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Quantum Zermelo problem for general energy resource bounds
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A solution to the quantum Zermelo problem for control Hamiltonians with general energy resource bounds
is provided. Interestingly, the energy resource of the control Hamiltonian and the control time define a pair
of conjugate variables that minimize the energy-time uncertainty relation. The resulting control protocol is
applied to a single qubit as well as to a two-interacting qubit system represented by a Heisenberg spin dimer. For
these low-dimensional systems, it is found that physically realizable control Hamiltonians exist only for certain
quantized energy resources.
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I. INTRODUCTION

Nature requires a quantum description [1]. Nonetheless,
quantum-classical correspondence arguments are still in fash-
ion because of their usefulness to understand and explain the
behavior of quantum systems [2], and also to devise new
strategies to tackle quantum problems, as in the case of op-
timal control strategies [3–7]. In general, control scenarios
are related either with the way of constructing a so-called
control Hamiltonian or with the procedure aimed at getting
an appropriate initial ansatz that, with time, evolves into the
desired final quantum state.

From a mathematical point of view, any problem in quan-
tum mechanics essentially consists in a more or less complete
and precise construction of a unitary operator Û (t, t0), para-
metrically dependent on t , to represent the time evolution
of the system between its energetically available mechanical
states at t0 and t . In the last years much attention has been
devoted to the problem of finding optimal unitary operators,
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Û (t f , ti ), which lead a given initial state |ψi〉, at ti, to another
different but previously fixed final state |ψ f 〉, at t f , in the
shortest possible time, �T = t f − ti, under some constrain-
ing conditions. Since finding the optimal unitary operator is
equivalent to finding an optimal Hamiltonian, two different
routes can be explored. On the one hand, if the constraint
implies a bound in the energy resource, then the optimal
Hamiltonian is going to be time-independent and can eas-
ily be constructed by noting that the corresponding unitary
transformation Û describes the shortest time evolution. On
the other hand, the constraint might imply a search for a
time-dependent Hamiltonian minimizing the time evolution,
which means that it has to be determined and characterized by
variational approaches [8].

The latter case is particularly relevant to those situations
where the evolution of the quantum system is either prede-
termined or inherently affected by an external field out of
our control (for instance, in problems within the scope of
the quantum technologies). Yet it would be desirable to take
the system from one state to another one that does not cor-
respond to the natural evolution of such a system. That is, if
Û0 describes such a natural evolution, it is of much interest
to devise a method or protocol that warrants the evolution
from |ψi〉 to |ψ f 〉 in the least time, provided that |ψ f 〉 �=
Û0|ψi〉. By invoking the aforementioned quantum-classical
correspondence, this is actually the quantum analog of the
well-known classical Zermelo navigation problem [9,10].

Brody and Meier [11] have investigated this problem in
the field of quantum processing. More specifically, assuming
that the quantum system is described by a bare background
Hamiltonian Ĥ0, these authors established a method to obtain

2643-1564/2020/2(3)/033492(11) 033492-1 Published by the American Physical Society

https://orcid.org/0000-0002-0974-4618
https://orcid.org/0000-0001-8617-5976
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033492&domain=pdf&date_stamp=2020-09-25
https://doi.org/10.1103/PhysRevResearch.2.033492
https://creativecommons.org/licenses/by/4.0/


JOSEP MARIA BOFILL et al. PHYSICAL REVIEW RESEARCH 2, 033492 (2020)

a time-optimal control Hamiltonian, Ĥc(t ), such that its com-
bined action with Ĥ0, i.e.,

Ĥ (t ) = Ĥ0 + Ĥc(t ), (1)

generates a time-optimal unitary evolution from |ψi〉 to |ψ f 〉.
The protocol devised by these authors thus includes three key
elements:

(i) A time-independent, bare background Hamiltonian Ĥ0,
which describes the natural evolution of the quantum system.

(ii) A time-dependent control Ĥc(t ) satisfying at any time
the energy resource bound

tr
(
Ĥ2

c (t )
) = 1. (2)

(iii) The background Hamiltonian Ĥ0 is not energetically
dominant, i.e.,

tr
(
Ĥ2

0

)
< tr

(
Ĥ2

c (t )
)
. (3)

These features thus define the quantum counterpart of the
classical Zermelo navigation problem [9,10].

Moved by the possibility to apply the above ideas to more
general quantum problems, here we present a further devel-
opment of the quantum Zermelo navigation problem, which
provides a protocol that can be easily adapted to different
physical scenarios. In this regard, we have focused on a series
of guidelines which stress the physics behind this approach
with a limited abstract conceptualization of the problem. That
is, we have tried to answer questions such as whether it is
possible to build a control Hamiltonian without entering too
many formal aspects but just well-known theory. And, if so,
we also wanted to know how it looks like and whether it works
optimally. Interestingly, by proceeding this way we have been
able to reach a general form for the condition specified by (2),
where the left-hand side equals a general constant k, which,
in turn, is related to the minimum time necessary to take the
system from the initial to the final quantum state that we wish,
circumventing the unwanted effects of the bare Hamiltonian.
Accordingly, a general protocol is presented to determine Ĥc,
which we have tested here with a series of well-known quan-
tum systems, such as the harmonic oscillator, entanglement
swapping with Bell states, or spin flip in a Heisenberg dimer.
It is worth stressing that, in all cases, although the least time
is going to depend on the system Hamiltonian, the condition
itself is totally independent of it, which we associate with the
fact that the evolution of the quantum state keeps a one-to-
one analogy with the geometrical evolution along a meridian
joining both states on the Bloch’s sphere, as already pointed
out by Brody et al. [12].

The work is organized as follows. The theory is presented,
developed, and discussed in the next section. To be self-
contained, a brief account on the classical Zermelo problem as
well as on the Brody and Meier approach is provided, which
serves to contextualize the present work. Afterwards, in Sec. II
we present our approach, which also includes a discussion
on the adiabaticity of the solution of the quantum Zermelo
problem. In Sec. III we develop the applications mentioned
above, showing how the least-time condition arises in each
case. Finally, a series of concluding remarks are exposed in
Sec. IV.

II. THEORY

A. Classical Zermelo problem

The classical Zermelo navigation problem can be stated as
follows. Given the actual position of a ship, x� = (x1, x2),
on the surface of an unlimited sea and undergoing the local
action of a current and/or wind, characterized by a position-
dependent vector field, w�(x) = [w1(x),w2(x)], one expects
to find the optimal control velocity, v� = vû� = v(u1, u2),
that should constantly act on the ship so that it reaches its
destination in the least time. Here, û is a unit vector in the
direction of v and v denotes its modulus.

