnr = 〈n|φr〉 are the amplitudes of the wave functions
and N is the total number of lattice sites in the grid. Second,
the matrix K is fully dense, describing hopping processes
between arbitrarily distant sites. The efficient computation of
K , which is the main bottleneck of our approach, is discussed
in detail in Appendix A.

For |E | � 1 or W � 1, however, tunneling effects are
small and the effective model becomes short range. To see
this, we write the noninteracting two-particle Green’s function
as Ĝ(E ) = (Â + T̂ )−1, where

Â =
∑
m,n

(E − Vm − Vn)|m, n〉〈m, n| (7)

represents the local part of the Hamiltonian, while

T̂ = −
∑
nmδ

(|n, m〉〈n + δ, m| + |n, m〉〈n, m + δ|) (8)

accounts for the hopping processes. Next, we expand Ĝ(E ) in
powers of T̂ , retaining up to second orders terms:

Ĝ(E ) � Â−1 + Â−1T̂ Â−1 + Â−1T̂ Â−1T̂ Â−1. (9)

The second term in the rhs of Eq. (9) does not contribute
to the effective Hamiltonian K , because Â is diagonal in the
site basis, whereas T̂ has zero expectation value. The third
term contributes through two distinct processes: (i) a particle
hops from a site to a neighboring one and comes back, while
the other does not move; (ii) both particles move from one
site to the same neighboring site, leading to an effective pair
hopping. An explicit calculation yields

Knm � 1

E − 2Vn
δnm + 2

(E − 2Vn)(E − 2Vm)

×
∑

δ

1

E − Vm − Vm+δ

(δnm + δnm+δ), (10)

where δnm is the Kronecker delta. The rhs of Eq. (10) defines
a tight-binding model for the pair, regarded as a pointlike
particle. In the absence of tunneling, the matrix K is diagonal,
since the two particles can only interact if they share the same
lattice site.

The regime |E | � 1,W describes tightly bound states with
E ∼ U . In this limit the off-diagonal matrix elements in
Eq. (10) are approximately constant and equal to 2/E3. For
weak disorder, the effective model (5) reduces to [77]

2

E

∑
δ

fn+δ +
(

2Vn + 4V 2
n

E

)
fn � E2

(
λ − 1

E
− 12

E3

)
fn,

(11)

showing that tightly bound pairs exhibit a quenched tunneling
rate, Jb = −2/E , and feel a twice larger disorder strength,
Wb = 2W (neglecting the small V 2

n correction). Below we will
infer the mobility edge of such states from the known [16]
single-particle results for the 3D Anderson model.

Equation (10) applies also to the atomic limit, correspond-
ing to W � 1. In this case the short-range nature of the model
is ensured by the fact that the amplitudes φns of the single-
particle wave functions in Eq. (6) have support on very few
lattice sites. Differently from the molecular regime, the pair
tunneling rate cannot be seen as approximately uniform but
depends on the specific values of the disorder potential at
the two edges of the bond. In particular, both diagonal and
off-diagonal matrix elements of K can take large values when
the energy denominators in the rhs of Eq. (10) become small.

III. TWO-BODY MOBILITY EDGE

A. Computation of the critical point

The method followed to extract the position of the mobility
edge has been presented in detail in Ref. [76]; here we briefly
outline the main steps. We consider a bar shaped grid, with
fixed length L = 150 and transverse size between M = 8 and
M = 15, so that L � M. The logarithm of the transmission
amplitude, evaluated at a position nz along the bar, is defined
as [17]:

F (nz ) = ln
∑

m⊥,n⊥

|〈m⊥, 1|Gp(λ)|n⊥, nz〉|2, (12)

where Gp(λ) = (λI − K )−1 is the resolvent of the effec-
tive model, m⊥ = (mx, my) and n⊥ = (nx, ny). We compute
the matrix K of the effective Hamiltonian as described in
Appendix A. In order to minimize finite-size effects on
the transmission amplitude, the boundary conditions on the
single-particle Hamiltonian Hsp are chosen periodic in the
orthogonal directions and open along the transmission axis.
For each disorder realization, we evaluate F (nz ) at regular
intervals along the bar and apply a linear fit to the data,
ffit (nz ) = pnz + q. The Lyapunov exponent is then given by
γM = −p/2, where p is the averaged value of the slope.

The critical point W = Wc of the metal-insulator transition
can be identified by studying the behavior of the reduced lo-
calization length 
M = 1/(γMM ) for increasing values of the
transverse size of the bar. In the metallic phase, 
M increases
as M increases, whereas in the insulating phase it shows an
opposite trend.

At the critical point 
M converges to a constant 
c of
order unity, depending on the universality class and the choice
of the boundary conditions. In Ref. [76] we show that our
numerical results for E = 0 are consistent with the orthogo-
nal universality class, where 
c = 0.576. This is reasonable,
since the effective Hamiltonian K inherits from Hsp both the
time-reversal and the spin rotational symmetries. Finite-size
effects, drifting the position of the critical point, are however
not negligible in our numerics. For this reason, the inclusion
of the leading irrelevant variable in the one-parameter scaling
ansatz is essential to correctly extrapolate the position of the
critical point [76].

