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Quantum damping of skyrmion crystal eigenmodes due to spontaneous quasiparticle decay
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Skyrmion crystals support chiral magnonic edge states akin to electronic quantum Hall edge states. However,
magnonic topology relies on the harmonic approximation, neglecting ubiquitous magnon-magnon interactions
that yield a finite zero-temperature quantum damping. We demonstrate that spontaneous quasiparticle decay in
two-dimensional ferromagnetic skyrmion crystals is a delicate issue, with the quantum damping ranging over
several orders of magnitude. Flat magnon bands cause exceptionally strong spontaneous decay at twice their
energy. The resulting externally controllable energy-selective magnon breakdown is measurable not only by
scattering but also by magnetic resonance experiments, probing the magnetically active anticlockwise, breathing,
and clockwise modes. They exhibit distinct decay behavior, with the clockwise (anticlockwise) mode being the
least (most) stable mode out of the three. The quantum damping of the topologically nontrivial anticlockwise
mode is negligible, establishing the harmonic theory as a trustworthy approximation at low energies, implying
excellent prospects of topological magnonics in skyrmion crystals.
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I. INTRODUCTION

Magnetic skyrmion crystals (SkXs), as depicted in Fig. 1,
are attracting much attention. These arrays of topologically
nontrivial magnetic whirls appear in bulk, multilayers, and
thin films, at elevated and zero temperature, in metals and
insulators [1–18]. Besides numerous fundamental discover-
ies [19–28], they have spawned visions of future spintronic
[29–31], logic [32–37], quantum information [38–40], and
magnonic applications [41–53]. The three magnetically active
SkX eigenmodes, associated with an anticlockwise, breath-
ing, or clockwise motion of the skyrmion core [23], belong
to the three lowest topologically nontrivial magnon bands
[44,48,52], supporting chiral edge magnons [54–56], akin
to electronic quantum Hall edge states. Since these chiral
edge magnons are innately free of Joule heating, immune
to backscattering, and robust against considerable disor-
der, they are proposed as “information highways” in the
field of topological magnonics [57]. However, such fun-
damental physics reveals itself only at low temperatures,
necessitating pushing the frontiers of skyrmionics to the ul-
traquantum regime, a trend that began only recently [58–72].
Importantly, even at zero temperature, interactions between
magnons are not frozen out and spontaneous quasiparti-
cle decay (SQD) [73–110], as sketched in Fig. 1, dresses
magnons with intrinsic lifetimes, potentially spoiling the con-
cept of topological magnonics, which relies on the harmonic
approximation.
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Herein we explore the many-body quantum physics of
magnons in two-dimensional ferromagnetic SkXs and estab-
lish them as materials of extremes. Some magnon bands are
flat akin to Landau levels, giving rise to sharp peaks in the
density of states (DOS) of the two-magnon continuum, into
which single magnons decay. Manipulating these peaks by
a magnetic field allows for a field-tunable energy-selective
magnon breakdown detectable by scattering or absorption
experiments. We reveal that the anticlockwise (clockwise)
mode is the most (least) stable out of the three magnetically
active modes. Even for ultrasmall skyrmions, the damping of
the topologically nontrivial anticlockwise mode is negligible,
establishing excellent prospects of low-energy topological
magnonics in SkXs.

FIG. 1. Sketch of spontaneous magnon decay in a Néel skyrmion
crystal sheet. Arrows in the background indicate the magnetic texture
of the SkX, with color indicating the in-plane component of the tex-
ture. White spheres and wavy lines indicate propagating magnons. A
magnon incoming from the left spontaneously decays into two other
magnons. This number nonconserving process is brought about by
the noncollinear texture and gives rise to a zero-temperature quantum
damping of the SkX’s eigenmodes.
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II. THEORY

Interacting spins Ŝr, localized at lattice sites with posi-
tion vector r, are effectively described by spin Hamiltonians
Ĥ = 1

2

∑
r,r′ Ŝr · Ir,r′ · Ŝr′ + b

∑
r Ŝz

r , with interaction matri-
ces Ir,r′ and a Zeeman energy due to magnetic field b.
The classical ground state of Ĥ , obtained by treating the
Ŝr’s as classical vectors Sr in R3, defines local reference
frames {ex

r , ey
r, ez

r}, with ez
r along the classical ground-state

direction. Excitations above this ground state are captured
by the Holstein-Primakoff transformation [111] to bosons
â(†)

r : Ŝr = √
S( f̂râre−

r + â†
r f̂re+

r ) + (S − â†
r âr)ez

r, with e±
r =

(ex
r ± iey

r )/
√

2 and spin length S. Expanding f̂r = (1 −
â†

r âr/2S)1/2 in powers of 1/S leads to Ĥ = ∑∞
t=0 Ĥt , where

Ĥt ∝ O(S2−t/2) includes bosonic operators to the t th power.
Sub-Hamiltonian Ĥ0 gives the classical ground-state en-
ergy, Ĥ1 vanishes if the magnetic texture is stable, Ĥ2

describes free magnons, and Ĥt>2 denotes interactions. In par-
ticular, Ĥ3 comprises number nonconserving three-magnon
interactions.