As it was noticed by Zermelo [9] and Carathéodory [10] in
the early 1930s, the solution to this problem can be obtained
by constructing the geometrical form of the indicatrix that
allows one to obtain the Hamiltonian function and, from it,
all extremal curves of the problem. Accordingly, the absolute
velocity of the ship, namely, v = ẋ/F , must satisfy the equa-
tion

ẋ
F

− w(x) = vu, (4)

where ẋ is the derivative of the coordinates with respect to
an arbitrary evolution parameter. The time employed by the
ship in its full journey is calculated from the integral of
the F function with respect to the arbitrary parameter along
the extremal curve. Hence, F becomes the basic function of
this variational problem.

Equation (4) allows us to determine the F function as a
positive root of the equation

[
ẋ
F

− w(x)

]�[
ẋ
F

− w(x)

]
= v2, (5)

whenever such a root exists. Equation (5) is the indicatrix of
the classical Zermelo navigation problem, which describes
a circle of radius v with center at w(x). The set of points
satisfying the circle condition corresponds to the end points
of the vector ẋ/F . As seen below, in the quantum analog for
this problem, Brody and Meier [11] found the solution by
determining the geodesics of the Randers metric derived from
the form of the F function.

B. Quantum Zermelo approach

While searching for a quantum speed limit to quantum
information processing, Russell and Stepney found a tight
connection between such processes and the classical Zermelo
navigation problem [13], later on extended to a method to
determine optimal times involved in the implementation of
quantum gates [14]. Shortly after, Brody et al. [12] also
reached a similar conclusion, namely, that there is a direct
quantum counterpart for the Zermelo navigation problem. To
this end, consider some initial and final quantum states, |ψi〉
and |ψ f 〉, respectively, for a given physical system which is
being acted upon by a time-independent background Hamil-
tonian Ĥ0. The quantum Zermelo problem consists in finding
a control Hamiltonian, Ĥc(t ), such that the total Hamiltonian
(1) describes a unitary transformation leading from |ψi〉 to
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|ψ f 〉 in the least time. Notice that by invoking to the classi-
cal analog, the classical vector field describing the wind or
current corresponds, in the quantum counterpart, to the uni-
tary operator generated by Ĥ0. Furthermore, in this quantum
problem, it is assumed that the energy associated with the
transformation from |ψi〉 to |ψ f 〉 is not only limited but it also
has to be totally consumed at the end of the process. Thus the
speed evolution generated by the control Hamiltonian, Ĥc(t ),
is related to the energy variance of Ĥc(t ), according to the
Anandan-Aharonov relation [15]. Over the full process, the
speed evolution takes the maximum attainable value and it is
fixed.

Based on such constraints, one aims to build an optimal
unitary transformation that satisfies them all. Accordingly,
consider the time evolution of the unitary operator, Û (t, ti ),
governed by the Schrödinger equation, which in the Heisen-
berg representation reads as

i
dÛ (t, ti )

dt
= Ĥ (t )Û (t, ti ) = [Ĥ0 + Ĥc(t )]Û (t, ti ), (6)

with h̄ = 1 (in natural units). The time-evolution operator
Û (t, ti ) is required to satisfy the initial condition Û (ti, ti ) ≡ I
(I denotes the identity operator) as well as the unitarity con-
dition Û †(t, ti )Û (t, ti ) = Û (t, ti )Û †(t, ti ) = I, which ensures
the norm preservation along the whole evolution.

For simplicity and convenience, considering the total time
lasted in the evolution of the system, �T = t f − ti, with ti �
t � t f , and then defining the dimensionless evolution parame-
ter s = (t − ti )/�T , the time-evolution operator can be recast
as Û (t, ti ) = Û�T (s) and its time derivative as dÛ (t, ti )/dt =
(1/�T )dÛ�T (s)/ds [16]. Using the above notation and mul-
tiplying Eq. (6) from the right by Û †

�T (t, ti ) we get

i

�T

dÛ�T (s)

ds
Û †

�T (s) − Ĥ0 = Ĥc(s), (7)

which strongly resembles the classical Eq. (4), with �T play-
ing the role of F .

In order to further stress the quantum-classical analogy,
Eq. (7) is now multiplied by itself. Then the trace over the
full resulting evolution equation gives rise to the equation

tr(X̂ (s)X̂ (s)) − 2�T tr(Ĥ0X̂ (s)) + (�T )2 tr
(
Ĥ2

0

)
= (�T )2 tr

(
Ĥ2

c (s)
) = k(�T )2, (8)

with

X̂ (s) = i
dÛ�T (s)

ds
Û †

�T (s) (9)

arising from the constraint on the energy resource bound [see
condition (ii) above], and k being an arbitrary constant (in
Ref. [11], this constant amounts to 1). Equation (8) can thus
be seen as the quantum counterpart of Eq. (5). Solving for �T
[11], we finally find

�T {X̂ (s)} =
−tr(X̂ (s)Ĥ0) +

√
[tr(X̂ (s)Ĥ0)]2 + [

k − tr
(
Ĥ2

0

)]
tr(X̂ (s)X̂ (s))

k − tr
(
Ĥ2

0

) , (10)

which constitutes the so-called Finslerian norm of X̂ (s)
[17–19]. As it can readily be noticed, the positivity of �T in
Eq. (10) is ensured irrespective of the value of tr(Ĥ2

0 ) against
k. Note that although in Ref. [11] Brody and Meier considered
that k should be larger (with k = 1, in their case), as specified
by the above condition (iii), later on, in Ref. [12], they pointed
out that the condition can be actually relaxed in the quantum
context due to the compactness of the manifold of pure states.

The question now is whether one can approach the same
problem from a more physical viewpoint, that is, from a more
familiar quantum formulation, which, in turn, might serve
also to confer more generality to the process. The answer is
affirmative, as we show now by considering notions already
existing within the time-dependent perturbation theory [16],
which is also closer to treatments typically considered in
the theory of open quantum systems [20]. To see that let us
introduce the unitary time-evolution operator Û0(t, ti ), corre-
sponding to Ĥ0, solution to the equation

i
dÛ0(t, ti )

dt
= Ĥ0Û0(t, ti ), (11)

with the initial condition Û0(ti, ti ) ≡ I. The solution is well
known,

Û0(t, ti ) = e−iĤ0(t−ti ). (12)

Now, in order to determine Û (t, ti ), we consider the separable
ansatz

Û (t, ti ) = Û0(t, ti )Ûc(t, ti ), (13)

where the time-evolution operator Ûc(t, ti ) is required
to be unitary and satisfying the unitarity condition
Û †

c (t, ti )Ûc(t, ti ) = I. This constraint, in turn, implies that
Û (t, ti ) also satisfies the unitarity condition, as it can easily
be shown.