Below we mainly investigate pair states with total energy
E < −12. The case E > 12 is recovered from our study by
using the invariance of the Schrödinger equation under the
transformation E → −E ,U → −U .
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FIG. 2. Zoom of the interaction-disorder phase diagram for a
pair with total energy E = −15, in the regime of weak disorder (we
set J = 1 as energy unit). The green circles data refer to the pair
mobility edge, separating the metallic (M) phase from the insulating
(I) one. The green line is a guide to the eye. The dashed lines
correspond to the rigorous edges of the interaction band, U = E − W
and U = 1/ f (E + W ), where f is defined in Eq. (14); below these
lines no pair states exist (gray regions). The dotted lines represent
the numerical band edges, which neglects Lifshitz tails, calculated
from the disorder-averaged density of states of the effective model.
The dot-dashed line corresponds to the mobility edge of pointlike
molecules, calculated using the numerical data for the single-particle
mobility edge from Ref. [16].

B. Phase diagrams at fixed energy

We first present our numerical results for a pair with to-
tal energy E = −15, focusing initially on the localization
properties of the attractively bound states at low disorder.
In Fig. 2 we display the calculated boundary between the
metallic (M) and the insulating (I) phases (green data points).
In the absence of disorder, the single-particle wave functions
are plane waves, φnk = eikn/

√
N , with energy dispersion εk =

−2(cos kx + cos ky + cos kz ), where k is the lattice momen-
tum. From Eq. (6) it follows that for E < −12 the solutions
of the effective Schrödinger equation (5) have the same form,
fn = eiQn, where Q is the lattice momentum for the center of
mass motion. By direct substitution, one finds [80]

λ =
∫

d3k
(2π )3

1

E − εk − εQ−k
. (13)

For Q = 0 and E < −12, we can calculate the integral in
Eq. (13) analytically, by writing the denominator using the
formula 1/x = − ∫ +∞

0 ext dt , valid for x < 0. This yields λ =
f (E ), where

f (E ) = −
∫

d3k
(2π )3

∫ +∞

0
eEt e4(cos kx+cos ky+cos kz )t dt

= −
∫ +∞

0
eEt

[∫ dkx

2π
e4 cos kxt

]3

dt

= −
∫ +∞

0
eEt I3

0 (4t )dt, (14)

with In(x) being the modified Bessel function of the first
kind. For Q = (π, π, π ) the integral in Eq. (13) can also
be evaluated analytically, because εk = −εQ−k, and therefore
λ = 1/E . Hence for W = 0 molecular states exist for f (E ) <

λ < 1/E , or equivalently, E < U < 1/ f (E ). This is evident
in Fig. 2 by noticing that 1/ f (−15) = −12.995.

The dashed curves in Fig. 2 correspond to rigorous band
edges of the system, below which no states are allowed, due
to energy conservation. To find them, we notice that disor-
der contributes to the total energy by a term in the interval
[−W,W ]. Hence the interaction band of molecular states for
E < −12 spreads at most to E − W < U < 1/ f (E + W ).
Scattering states are instead possible provided that −12 −
W < E < 12 + W , independently of the value of the inter-
action strength. By setting E = −15, this implies that for
W � 3 all values of the interaction strength are in principle
permitted, whereas for W < 3 only states between the two
curves U = E − W and U = 1/ f (E + W ) are allowed.

The two dotted lines in Fig. 2 represent the numerical
band edge for the pair, calculated from the disorder-averaged
density of states of the effective model, Eq. (5). The details
of the calculation will be presented in Sec. IV. The regions of
the phase diagram between the dotted and the dashed lines
correspond to localized states in the Lifshitz tails regime,
where the density of states is very low.

For comparison, in Fig. 2 we also show (dot-dashed line)
the prediction for the mobility edge of the pair regarded as
a pointlike particle, obeying Eq. (11). This is obtained from
the numerical data [16] for the single-particle phase diagram
in the ε − W plane, taking into account the rescaled energy
εb = E2/U − E − 12/E of the pair as well as the associated
hopping rate Jb = −2/E and disorder strength Wb = 2W . The
pointlike approximation yields very accurate results for pair
states near U = E , but substantially underestimates the size
of the metallic phase for weaker interactions. Indeed, such
states describe molecules with lower binding energy, so that
the corresponding wave functions can spread over several
lattice sites. Figure 2 shows that the critical disorder strength
for bound states is not center symmetric: The tip is shifted
towards the right, showing that weakly bound pairs are more
robust against localization than pointlike molecules.