In order to determine Ûc(t, ti ), we now proceed as follows.
First we substitute Eq. (13) into Eq. (6) and then make the
Û †

0 (t, ti ) to act on the left of the resulting expression, which
renders the equation

i
dÛc(t, ti )

dt
= Û †

0 (t, ti )Ĥc(t )Û0(t, ti )Ûc(t, ti ), (14)

with initial condition Ûc(ti, ti ) ≡ I, and where we have made
use of Eq. (11) to simplify it. Now, as it can be seen on the
right-hand side, Ûc is acted upon by the control Hamiltonian
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operator in the interaction picture [21],

Ĥ ′
c(t ) = Û †

0 (t, ti )Ĥc(t )Û0(t, ti )

= eiĤ0(t−ti )Ĥc(t )e−iĤ0(t−ti ). (15)

Since the control Hamiltonian Ĥc is to be determined, we
can make a guess on the particular functional form for its
interaction picture, namely, that Ĥ ′

c corresponds to Ĥc at ti, so
that it becomes time independent. Although this might look
counterintuitive, if we recall the picture provided by Brody
et al. [12] of the evolution along the Bloch sphere when going
from one state to the other, the above condition (15), with
Ĥ ′

c(t ) = Ĥc(ti ), can be considered to be equivalent to continu-
ing the journey on the back of the sphere, from the final state
to the initial one. That is, the condition for a proper control
requires evolution along a meridian, and no other curve, in
order to ensure the equivalence of the two journeys.

Therefore, even if the above condition seems to be a strong
constraint, still it is rather reasonable and convenient, since it
allows us to recast Eq. (15) with a functional form analogous
to that found for the time-evolution operator associated with
the bare Hamiltonian, Eq. (11), i.e.,

i
dÛc(t, ti )

dt
= Ĥc(ti )Ûc(t, ti ), (16)

with the solution

Ûc(t, ti ) = e−iĤc (ti )(t−ti ). (17)

Accordingly, the full Hamiltonian for the quantum Zermelo
problem acquires the final form

Ĥ (t ) = Ĥ0 + e−iĤ0(t−ti )Ĥc(ti )e
iĤ0(t−ti ), (18)

which corresponds to Eq. (1) in Ref. [11].
Next, let us see some properties that follow from the above

relationship between Ĥc(t ) and Ĥc(ti ). Consider the relation

Ĥc(t ) = e−iĤ0(t−ti )Ĥc(ti )e
iĤ0(t−ti ). (19)

It readily follows that if tr(Ĥ2
c (ti)) is constant, then the same

holds for tr(Ĥ2
c (t )), since

tr
(
Ĥ2

c (t )
) = tr

(
Ĥ2

c (ti )
) = k, (20)

which is satisfied at any time t . Thus, according to (20),
dtr(Ĥ2

c )/dt = 0 also at any time. Now, differentiation of
Eq. (19) with respect to t leads to

dĤc(t )

dt
= −i[Ĥ0, Ĥc(t )], (21)

which is a solution to the variational problem,
δ
∫ 1

0 [�T {X̂ (s)}]2
ds = 0, with �T {X̂ (s)} the same as

given in Eq. (10) and first derived by Brody and Meier
[11]. Equation (21) gives the coadjoint motion, and hence
it should be solved together with Eq. (18). Besides,
from Eq. (21) we also find that tr(dĤc(t )/dt ) = 0 and
dtr(Ĥ2

c )/dt = 2tr(Ĥc(t )dĤc(t )/dt ) = 0 by using cyclic
permutation when tracing. Physically, these vanishing values
imply that the “velocity” of the transition process remains
constant during the whole process, as it is assumed in the
problem by definition.

From the above formulation, it is now clear that Eq. (21)
together with Eq. (6), with Ĥc(t ) as given by (19), and Û (t, ti )

computed from (13), (12), and (17), provide the fundamental
solution to the quantum Zermelo problem [11,12]. Further-
more, we have seen that the condition tr(Ĥ2

c (ti )) = k arises as
a consequence of Eqs. (19) and (21) [22,23] and generalizes
the result in Ref. [11].

C. Transition between two specific quantum states

According to the above results, time optimization in the
quantum Zermelo approach is fully determined by the con-
struction of the control Hamiltonian Ĥc(ti ) provided the
bound condition tr(Ĥ2

c (ti )) = k is satisfied, since both the bare
Hamiltonian Ĥ0 and the initial and final states, |ψi〉 and |ψ f 〉,
are given. In order to understand the dynamical transition from
|ψi〉 and |ψ f 〉, and hence to introduce a protocol to optimize
the time lasting in such a transition, let us consider the state
reached by |ψi〉 after a time t under free evolution, i.e., under
the action of the bare background Hamiltonian. The wave
function of this state is given by

|ψ (t )〉 = Û (t, ti )|ψi〉. (22)

where |ψi〉 = |ψ (ti)〉. Taking into account Eq. (13), we can
introduce the intermediate state

|ψ ′(t )〉 ≡ Û †
0 (t, ti )|ψ (t )〉 = Ûc(t, ti )|ψi〉. (23)

Differentiating this state and its complex conjugate partner
with respect to time and then substituting the corresponding
results in Eq. (16) (and the corresponding complex conjugate
equation) leads to

i
d|ψ ′(t )〉

dt
= Ĥc(ti)|ψ ′(t )〉, (24a)

−i
d〈ψ ′(t )|

dt
= 〈ψ ′(t )|Ĥc(ti ). (24b)

Now if |ψi〉 is normalized, then |ψ ′(t )〉 is also normalized, as
it can readily be inferred from (23). Moreover, if we assume
that the control Hamiltonian generates a state vector that is
orthogonal to the original one (in compliance with the fact
that it has to counterbalance the effect of the “blowing wind”
accounted for with the bare Hamiltonian), then from (24) we
have

〈ψ ′(t )|d|ψ ′(t )〉
dt

= d〈ψ ′(t )|
dt

|ψ ′(t )〉 = 0. (25)

In order to satisfy both conditions, normalization and orthog-
onality, also from (24) we notice that Ĥc(ti ) has to display the
following functional form [24]:

Ĥc(ti) = i

[
d|ψ ′(t )〉

dt
〈ψ ′(t )| − |ψ ′(t )〉d〈ψ ′(t )|

dt

]
, (26)

where the right-hand side shows an explicit dependence on
time, although the Hamiltonian is time independent. Rather
than an inconsistency, this is just an effect associated with
the fact that this Hamiltonian has to counterbalance at every
time the effect produced by Ĥ0, although the net action is time
independent, as will be shown below.

Notice that the conditions on |ψ ′(t )〉 and its time derivative
imply that Ĥc(ti ) is traceless, i.e., tr(Ĥc(ti)) = 0. Moreover,
since the variance of the energy is related to the speed of the
quantum evolution [15], it can be shown that the orthogonality
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condition (25) ensures the maximum speed evolution condi-
tion for the control Hamiltonian, since it makes the variance
of this Hamiltonian, given by the expression

(�Ĥc(ti ))
2 = 〈ψ ′(t )|Ĥ2

c (ti)|ψ ′(t )〉 − (〈ψ ′(t )|Ĥc(ti )|ψ ′(t )〉)2

= d〈ψ ′(t )|
dt

(I − |ψ ′(t )〉〈ψ ′(t )|)d|ψ ′(t )〉
dt

=
∥∥∥∥dψ ′(t )

dt

∥∥∥∥
2

, (27)

to reach its maximum value. Actually, we have that

2(�Ĥc(ti ))
2 = tr

(
Ĥ2

c (ti)
) = k, (28)

which is a consequence of the fact that the control Hamilto-
nian is traceless [12,23].

From Eqs. (27) and (28), we find the following relation:

∥∥∥∥dψ ′(t )

dt

∥∥∥∥
2

= k

2
. (29)

At any time, this relation is satisfied by the ansatz

|ψ ′(t )〉 = cos[
√

k/2(t − ti )]|ψ ′(ti )〉

+ sin[
√

k/2(t − ti )]√
k/2

d|ψ ′(ti )〉
dt

, (30)

with time derivative given by

d|ψ ′(t )〉
dt

= −
√

k/2 sin[
√

k/2(t − ti )]|ψ ′(ti )〉

+ cos[
√

k/2(t − ti )]
d|ψ ′(ti )〉

dt
. (31)

This ansatz, in turn, satisfies the above normalization and
orthogonality conditions. Notice here that the expression
d|ψ ′(ti )〉/dt has to be understood as the time derivative of
|ψ ′(t )〉 evaluated at t = ti.

In order to further simplify the approach, the above ex-
pressions (30) and (31), in terms of the general time-evolved
state vector |ψ ′(t )〉, can be recast in terms of the initial and
final-state vectors, |ψi〉 and |ψ f 〉, thus also providing a simpler
functional form for the control Hamiltonian (26). To this end,
notice that by virtue of Eq. (23), at ti we have |ψ ′(ti )〉 = |ψi〉.
Similarly, at t f we find

Û †
0 (t f , ti )|ψ f 〉 = Ûc(t f , ti )|ψi〉 = |ψ ′(t f )〉 = |ψ ′

f 〉. (32)

In order to remove any common support between |ψ ′
f 〉 and

|ψi〉, we need to find the orthonormal form for the former,
which is obtained by applying a Gram-Schmidt orthogonal-
izing process. Accordingly, the orthonormal form is found to
be

|ψ̄ ′
f 〉 = (I − |ψi〉〈ψi|)|ψ ′

f 〉

= sin(
√

k/2�T )√
k/2

d|ψ ′(ti )〉
dt

, (33)

where Eq. (30) has been used, with t = t f . Next we normalize
|ψ̄ ′

f 〉:

| ¯̄ψ ′
f 〉 = 1

‖ψ̄ ′
f ‖

|ψ̄ ′
f 〉

= (I − |ψi〉〈ψi|)Û †
0 (t f , ti )|ψ f 〉√

1 − |〈ψ f |Û0(t f , ti )|ψi〉|2

= 1√
k/2

d|ψ ′(ti )〉
dt

. (34)

It can be noticed from Eq. (34) that the calculation of | ¯̄ψ ′
f 〉

only includes |ψi〉, |ψ f 〉, Ĥ0, and the time interval �T .
The ansatz (30) and its time derivative, Eq. (31), can now

be recast in terms of the orthonormal state vectors |ψi〉 and
| ¯̄ψ ′

f 〉, which read as

|ψ ′(t )〉 = cos[
√

k/2(t − ti )]|ψi〉
+ sin[

√
k/2(t − ti )]| ¯̄ψ ′

f 〉, (35a)

d|ψ ′(t )〉
dt

= −
√

k/2 sin(
√

k/2(t − ti ))|ψi〉

+
√

k/2 cos(
√

k/2(t − ti ))| ¯̄ψ ′
f 〉, (35b)

respectively.
In order to finally obtain the functional form of the control

Hamiltonian, we substitute Eqs. (35) into (26), leading to

Ĥc(ti) = i
√

k/2[| ¯̄ψ ′
f 〉〈ψi| − |ψi〉〈 ¯̄ψ ′

f |], (36)

which is the initial optimal control Hamiltonian. With the aid
of Eq. (35a), in the case t = t f , | ¯̄ψ ′

f 〉 can be recast in terms
of |ψ ′

f 〉 = |ψ ′(t f )〉. If the corresponding expression is then
substituted into Eq. (36), we shall obtain

Ĥc(ti) = i

√
k/2

sin(
√

k/2�T )
[|ψ ′

f 〉〈ψi| − |ψi〉〈ψ ′
f |], (37)

which is time independent, as it was stressed above. This is
precisely the expression reported by Brody et al. [12] for Ĥc

in the particular case k = 1. It can be shown now that the
variance of Ĥc(ti ) for any |ψ ′(t )〉 effectively remains constant
in time, that is, �Ĥc(ti ) =

√
〈ψ ′(t )|Ĥ2

c (ti )|ψ ′(t )〉 = √
k/2.

The expression of the optimal control Hamiltonian (36) can
be written in diagonal form as

Ĥc(ti ) = 1√
2

(|ψi〉 − i| ¯̄ψ ′
f 〉, |ψi〉 + i| ¯̄ψ ′

f 〉)

×
(−√

k/2 0
0

√
k/2

)
1√
2

(〈ψi| + i〈 ¯̄ψ ′
f |

〈ψi| − i〈 ¯̄ψ ′
f |

)
. (38)

With this expression at hand, Eq. (17) takes the explicit form

Ûc(t, ti )
1√
2

(|ψi〉 − i| ¯̄ψ ′
f 〉, |ψi〉 + i| ¯̄ψ ′

f 〉)

×
(

ei
√

k/2(t−ti ) 0
0 e−i

√
k/2(t−ti )

)
1√
2

(
〈ψi| + i〈 ¯̄ψ ′

f |
〈ψi| − i〈 ¯̄ψ ′

f |

)
. (39)

The time interval �T is then evaluated by considering the
transformation indicated in Eq. (32), i.e., the time operator
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Ûc(t f , ti ) that takes |ψi〉 to |ψ ′
f 〉 in the shortest time. As it can

be noticed in the above expression, the initial state vector |ψi〉
and the intermediate one |ψ ′

f 〉 are directly related by a phase
factor, with its argument providing a measure of their angular
distance. This angle arises from the overlapping integral be-
tween the final states led by the total Hamiltonian H , on the
one hand, and the bare Hamiltonian H0, on the other hand, and
reads as

φ ≡ cos−1(|〈ψi|Û †
0 (t f , ti )|ψ f 〉|)

= �T �Ĥc(ti )

=
√

k/2�T, (40)

in compliance with what is stated in the literature on the
geometry of the state vector evolution [15,25].