We also notice that the pointlike approximation misses
states at weak interaction, already in the absence of dis-
order. Indeed, the unperturbed band edges, obtained from
the solution of εb = ±6Jb, are given by U = E and U =
E3/(24 + E2) = −13.55 for E = −15. We can improve the
accuracy of the tight-binding model for pairs, by including
higher order tunneling terms in the rhs of Eq. (9). The third
order term gives zero contribution to the effective Hamiltonian
K (like all odd terms), while the fourth order term gives
εb = E2/U − E − 12/E − 240/E3 and a larger pair tunnel-
ing rate, Jb = −2/E − 120/E3 = 0.169 for E = −15. Using
this last result, the width of the interaction band becomes
12Jb = 2.028, in fairly good agreement with our numerics. On
the other hand the above fourth order expansion introduces
also second-nearest-neighbor hopping processes, which are
not contained in Eq. (11). These and even longer-range hop-
ping terms become more and more important as the energy
E increases and the binding energy of the molecule becomes
small.
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FIG. 3. Complete phase diagram in the interaction-disorder
plane for a pair with total energy E = −15. The phase boundaries
between metallic and insulating phases are displayed by the green
symbols. The dashed and dotted lines correspond to the rigorous
and the numerical band edges, respectively. The arrow indicates the
disorder threshold W ∗ = 8.91, where the nature of the pair wave
function changes from molecular to scatteringlike. At this point the
right numerical band edge crosses the U = 0 axis, as indicated by
the star symbol. For 3 < W < 9.8 (horizontal dashed lines), the pair
displays large Lifshitz tail regions. The remaining notation is the
same as in Fig. 2.

Let us now discuss the localization properties of the pair for
stronger disorder. The complete phase diagram for E = −15
is shown in Fig. 3. In Fig. 4 we also display the behavior of the
reduced localization length 
M as a function of the interaction
strength, which helps understanding the structure of the phase

FIG. 4. Reduced localization length of the pair versus U cal-
culated for two different values of the transverse size of the bar,
M = 8 (circles) and M = 10 (squares). The panels (a)–(f) correspond
to increasing values of the disorder strength, W = 3 (a), 7, 8, 9.4,

10, 24 (f).

diagram. The two data curves in each panel correspond to the
values M = 8 and M = 10 of the transverse size of the bar.
The panels (a)–(f) refer to increasing values of the disorder
strength.

We see from Fig. 3 that all two-particle states are local-
ized for 1.4 < W < 9.8. In this insulating phase, the region
of U values, delimited by the left and right numerical band
edges, broadens up as W increases until it covers the entire
axis at W = 9.75. Figures 4(a)–4(c) show that the two curves
for M = 8 and M = 10 tend to further separate out as W
increases, as occurs in the single particle problem at strong
enough disorder (so that asymptotically 
M/
M ′ = M ′/M).
This behavior corresponds to localized molecular states. Inter-
estingly, the same panels show that in the Lifshitz tail regions

M increases steadily as W increases.

For W = 9.4 [Fig. 4(d)] the two curves for different M
show instead an opposite trend: Their relative distance has
reduced, suggesting that the pair has lost its molecular nature,
and is better described by a scattering state. This change of
behavior should occur when the energy E of the pair falls
inside the noninteracting two-particle energy spectrum, as
displayed in Fig. 1(b). The disorder threshold W ∗ is then given
by the condition E = −2εbe(W ∗). We compute the single-
particle numerical band edge as explained in Appendix B. The
above condition then yields W ∗ = 8.91 for E = −15, thus
confirming the molecule unbinding. Figure 3 shows that, for
W = W ∗ (horizontal arrow), the right numerical band edge for
the pair crosses the U = 0 axis (corresponding to λ → ∞), as
indicated by the star symbol.

We see from Fig. 4(d) that at W = 9.4 the reduced local-
ization length already possesses a clear absolute minimum
at U = 0, which then persists for all larger values of the
disorder strength, as displayed in the panels (e) and (f) of
the same figure. This confirms that interactions always favor
the delocalization of scattering states. Moreover the delocal-
ization effect is more prominent for intermediate values of
the interaction strength, as also occurs in lower dimensional
systems [57,63]. By comparing Fig. 4(d) with Fig. 4(e), we
see that all scattering states are still localized at W = 9.4,
while for W = 10 they are already all extended, except for
few states with vanishing interactions. Figure 3 shows indeed
that the critical disorder strength is nearly constant, Wc � 9.8,
with a small bump around U = 0, where Wc � 10.5.

The remarkable overlap between the mobility edge and the
numerical band edges for strong interactions implies that in
this regime pairs possess a large mean free path �, as follows
from the Ioffe-Regel criterion for the metal-insulator transi-
tion, k� ∼ 1, k being the (small) effective wave vector of the
pair.