From the above discussion, we then extract as a conclu-
sion that in order to make the state vector to evolve in the
shortest time from |ψi〉 to |ψ f 〉, when there is the influence
of a background Hamiltonian Ĥ0, we need to determine the
time-optimal unitary transformation Û (t f , ti ), which includes
the following steps:

(1) Given Ĥ0, |ψi〉, |ψ f 〉, and k (the energy bound), com-
pute the time interval �T recursively by means of Eq. (40),
and the unitary transformation Û0(t f , ti ) by means of Eq. (12).

(2) With |ψi〉, |ψ f 〉, and Û0(t f , ti ), compute | ¯̄ψ ′
f 〉 by means

of Eq. (34).
(3) Compute Ûc(t f , ti ) using |ψi〉, | ¯̄ψ ′

f 〉, k, and �T , ac-
cording to Eq. (39).

(4) Using Û0(t f , ti ) and Ûc(t f , ti ), compute the time-
optimal quantum Zermelo unitary transformation, Û (t f , ti ),
according to Eq. (13).

This protocol will ensure that the unitary transformation
Û (t f , ti ) transforms |ψi〉 into |ψ f 〉 in the least time.

Before we move to the practical examples, let us briefly
comment on the adiabaticity of the quantum Zermelo Hamil-
tonian. At a fundamental level, it would be interesting to
establish a direct connection between the quantum Zermelo
navigation problem and optimal control theory [26], where
adiabaticity plays a key role as a technique to reach the target
by its continuous monitoring over long times. As it is shown
below, the Zermelo navigation problem belongs, by construc-
tion, to a different type of optimization scheme, reminiscence
of optimal control schemes related to the classical isoperi-
metric problem [27], and therefore adiabaticity does not arise
naturally.

As it can be noticed from the above discussion, Eq. (13) is
the solution of Eq. (6), where Û0(t, ti ) and Ûc(t, ti ) are given
by Eqs. (12) and (17), respectively. Therefore, unless Eq. (21)
is zero, then according to the Baker-Campbell-Hausdorff
formula,

Û (t, ti ) �= e−i[Ĥ0+Ĥc (ti )](t−ti ). (41)

This result implies that the solution to the quantum Zermelo
navigation problem does not define an adiabatic process in
general. To see this, let {φ j (ti )}N

j=1 denote the orthonormal set

of eigenfunctions of Ĥ (ti ) and {h j}N
j=1 the corresponding set

of eigenvalues, with N being the dimension of the space. The
eigenvalues h j are time independent, since tr(dĤ (t )/dt ) =

tr(dĤc(t )/dt ) = 0, as proven above. Now, the action of
Û (t, ti ) on an eigenfunction |φk (ti )〉 with eigenvalue hk gives

U (t, ti )φ j (ti ) �= φ j (t ), (42)

and therefore we conclude that 〈ψ (ti )|φk (ti )〉 �= 〈ψ (t )|φk (t )〉.
That is, if the system is initially represented by the wave func-
tion |ψ (ti )〉 = ∑

k ck (ti )|φk (ti)〉 where ck (ti ) = 〈φk (ti)|ψ (ti)〉,
then the probability that the system is in the stationary state
|φk (t )〉 at any time t is not constant, i.e., d

dt |〈ψ (t )|φk (t )〉|2 �=
0. This result proves that the dynamical transformation gov-
erned by Eq. (6) taking Û (t, ti ) as that given in Eq. (13) does
not define an adiabatic process [16,28,29].

III. APPLICATIONS

A. Harmonic oscillator

We shall start the application of the above-described pro-
tocol with the paradigmatic harmonic oscillator acted on by
an external field. In particular, we are going to consider a
two-level transition, which, for simplicity, is going to be con-
sidered to be the ground and the first excited one, which can
be denoted as

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, (43)

respectively. Let us consider the transition from the ground
state to the excited state, so that |ψi〉 = |0〉 and |ψ f 〉 = |1〉.
Of course, these states are under the action of the harmonic
oscillator Hamiltonian,

Ĥ0 = h̄ω
(
â†â + 1

2

)
, (44)

with frequency ω. So, in principle, if the system is isolated,
their only time dependence is in terms of a phase factor; if they
form a linear superposition, there will be a periodic transition
from one to the other, with frequency equal to the oscillator
frequency, since ε f − εi = h̄ω where ε f and εi are the energies
of states |1〉 and |0〉, respectively. Besides, it is interesting to
note that the creation and annihilation operators included in
Eq. (44), in terms of the states (43), can be written as

â = |0〉〈1| =
(

0 1
0 0

)
, â† = |1〉〈0| =

(
0 0
1 0

)
. (45)

The minimum control time is �T = π/
√

2k, and the con-
trol Hamiltonian in Eq. (37) can be written as

Ĥc(ti ) = i

√
k

2
[e−3π ih̄ω/2

√
2kâ† − e3π ih̄ω/2

√
2kâ]

= i

√
k

2
cos

(
3π h̄ω

2
√

2k

)
(â† − â)

+
√

k

2
sin

(
3π h̄ω

2
√

2k

)
(â† + â). (46)

In order for this Hamiltonian to be assimilated by a standard
external driving force, one needs to check the following con-
dition:

Ĥc(ti ) = −
√

h̄

2ω
(â† + â)E0, (47)
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where E0 is the amplitude of the external electric driving field.
A simple inspection allows us to realize that the above equa-
tion is fulfilled only if cos(3π h̄ω/2

√
2k) = 0, which leads to

the conclusion

k = (3/2h̄ω)2

2(n + 1/2)2
= ε2

f

2(n + 1/2)2
, (48)

with n ∈ Z.
Therefore, given a frequency ω, the maximum k is given

by

k = 2ε2
f , (49)

which corresponds to the minimum control time

�T = π

2|ε f | . (50)

As it will be seen below, these results are in compliance
with those for the Heisenberg spin dimer, thus paving the way
to intuitively consider that there might an underlying common
pattern for any quantum system in the form of k that provides
a physical (implementable) control.