The phase boundary at stronger disorder, where the scat-
tering states ultimately localize, is strongly dependent on the
interaction strength, as already observed for the E = 0 case.
In particular states with vanishing interaction are the first to
localize around W � 14.5, while for |U | � 2 the phase tran-
sition occurs at much stronger disorder, between W = 23 and
W = 24.5. Notice that the metallic phase of scattering states
is approximately symmetric under the inversion U → −U .
This is also clear from Fig. 4(f), showing that the reduced
localization length becomes also symmetric under the same
transformation.
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FIG. 5. Topological changes in the phase diagram of the pair for
varying energy. Panel (a): phase diagram for E = −12.25 showing
the two-body mobility edge (orange up-pointing triangles) together
with the rigorous (dashed lines) as well as the numerical (dotted
lines) band edges. For U � −8.95 the phase boundary at weak dis-
order basically superposes with the right numerical band edge. The
crossing from molecular to scattering states occurs at W = W ∗ =
2.45, as indicated by the star symbol. Panel (b): analogous study for
E = −18. The two-body mobility edge is displayed by the violet
diamonds symbols. The disorder threshold for molecular unbinding
is W ∗ = 12.79. This value is slightly smaller than the prediction
W ∗ = 13.26 based on the coherent potential approximation, due to
finite-size effects.

Let us now explain how the topology of the phase diagram
in the U − W plane is modified by varying the total energy
E of the pair. In Fig. 5(a) we display the results obtained
for E = −12.25. In this case the unperturbed band edges are
given by U = E and U = 1/ f (E ) = −8.95. A first striking
difference with respect to Fig. 3 is that the two metallic phases
of molecular and scattering states are merged together. Inter-
estingly, for U � −8.95 the mobility edge at weak disorder
closely follows the right numerical band edge. A zoom of the
phase diagram in this region is shown in Fig. 6(a). We see that
localized states which do not belong to Lifshitz tails appear
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FIG. 6. Zoom of the phase diagrams displayed in Fig. 5 in the
low disorder regime. Panel (a) refers to E = −12.25 and shows
that delocalized molecular and scattering states are merged together.
Panel (b) displays the molecular mobility edge for E = −18 (violet-
diamond symbols) together with the prediction based on the pointlike
approximation for molecules based on Eq. (11) shown by the dot-
dashed line.

only for intermediate values of the disorder strength near the
point U = E , where the size of the pair is smaller.

We also notice from Fig. 5(a) that the unbinding of molec-
ular states and the subsequent delocalization of scattering
states occur almost simultaneously, around W = W ∗ = 2.45.
Hence, for E → −12, where by definition W ∗ = 0, all states
at low disorder become extended and the phase diagram be-
comes qualitatively similar to the E = 0 case, as anticipated in
the introduction. In particular scattering states with vanishing
interactions are the first to localize, starting at W � 15.9.
A comparison with Fig. 3 reveals that the maximum value
of the associated critical disorder strength shifts to weaker
interactions, as the energy E decreases.

Next, we explore the shape of the phase diagram in the
opposite limit, where the energy of the pair is instead large
and negative. In Fig. 5(b) we show the obtained results for
E = −18. In this case the metallic phase of scattering states
splits out in two disconnected parts, with support at positive
and negative U values, respectively, implying that there are no
metallic pair states for vanishing interactions. These regions
of delocalized scattering states shrink rapidly in size as |E |
increases. For instance we see from Fig. 5(b) that pair states
become scatteringlike at W = W ∗ = 12.79, while the delo-
calization transition occurs only for W � 15.5; in contrast,
such states are more easily localized at stronger disorder,
the last Anderson transitions occurring around W = 22.5. By
comparing Fig. 5(b) with Fig. 3 and Fig. 5(a), we also notice
that the phase boundary of scattering states is also less smooth.
This is due to the fact that, when both |E | and W take large
values, residual finite-size effects, which are not completely
removed by the scaling procedure, start to appear. We attribute
this behavior to the fact that in this regime only few strongly
localized single-particle states contribute significantly to the
kernel K in Eq. (6), by making the energy denominator small.
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FIG. 7. Phase diagram in the interaction-disorder plane for a pair
with total energy E = U (blue circles data). The orange triangles data
refer to the phase boundary at E = 0, calculated in Ref. [76]. The
double dot-dashed line at low disorder corresponds to the molecular
result, Wc � 16.0/|U |, obtained by treating the pair as a pointlike
particle obeying an effective Anderson model, see Eq. (11). The
diagram holds for both attractive and repulsive interactions.

As a consequence, the reduced localization length exhibits
larger statistical error bars, and so does the position of the
critical point, obtained from the finite-size scaling procedure.

In Fig. 6(b) we display the molecular band edge for E =
−18 (violet-diamond symbols) together with the prediction
based on the pointlike approximation for molecules (dot-
dashed line). As compared to the case E = −15, shown in
Fig. 2, the two-body mobility edge is more center symmetric
and the pointlike prediction works considerably better.

C. Phase diagram along the E = U plane

We now proceed to discuss the cut of the three-dimensional
phase diagram of the pair along the E = U plane, which
was anticipated in Fig. 1(a). The same numerical data are
displayed in Fig. 7 (blue circles) together with the previous
results for E = 0 (up orange triangles). While for weak inter-
actions the two data curves remain very close, their behavior
in the strongly interacting regime is completely different. For
E = U we see that the phase boundary displays a double reen-
trant (s-like) behavior in the interval 12 < |U | � 19 (we recall
that the diagram is symmetric under U → −U ). Here the two-
particle system undergoes three metal insulator transitions as
the disorder strength increases, corresponding to localization
of molecules, delocalization, and subsequent localization of
scattering states, respectively. These critical points are ob-
tained from Fig. 3 and Figs. 5(a) and 5(b) by intersecting the
phase boundary with the vertical line at U = E .

It is interesting to note that the critical disorder strength
for the localization of molecules with E = U can be easily
computed from the pointlike approximation based on Eq. (11).
Indeed, from the data of Ref. [16] the critical disorder strength
at the unperturbed left band edge is W sp

c (ε = −6) � 16. By
expressing it in terms of the molecular parameters, we obtain
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I
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Bulka et al (single-particle) 
two-body

FIG. 8. Comparison between two-body and single-particle mo-
bility edges for vanishing interactions. The red square symbols
denote the two-body data calculated for total energies E = −12.25
(orange dashed line) and E = −15 (green dashed line). For E = −18
no critical point is found. The result for E = 0 obtained in Ref. [76]
is also shown. The continuous violet line is a guide to the eye
connecting the numerical data for the single-particle phase boundary
extracted from Ref. [16], upon the change of variable E = 2ε, ε

being the single-particle energy. The dashed lines correspond to the
rigorous band edges W = −12 ± E , while the dotted lines refer to
the numerical band edges of the pair for U = 0 [displayed as solid
lines in Fig. 1(b)].

Wc � 16/|U |. This is shown in Fig. 7 by the violet double
dot-dashed line, which is in very good agreement with our
numerics for |U | > 12.

D. Recovering the single-particle mobility edge

A natural question that arises from our discussion is: How
does the two-body phase diagram in the E − W plane behave
in the limit of vanishing interactions? What is the explicit
connection with the single-particle mobility edge in the ε − W
plane? The answer to this question is shown in Fig. 8, where
the data symbols correspond to the critical points at vanishing
interactions obtained for E = −15 and E = −12.25 (vertical
dashed lines) from the numerical data of Fig. 3 and Fig. 5(a)
(we recall that for E = −18 there are no transitions as U →
0). The corresponding result for E = 0 has also been added.
The continuous violet line in Fig. 8 is a guide to the eye of the
numerical data for the single-particle mobility edge obtained
in Ref. [16], expressed in terms of the pair energy E = 2ε.
We see that for vanishing interactions, our numerical results
for the two-particle mobility edge are fully consistent (within
the numerical accuracy) with the single-particle counterpart.

Our results for the rigorous and the numerical band edges
also agree with the single-particle picture. For instance, the
rigorous band edges of the pair for U → 0 are given by
the equations −12 − W � E � 12 + W , which is equivalent
to −6 − W/2 � ε � 6 + W/2. The numerical band edge at
W = W ∗, corresponding to the crossing from molecular to
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scattering states, is fixed by the condition E = ±2εbe(W ),
yielding ε = ±εbe(W ), as expected.

IV. DENSITY OF STATES OF THE EFFECTIVE MODEL

The disorder-averaged density of states (DOS) of the effec-
tive model for the pair, expressed as a function of the inverse
interaction strength λ = 1/U , is defined as

ρK (λ) = 1

N

N∑
r=1

δ(λ − λr ), (15)

where λr are the eigenvalues of the kernel K for a given
disorder realization and the bar indicates the average over
the different disorder realizations. Although this quantity does
not show any singular behavior at the critical point of the
Anderson transition, it provides useful information on the
distribution of the (pseudo)energy levels which can help us
understand the two-particle phase diagram. While the com-
putation of the transmission amplitude requires bar-shaped
grids, the DOS can be calculated more accurately using cubic
lattices, with L = M, assuming periodic boundary conditions
along the three directions. To this end, we compute the matrix
K of the effective model with the help of the Woodbury matrix
identity, as discussed in Appendix A.

We evaluate the DOS numerically by partitioning the in-
terval [λmin, λmax], where it is significantly different from
zero, into Nb bins of equal width �λ = |λmax − λmin|/Nb. The
number of bins used for the evaluation is chosen of the order
of the square root of the number of data points per disorder
realization, Nb ∼ √

N . Let λ j = λmin + �λ( j − 1) label the
points of the grid, with j = 1, .., Nb and let Ntr be the total
number of disorder realizations considered (in our case Ntr =
200). For each bin j and for each disorder realization r, with
r = 1, .., Ntr , we count the relative number of occurrences pr

j ,
corresponding to the ratio between the number of eigenvalues
of the matrix K falling inside the bin and the total number
N of eigenvalues. The corresponding value of the DOS is
calculated as

ρK (λ = λ j ) = 1

Ntr�λ

Ntr∑
r=1

pr
j, (16)

where the factor �λ in the rhs ensures the correct normaliza-
tion condition,

∫ +∞
−∞ ρK (λ)dλ = 1.