B. Entanglement swapping

Let us now consider entanglement swapping with max-
imally entangled states of a Bell basis [30–32], where the
two entangled qubits are assumed to be spatially distant, a
paradigm with special interest in quantum information and
quantum computation [33,34]. More specifically, here we
consider two spins, σ̂ (1) and σ̂ (2), interacting via anisotropic
time-independent Jj couplings, with ( j = x, y, z), under the
effect of local, uniform, and controllable magnetic fields
B(i)(t ), with (i = 1, 2), pointing along the z direction. Thus
we choose to consider the following two-qubit Heisenberg
Hamiltonian [23],

Ĥ = −
∑

j

J j σ̂
(1)
j σ̂

(2)
j +

2∑
i=1

B(i)σ̂ (i)
z , (51)

to be the quantum Zermelo Hamiltonian Ĥ (t ). Here we use
the tensor products σ̂

(1)
j = σ̂ j ⊗ I and σ̂

(2)
j = I ⊗ σ̂ j , with I

being the unit operator of dimension 2 × 2 and σ̂
(i)
j the Pauli

matrices [16].
A simpler ansatz for Ĥ was already reported in Ref. [35],

where only a fixed coupling, J , was considered. Here we are
going to associate the first term in Eq. (51) with the non-
controlled, time-independent background Hamiltonian Ĥ0 and
the second term with the time-dependent control Hamiltonian
Ĥc(t ), satisfying the energy resource bound, tr(Ĥ2

c (t )) = k.
In this case, the computational basis set is provided by the
following factorizable state vectors:∣∣00〉 =

(
1
0

)
⊗

(
1
0

)
= (1 0 0 0)�, (52a)

∣∣01〉 =
(

1
0

)
⊗

(
0
1

)
= (0 1 0 0)�, (52b)

∣∣10〉 =
(

0
1

)
⊗

(
1
0

)
= (0 0 1 0)�, (52c)

∣∣11〉 =
(

0
1

)
⊗

(
0
1

)
= (0 0 0 1)�. (52d)

In this basis, Ĥ0 reads as [23]

Ĥ0 =

⎛
⎜⎝

−Jz 0 0 −J−
0 Jz −J+ 0
0 −J+ Jz 0

−J− 0 0 −Jz

⎞
⎟⎠, (53)

where J± = Jx ± Jy. The diagonal form for Ĥ0 is

Ĥ0 = −(Jz + J−)|
+〉〈
+| − (Jz − J−)|
−〉〈
−|
+(Jz − J+)|
+〉〈
+| + (Jz + J+)|
−〉〈
−|, (54)

which allows us to rearrange the above basis set in terms of
the Bell basis of maximally entangled states, namely,

|
+〉 = 1√
2

(|00〉 + |11〉), (55a)

|
−〉 = 1√
2

(|00〉 − |11〉), (55b)

|
+〉 = 1√
2

(|01〉 + |10〉), (55c)

|
−〉 = 1√
2

(|01〉 − |10〉). (55d)

Now the question is how to reach one of these basis vectors
from another of them, for instance, the |ψ f 〉 = |
−〉 state
from the |ψi〉 = |
+〉 state, in the shortest time using the
optimal-time Zermelo unitary transformation, Eq. (13).

The first term of the unitary time transformation Eq. (13),
namely, Û0(t, ti ), is easily obtained from the spectral decom-
position of Ĥ0 given in Eq. (54):

Û0(t, ti ) = ei(Jz+J− )�t |
+〉〈
+| + ei(Jz−J− )�t |
−〉〈
−|
+ e−i(Jz−J+ )�t |
+〉〈
+| + e−i(Jz+J+ )�t |
−〉〈
−|,

(56)

with �t = t − ti. The calculation of the second term of
Eq. (13), Ûc(t ), is a bit more subtle. As mentioned above,
we are interested in the transformation of |
+〉 into |
−〉 via
the unitary transformation |
−〉 = Û0(t, ti )Ûc(t, ti )|
+〉 in the
shortest time possible. As explained above, in the previous
section, Ûc(t, ti ) transforms |
+〉 into Û †

0 (t, ti )|
−〉 = |
′
−〉

[see Eq. (23)]. Accordingly, in the present case, |
′
−〉 =

|
−〉 exp[i(Jz − J−)�t], where we have made use of (56). The
intermediate state |
′

−〉 satisfies the relations 〈
′
−|
′

−〉 = 1
and 〈
′

−|
+〉 = 0, and hence Ĥc(ti) will have the functional
form

Ĥc(ti ) = i
√

k/2(|
′
−m〉〈
+| − |
+〉〈
′

−m|)
= i

√
k/2[ei(Jz−J− )�T |
−〉〈
+|

− e−i(Jz−J− )�T |
+〉〈
−|], (57)

where as noted before, �T = t f − ti is the minimum time
interval to be determined, and |
′

−m〉 = |
′
−〉 for �t = �T .

The next task consists in transforming the Ĥc(t ) form spec-
ified in the second term of Eq. (51) into the Ĥc(ti ) form of
Eq. (57), as it was also done in the case of the harmonic
oscillator. In the basis set (52), the control Hamiltonian Ĥc(t )
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reads as

Ĥc(t ) =

⎛
⎜⎜⎜⎝

B+ 0 0 0

0 B− 0 0

0 0 −B− 0

0 0 0 −B+

⎞
⎟⎟⎟⎠, (58)

where B± = B(1) ± B(2) (the time dependence in B(1) and
B(2) has been dropped for simplicity). As it can be noticed,
tr(Ĥc(t )) = 0, but tr(Ĥ2

c (t )) is not constant in time because the
Ĥc(t ) form in Eq. (58) does not involve time unitarity. Hence
next we have to transform the Ĥc(t ) in Eq. (58) into the form
given by Eq. (19) with an appropriate choice of Ĥc(ti ), ac-
cording to Eq. (36). The projection of Hc(ti ) given by Eq. (36)
onto the subspace spanned by |ψi〉 and | ¯̄ψ ′

f 〉 results in two van-
ishing diagonal elements and two off-diagonal elements with
zero real part, where their imaginary part is equal to

√
k/2.