In Fig. 9 we display the DOS of a pair with total energy
E = −15 for increasing values of the disorder strength [panels
(a)–(d)]. The vertical arrows mark the position of the numeri-
cal band edges, signaling the crossing to a Lifshitz tail region.
In this work we assume that a given bin j belongs to the
Lifshitz tails region if the corresponding value of the DOS
satisfies

ρK (λ j ) <
C

�λN
, (17)

where C is a constant of order unity, which for definiteness
we choose equal to C = 1/2. The numerical band edges are
then obtained as the borders of the region of the λ spec-
trum, where Eq. (17) is satisfied. We have checked that, for
the single-particle Anderson model, this working procedure
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FIG. 9. Disorder-averaged density of states ρK of the effective
Hamiltonian for the pair, see Eq. (15), as a function of λ = 1/U .
The four panels correspond to increasing values of the disorder
strength, while the total energy is fixed to E = −15. The calculation
is done assuming a cubic box of sizes L = M = 24 with periodic
boundary conditions. The vertical arrows indicate the positions of
the numerical band edges, where the Lifshitz tails regions appear.
The dashed line in panel (c) corresponds to a power-law fit of the left
tail of the data with ρfit

K (λ) = a0λ
a1 yielding a0 = 0.045 ± 0.02 and

a1 = −2.03 ± 0.14.

yields results which are consistent with the prediction based
on the coherent potential approximation [20].

For very weak disorder [panel (a)], the DOS is nonzero
only in a narrow region around λ = 1/E = 0.0667, as ex-
pected for a tightly bound state. For fixed W , the DOS
broadens as the modulus |E | of the energy diminishes, be-
cause molecules are less bound, as shown in Fig. 10(a) for
W = 1. The DOS also broadens as the disorder becomes
stronger. This effect is clearly visible in the phase diagram
of Fig. 3, where the dotted lines represent the numerical band
edges expressed in terms of the interaction strength U = 1/λ.
For instance, for E = −15 and W = 7, we see from Fig. 9(b)
that the Lifshitz tails region is given by λ < −0.149 and
λ > −0.0485, which translates to −20.64 < U < −6.72.

As molecules turn into scattering states, at W = W ∗ =
8.91, the support of the DOS becomes unbound, due to the
presence of a long-range tail, as shown in Fig. 9(c). A power
law fit to the tail reveals that the DOS decays algebraically
as λ−2, as displayed in the same panel with the dashed line.
This asymptotic behavior signals that the DOS, expressed in
terms of the interaction strength as ρ̃K (U ) = ρK (λ)λ2, be-
comes nonzero in the noninteracting limit, ρ̃K (0) �= 0; it is
therefore a specific feature of the scattering nature of the pair.

For stronger disorder, states for repulsive interactions (λ >

0) become also available, as shown in Fig. 9(d) for W =
25. Differently from the behavior of the reduced localization
length (see Fig. 4), the DOS remains strongly asymmetric
under a parity transformation λ → −λ, even for rather large
values of the disorder strength. This feature can be better un-
derstood starting from the atomic limit, where tunneling terms
in Eq. (10) can be neglected, so that the matrix K becomes
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FIG. 10. Disorder-averaged density of states of the effective
Hamiltonian for the pair, see Eq. (15), as a function of λ = 1/U ,
calculated for three different values of its total energy E = −12.25
(orange line), −15 (green line), and −18 (violet line). The left panel
(a) corresponds to W = 1, while the right panel (b) refers to W = 20.
The grid used is the same as in Fig. 9.

diagonal and the DOS can be computed analytically [76]

ρK (λ) = 1

2W λ2
�

(
W −

∣∣∣E − 1

λ

∣∣∣), (18)

where � is the unit step function. Equation (18) confirms that
the DOS behaves as λ−2, but states with small λ are forbidden
due to the energy conservation, |E − 1/λ| < W .

An explicit comparison of Eq. (18) with the full numerical
computation of the DOS is shown in Fig. 10(b) for W = 20
and for three different values of the total energy E of the
pair. The vertical dotted lines refer to the support of the DOS
obtained from Eq. (18). We see that, for almost all negative
values of λ, the DOS is essentially independent of the energy,
as expected. The agreement is less good in the strongly inter-
acting regime, corresponding to vanishing λ. Here tunneling
effects are important and lead to a finite value of the DOS,
ρK (0) > 0. In contrast, the power-law tails are rather insen-
sitive to such effects, since hopping can always be regarded
as perturbative for λ → ∞. From Fig. 10(b) we further notice
that the DOS becomes more symmetric as the modulus |E |
of the total energy decreases. A full symmetry, however, is
recovered only for E = 0 [76].