Analogously, we project the Ĥc(t ) from Eq. (57) onto the sub-
space spanned by |
+〉 and |
′

−m〉. In this new representation,
we have

〈
+|Ĥc(t )|
+〉 = 〈
′
−m|Ĥc(t )|
′

−m〉 = 0, (59)

whereas

〈
′
−m|Ĥc(t )|
+〉
= B+ei(Jz−J− )�T

= B+ cos [(Jz − J−)�T ] + i sin [(Jz − J−)�T ], (60)

where, effectively, we notice

Re〈
′
−m|Ĥc(t )|
+〉 = B+ cos [(Jz − J−)�T ] = 0,

(61a)

Im〈
′
−m|Ĥc(t )|
+〉 = B+ sin [(Jz − J−)�T ] =

√
k/2.

(61b)

On the other hand, from Eq. (40),

cos−1(〈
+|
′
−m〉) = π/2 = �T

√
k/2, (62)

which renders

�T = π√
k/2

. (63)

Substituting the value �T into the real part, we have√
k/2 = Jz − J−, while if the substitution is made into the

imaginary part, then B+ = √
k/2, since B+ �= 0. Further-

more, the control variable B+ decouples from the others,
namely, B+ = B0+ cos[2(μt + ν)], where B0+, μ, and ν are
time-independent constants. Taking μ = ν = 0, B0+ = Jz −
J− = √

k/2, and �T = (π/2)(Jz − J−)−1 = (π/2)(B0+)−1,
we reach the final form for Ĥc(ti ), which reads as

Ĥc(ti ) = B0+(|
−〉〈
+| + |
+〉〈
−|)
= B0+(|�+〉〈�+| − |�−〉〈�−|)
= B0+

2
(σ̂z ⊗ I + I ⊗ σ̂z )

= B0+
2

(
σ̂ (1)

z + σ̂ (2)
z

)
, (64)

where |�+〉 = (|
+〉 + |
−〉)/
√

2 and |�−〉 = (|
+〉 −
|
−〉)/

√
2. With this, the corresponding unitary transforma-

tion is given by

Ûc(t, ti ) = e−iB0+�t |�+〉〈�+| + eiB0+�t |�−〉〈�−|. (65)

Finally, using Eqs. (56) and (65), we obtain the time-optimal
quantum Zermelo unitary transformation that leads the Bell
basis vector |
+〉 into |
−〉, namely,

|
−〉 = Ûz(t, ti )|
+〉 = Û0(t, ti )Ûc(t, ti )|
+〉
= 1

2 (ei(Jz+J− )�t |
+〉[e−iB0+�t + eiB0+�t ]

+ ei(Jz−J− )�t |
−〉[e−iB0+�t − eiB0+�t ]) (66)

with 0 � �t � �T . As it can be noticed, once the journey is
complete, i.e., �t = �T , the Bell state |
−〉 is reached.

It is worth noting that in the basis set (55), the quantum
Zermelo Hamiltonian acquires the form

Ĥz(ti ) = Ĥ0 + Ĥc(ti )

= −(Jz + J−)|
+〉〈
+|−(Jz − J−)|
−〉〈
−| + (Jz − J+)|
+〉〈
+|+(Jz + J+)|
−〉〈
−|+B0+[|
−〉〈
+| + |
+〉〈
−|]

= (|
+〉, |
−〉, |
+〉, |
−〉)

⎛
⎜⎝

−(Jz + J−) B0+ 0 0
B0+ −(Jz − J−) 0 0

0 0 (Jz − J+) 0
0 0 0 (Jz + J+)

⎞
⎟⎠

⎛
⎜⎜⎝

〈
+|
〈
−|
〈
+|
〈
−|

⎞
⎟⎟⎠. (67)

This Hamiltonian has been obtained using Ĥ0 and Ĥc(ti ), as
given by Eqs. (54) and (64), respectively. Notice that B0+ =
(Jz − J−), as it has been proven and explained above. The
eigenvectors (67) can also be computed and read as

v�
1 = 1

N1
(α − β, 1, 0, 0), (68a)

v�
2 = 1

N2
(α + β, 1, 0, 0), (68b)

v�
3 = (0, 0, 1, 0), (68c)

v�
4 = (0, 0, 0, 1), (68d)

where α = −J−/B0+ and β = √
α2 + 1, while N1 =√

(α − β )2 + 1 and N2 =
√

(α + β )2 + 1 are norm factors.
The corresponding eigenvalues are

h(1)
z = −Jz − B0+β, (69a)

h(2)
z = −Jz + B0+β, (69b)
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h(3)
z = Jz − J+, (69c)

h(4)
z = Jz + J+. (69d)

Thus in the quantum Zermelo Hamiltonian, the set of
eigenvalues and eigenvectors are time independent as ex-
pected.

C. Spin-flip in a Heisenberg dimer

In Sec. III B we have assumed the functional form of a
Zeeman coupling for the control Hamiltonian, even though the
algorithm presented in Sec. II does not assume any particular
form for this Hamiltonian. One may then wonder what would
be the resulting control Hamiltonian if its form is not imposed
a priori.

Let us thus consider that the initial and final states, |ψi〉 and
|ψ f 〉, respectively, are orthonormal. It is then easy to notice
that Eq. (40) reads as

�T = π√
2k

, (70)

i.e., the time needed to reach a target state is inversely propor-
tional to the square root of k. Actually, since k is related to
energy, this relation is just a reminiscence of the time-energy
uncertainty relation: the larger the amount of energy put into
play to optimally guide the vector state to its final destination,
the shorter the time employed in the journey, and vice versa.
Now, given �T , it is then easy to find a general expression for
the control Hamiltonian Hc(ti), as seen in Sec. II,

Hc(ti ) = i

√
k

2
(eπ iε f /

√
2k|ψ f 〉〈ψi| − |ψi〉〈ψ f |e−π iε f /

√
2k ),

(71)

where ε f is the energy of the final state |ψ f 〉.
To gain some insight into the structure of the above control

Hamiltonian, we pick up the particular case considered in the
previous section, viz., the case where initial and final states are
maximally entangled Bell states. Thus, with the choice |ψi〉 =
|
+〉 and |ψ f 〉 = |
−〉, and hence ε f = −Jz + J−, we have

|
+〉〈
−| = 1

4

(
σ̂ (1)

z + σ̂ (2)
z

) − i

4
(σ̂x ⊗ σ̂y + σ̂y ⊗ σ̂x ),

(72a)

|
−〉〈
+| = 1

4

(
σ̂ (1)

z + σ̂ (2)
z

) + i

4
(σ̂x ⊗ σ̂y + σ̂y ⊗ σ̂x ).