V. CONCLUSION AND OUTLOOK

In this work we have investigated the localization proper-
ties of two identical bosons or two fermions with opposite
spins moving in a disordered three-dimensional lattice and
subject to onsite interactions. The two-body Anderson-
Hubbard model provides the simplest example of Anderson
transitions in three-dimensional interacting quantum systems.
Our theoretical approach is based on an exact mapping of the
original Hamiltonian into an effective single-particle model
with long-range hopping, describing the center-of-mass mo-
tion of the pair. The critical properties of the effective model

are investigated numerically via large-scale simulations (ap-
proximately 1.5 million hours of CPU time in state-of-the-art
supercomputers).

We found that the two-particle phase diagram in the
interaction-energy-disorder space presents an incredibly rich
structure characterized by multiple metallic and insulating
phases. We showed that this effect originates from the change
in the nature of pair states, from molecular to scatteringlike, as
the disorder strength increases. Our work provides a general
framework to study the mobility edge of molecules of arbi-
trary size, going beyond the pointlike approximation holding
in the strongly interacting regime. In particular, it allows us to
describe the behavior of the pair near the dissociation thresh-
old and its subsequent delocalization as a scattering state.

Some of our results can readily be tested in current ex-
periments [34] simulating the three-dimensional fermionic
Anderson-Hubbard model with atomic gases, by using ultra-
diluite samples. These include the observation of interaction-
induced delocalization of pairs in regimes where all single-
particle states are localized as well as the localization
of either attractively or repulsively bound states at low
disorder.

We hope that our work will contribute to bridge together
the field of few-body Anderson localization with its many-
body counterpart, at finite particle density. In particular, if
a many-body mobility edge exists for the three-dimensional
Anderson-Hubbard model, its behavior in the zero-density
limit must be consistent with the predictions of few-body
physics. Notice that the two-body mobility edge discussed
here appears only in the subspace of orbitally symmetric two-
particle wave functions, describing either bosons or fermions
in spin-singlet state; here interactions can induce a delocal-
ization transition of the system even if all single-particle
states are localized. In contrast, fermions in spin triplet states
localize as noninteracting particles. We also point out that
the localization properties of the pair were inferred from the
behavior of the diagonal amplitudes 〈m, m|ψ〉 of the wave
function. Recently, it has been shown [44] that, for sufficiently
low disorder, a single spin-down fermion is sufficient to ther-
malize a one-dimensional localized bath of spin-up fermions,
through the propagation of the doublon excitation; a similar
effect was also shown to apply for bosonic systems. It would
be interesting to study (both numerically and experimentally)
the same mechanism in three dimensions and obtain the many-
body mobility edge as a function of the bath density. Our
two-body prediction will then be recovered in the limit of
vanishing bath density.

In this work we have considered the case of contact
interactions, Eq. (3). The effective model could be general-
ized to include nonlocal interactions, for instance between
neighboring sites, provided the interaction Hamiltonian can
still be written as Û = UP̂, where P̂ is a projector opera-
tor, as considered in Ref. [63]. Finally, our approach can be
adapted to investigate the transport properties of other kinds
of two-particle systems subject to quenched randomness, like
Cooper pairs in strongly disordered atomic gases [81] or
superconductors [82–84]. Investigations of the steady-state
and out-of-equilibrium properties of a Fermi gas undergoing
the BCS-BEC crossover in the presence of a random poten-
tial [85] are already under way [86–89].

033501-10



TWO-BODY MOBILITY EDGE IN THE … PHYSICAL REVIEW RESEARCH 2, 033501 (2020)

ACKNOWLEDGMENTS

We acknowledge D. Delande, K. Frahm, C. Monthus,
S. Skipetrov, and T. Roscilde for fruitful discussions. This
project has received funding from the European Union’s
Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie Grant Agreement No. 665850.
This work was granted access to the HPC resources of
CINES (Centre Informatique National de l’Enseignement
Supérieur) under the allocations 2018-A0040507629, 2019-
A0060507629, and 2020-A0080507629 supplied by GENCI
(Grand Equipement National de Calcul Intensif).

APPENDIX A: NUMERICAL EVALUATION OF THE
MATRIX K

In this subsection we outline the numerical procedure
followed to efficiently compute the entries of the effective
Hamiltonian matrix K for the pair. We consider a grid of
length L and squared transverse section of length M, with
L � M. We evaluate the effective Hamiltonian from Eq. (A1)
by writing the matrix elements as [57]

Knm =
N∑

r=1

φnrφ
∗
mr〈n|Gsp(E − εr )|m〉, (A1)

where Gsp(ε) = (εId − H sp)−1 is the resolvent of the Ander-
son model, and Id is the identity matrix. Equation (A1) shows
that the evaluation of the effective Hamiltonian K requires
N inversions of N × N matrices, implying that the compu-
tational complexity is O(N4). Fortunately, we can accelerate
the calculation of the resolvent exploiting specific properties
of the single-particle Hamiltonian, H sp. In the presence of
open boundary conditions along the longitudinal direction,
the latter possesses a block-tridiagonal structure, each block
corresponding to a transverse section of the bar. As a conse-
quence, the resolvent can be written as

Gsp =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 1 0 . . . 0 0
1 A2 1 . . . 0 0
0 1 A3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . AL−1 1
0 0 0 . . . 1 AL

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

, (A2)

where Ai are M2 × M2 symmetric matrices defined by

Ai = εI − H sp
i , (A3)

with Hsp
i being the the Hamiltonian matrix of the ith block,

while 1 and 0 are the identity and the zero matrices, respec-
tively.