(72b)

Substituting these expressions into the control Hamiltonian
(71), we finally obtain

Hc(ti ) = 1

2

√
k

2

[
sin

(
ε f

π√
2k

)(
σ̂ (1)

z + σ̂ (2)
z

)

− cos

(
ε f

π√
2k

)
(σ̂x ⊗ σ̂y + σ̂y ⊗ σ̂x )

]
. (73)

From Eq. (73) it is clear that the control Hamiltonian
adopts the form of a Zeeman coupling for some particular
k values, and hence it can be implemented in the laboratory.

FIG. 1. Schematic picture of the paddle-wheel centrosymmetric
molecular complex Cu2(O2CCH3)4 · 2H2O for the crystal structure
of copper(II) acetate monohydrate.

More specifically, this is the case when the condition

k = ε2
f

2(n + 1/2)2 = (Jz − J−)2

2(n + 1/2)2 (74)

is satisfied, with n ∈ Z. Accordingly, given Jz, the maximum
k value is determined from the relation

k = 2ε2
f = 2(Jz − J−)2, (75)

which corresponds to the minimum control time,

�T = π

2|ε f | = π

2|Jz − J−| , (76)

as it follows from (70).

D. The Cu(II) acetate molecular complex

As a realistic application of the time-optimal quantum
Zermelo navigation, we consider the copper(II) acetate mono-
hydrate. This complex corresponds to an antiferromagnetic
coupled Heisenberg spin dimer with effective spins S1 = S2 =
1/2. As such, this system can be cast in the form of an
interacting two-qubit described by a Heisenberg spin dimer as
in the previous section. Our goal is to find the optimal time for
the transition between two maximally entangled (Bell) states
to occur for a physically implementable control Hamiltonian
in the form of a Zeeman coupling.

The crystal structure of copper(II) acetate monohydrate,
Cu2(O2CCH3)4 · 2H2O, has been determined by x-ray powder
diffraction [36] and refined by neutron diffraction at room
temperature [37]. The crystal is formed by well-defined and
separated molecular entities, as displayed in Fig. 1. This com-
plex has a paddle-wheel centrosymmetric structure with two
equivalent Cu(II) centers at 2.6143 Å.

Abragam and Bleaney [38] (see p. 503) provide a detailed
analysis of the magnetic interaction in this classical Cu(II)
dinuclear antiferromagnetic complex by assuming the follow-
ing magnetic Hamiltonian for the isolated dimer of identical
spins:

Ĥ = gzμBHz
[
Ŝ(1)

z + Ŝ(2)
z

] + JxŜ(1)
x Ŝ(2)

x

+ JyŜ(1)
y Ŝ(2)

y + JzŜ
(1)
z Ŝ(2)

z , (77)
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where gz corresponds to the z component of the g tensor of the
magnetic centers having the same principal axes (x, y, z), and
Hz represents the external magnetic field directed along one
of these principal axes (taken here as the z axis). It can then
be shown that for this molecular complex, the experimental
values of the parameters of the spin Hamiltonian in Eq. (77)
take the following values: gz = 2.43, Jx = 297.793 cm−1,
Jy = 297.753 cm−1, and Jz = 298.453 cm−1. To cast these
values in the Heisenberg spin Hamiltonian for the dimer given
in Eq. (51), we have to take into account the relation be-
tween Pauli matrices σ̂

(i)
j and the corresponding spin operators

Ŝ(i)
j . In this case, these Ji values have to be divided by −4

and B(i) = g(i)
z μBH (i)

z /4 in SI units. Then, with the choice
of |ψi〉 = |
+〉 and |ψ f 〉 = |
−〉, and hence ε f = −Jz +
J−, the maximum value of k compatible with a Zeeman-
type coupling of the form in Eq. (77) is k = 2ε2

f = 2(Jz −
J−)2 ∼ 2Jz, and the minimum control time corresponds
to �T ∼ 0.2 ps.

IV. CONCLUSIONS

Given the actual position of a classical particle under the
action of a given time-independent force field, there exists an
optimal control velocity that, acting constantly on the particle,
allows it to reach another position of interest in the least possi-
ble time. This problem, known as Zermelo navigation problem
[9,10], can be recast in the realm of quantum mechanics by
simply substituting the classical particle by a quantum state.
In this context, a time-independent Hamiltonian plays the role
of the underlying classical force field, and a time-dependent
control Hamiltonian with constant energy resource bound is
analogous to the control velocity in the classical navigation
problem. A first solution to the above quantum Zermelo
problem was put forth by Russell and Stepney [13,14] and
Brody et al. [11,12] for a particular energy resource bound.
Here we have extended this result for general energy resource
bounds.

From a fundamental point of view, the solution to the
quantum Zermelo problem defines a pair of conjugate vari-
ables, viz., the energy resource bound and the control time,
that minimize the energy-time uncertainty. While the time-
energy uncertainty relation still arouses controversy, in recent
decades there have been several attempts towards its explana-
tion. This effort has led to the interpretation of the time-energy
uncertainty relation as a so-called quantum speed limit, i.e.,
the ultimate bound imposed by quantum mechanics on the
minimal evolution time between two distinguishable states of
a system (see, for instance, the discussion in Ref. [12], in di-
rect connection to the quantum Zermelo navigation problem,
or the more recent one [39], as well as references therein).

Therefore the solution to the quantum Zermelo problem at-
tains the quantum speed limit for any energy resource bound.

In the above respect, however, we have proven that the
solution of the quantum navigation problem does not always
lead to physically implementable control Hamiltonians. For a
single qubit and two interacting qubits, we have shown that
energy resources leading to physically implementable con-
trol Hamiltonians are not singular but follow a well-defined
mathematical pattern. Specifically, for orthogonal initial and
target states, the resource energy bound of a physically imple-
mentable control Hamiltonians does obey a quantization rule
that depends exclusively on the energy of the target state.

As a realistic application of the time-optimal quantum
Zermelo navigation, we have shown results for an acetate
molecular complex. The magnetic behavior of copper(II) ac-
etate monohydrate corresponds to an antiferromagnetic (S1 =
S2 = 1/2) coupled spin dimer. As such, this system can be
cast in the form of an interacting two-qubit described by
a dimer Heisenberg spin chain. By employing available ex-
perimental data we have evaluated the optimal time for the
transition between two maximally entangled (Bell) states to
occur. For a physically implementable control Hamiltonian in
the form of a Zeeman coupling, this time is of the order of a
few femtoseconds.

Finally, we have also shown that the evolution governed
by the Zermelo control Hamiltonian is not adiabatic in gen-
eral. That is, for an initial state described by a superposition
of eigenstates of the full (underlying plus control) Zermelo
Hamiltonian, the time evolution governed by the Schrödinger
equation will not keep constant the population of the system
in a given instantaneous eigenstate of the time-dependent Zer-
melo Hamiltonian.
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