Matrices as in Eq. (A2) can be efficiently inverted using
recursive techniques [90]. To do so, we first compute a se-
quence of symmetric matrices Si, with i = 1, .., L − 1, using
the recurrence relation

Si = (Ai+1 − Si+1)−1, (A4)

starting from SL−1 = A−1
L . Let Di and Ci j be, respectively, the

diagonal and off-diagonal blocks of the matrix Gsp that we
want to compute (since Gsp is symmetric, we can restrict to

i > j). These matrices can be determined using the coupled
recursive relations

(Ci1 Ci2 . . . Cii−1) = −Si−1(Ci−11 Ci−12 . . . Di−1)

and

Di+1 = Si(1 + DiSi ), (A5)

for i = 2, .., L − 1, starting from D1 = A1 − S1. Using the
above procedure, the computational complexity to find Gsp

reduces to O(L2M6), so that the overall cost to evaluate the
full kernel K scales with the system size as L3M8.

Let us now consider the case of periodic boundary condi-
tions along the longitudinal direction. In this case the matrix
to invert differs from the rhs of Eq. (A2) by two nonvanishing
block entries, Gsp−1

1L = Gsp−1
L1 = 1.

Although such a matrix is no longer block-tridiagonal, it
can still be inverted efficiently. To see this, we write it as
Gsp−1 = (B + UtV )−1, where B is a block-tridiagonal matrix
obtained from the rhs of Eq. (A2) under the change A′

1 =
A1 + A−1

L and A′
L = 2AL, while

U = (−A−1
L 0 . . . 0 1

)
V = (1 0 . . . 0 −AL ) (A6)

are M2 × N matrices. After computing the inverse of B using
the above procedure, we determine the resolvent Gsp via the
Woodbury matrix identity:

(B + UtV )−1 = B−1 − B−1Ut (1 + V B−1Ut )V B−1. (A7)

The second term in the rhs of Eq. (A7) can be calculated
using M2N2 elementary operations, which corresponds to the
same computational complexity O(M6L2) of inverting B. This
is consistent with our numerical experiments showing that,
in the presence of periodic boundary conditions along the
bar, the time needed to evaluate the effective Hamiltonian
approximately doubles.

APPENDIX B: SINGLE-PARTICLE NUMERICAL
BAND EDGE

Neglecting Lifshitz tails, the numerical band edge εbe(W )
for the Anderson model, Eq. (1), can be accurately esti-
mated via the coherent potential approximation (CPA) as
done in Ref. [20]. Here we review the main steps for com-
pleteness. We begin by expressing the diagonal term G(ε) =
〈n|(εI − Ĥ sp)−1|n〉 of the disorder-averaged (translationally
invariant) single-particle Green’s function as G(ε) = G0(ε −
�), where

G0(ε) =
∫ π

−π

d3k

(2π )3

1

ε − ε(k) + i0
(B1)

is the disorder-free counterpart and � is the self-energy. The
latter can be found by solving the (self-consistent) CPA equa-
tion ∫

dV P(V )
1

1 − (V − �)G = 1. (B2)

By substituting the box random potential distribution (2) in
Eq. (B2) and performing the integration over the disorder
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amplitude, we end up with the following equation

ln
(2 − GW + 2G�

2 + GW + 2G�

)
+ GW = 0, (B3)

whose solution yields the self-energy as a function of
the single-particle energy and the disorder strength, � =
�(ε,W ).

The multidimensional integration in Eq. (B1) can be per-
formed analytically following Ref. [91] leading to G0(ε) =
P(6/ε)/ε, where

P(z) = 1 − 9ξ 4

(1 − ξ )3(1 + 3ξ )

[
2

π
Y (k1)

]2

. (B4)

Here ξ and k1 are functions of z defined as

ξ (z) =
(

1 −
√

1 − z2/9

1 + √
1 − z2

)1/2

, (B5)

k1(z)2 = 16ξ 3

(1 − ξ )3(1 + 3ξ )
, (B6)

with Y being the complete elliptic integral of the first kind.
For a given disorder strength W , the numerical band edges
±εeb(W ) correspond to the energy values at which the
imaginary part of the self-energy first vanishes, �(�(±εeb,

W )) = 0.
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