Often, however, linear spin-wave theory (Ĥ2) is sufficient
because the single-particle sector is disconnected from many-
particle sectors in one of the following limits: (1) classical
spins S → ∞ because interactions cause at least 1/S cor-
rections to the spectrum, (2) low temperatures T that freeze
out thermally activated interactions, or (3) large fields b that
polarize the magnet and energetically separate the m-magnon
manifolds, whose energies grow with mb (m = 1, 2, . . .).

Intriguingly, none of the above limits is applicable to SkXs.
(1) Flat bands cause decay singularities at twice their energy,
only regularized at the same 1/S order that introduces damp-
ing in the first place. Thus, there is no 1/S smallness in the
damping and large remnants of quantum effects in effectively
classical spin systems are expected, an effect otherwise known
from kagome antiferromagnets [98,99]. (2) Three-magnon in-
teractions (Ĥ3) cause spontaneous decay even at T = 0 [95].
(3) Field polarization destroys the SkX and cannot be used.

This prima facie case for studying magnon-magnon in-
teractions in SkXs calls for a nonlinear spin-wave theory of
chiral magnets. Here we consider a two-dimensional chiral
magnet on the triangular lattice (in the xy plane) with lattice
constant a. Its interaction matrices with elements (Ir,r′ )mn =
−Jδmn + εmnpDp

r,r′ (δmn and εmnp are the Kronecker delta
and the Levi-Civita symbol, respectively) include isotropic
symmetric ferromagnetic exchange J > 0 and antisymmet-
ric exchange denoted by a Dzyaloshinskii-Moriya (DM)
[112,113] vector Dr,r′ = Dez × er,r′ of length D that complies
with interfacial inversion symmetry breaking [114,115]; ez is a
unit vector in the z direction and er,r′ one in the bond direction.

For D �= 0 and b = 0, the ground-state spin spiral has a
pitch of λ ≈ √

3πaarctan−1(
√

3D/2J ) (see Appendix A 1).
Once b > bc,1 ≈ 0.2D2/J [116], a Néel SkX forms. A com-
mensurate SkX with λ = Ma (M an integer) and N =
M2 spins per magnetic unit cell is obtained for D/J ≈
tan(2π/M ). Field polarization is reached at b > bc,2 ≈
0.8D2/J [116].

Numerically, we proceed as follows. We choose M, com-
pute D and J , and equilibrate a random spin configuration
at T = 0. We obtain the single-particle energies εk,ν by di-
agonalizing Ĥ2 in terms of normal mode bosons b̂(†)

k,ν
, where

ν = 1, . . . , N is the band index and k the crystal momentum
(see Appendix A 2). The cubic decay processes, within which
a magnon in state (p, ν) decays into two magnons in states
(k, λ) and (q, μ), respectively, read (see Appendix A 2)

Ĥd
3 =

√
S√

Nu

∑
λ,μ,ν

p=k+q∑
k,q,p

(
1

2!1!
Vλμ←ν

k,q←pb̂†
k,λ

b̂†
q,μb̂p,ν + H.c.

)
(1)

(Nu the number of unit cells). The vertex Vλμ←ν

k,q←p comprises
the interaction strength and the Hermitian conjugate part a
magnon coalescence.

To account for Ĥ3, we perform second-order many-body
perturbation theory. Concentrating on dynamical 1/S cor-
rections to the spectrum, we approximate the single-particle
Green’s function by G−1

k,ν
(ε) ≈ ε − εk,ν + i�k,ν , from which

we obtain the spectral function Ak,ν (ε) ≈ −ImGk,ν (ε)/π of
band ν. Evaluating single-bubble diagrams within the on-shell
approximation, we derive the spontaneous zero-temperature
damping (see Appendix A 3)

�
spon
k,ν

= π

2Nu

∑
q

∑
λ,μ

∣∣Vλμ←ν

q,k−q←k

∣∣2δ(εk,ν − εq,λ − εk−q,μ).

(2)

III. RESULTS

First, we review the results of harmonic theory [44,48,52].
Figures 2(a)–2(c) show the dispersion of the lowest free-
magnon bands εk,ν of an M = 8 SkX dependent on b (D/J =
1). We identify flat modes that derive from single-skyrmion
modes associated with an lth-order polygon deformation in
real space [117] [l = 2, elliptic (E); l = 3, triangular (T);
l = 4, quadrupolar (Q); l = 5, pentagonal mode (P); etc.].
Moreover, there are dispersive modes, the lowest four of
which coincide with the gyrotropic (G), anticlockwise (A),
breathing (B), and clockwise (C) modes, respectively, at the
Brillouin zone center [48,52] [cf. labels in Fig. 2(d)]. The G
mode derives from the translational l = 1 mode of a single
skyrmion [118]. The A, B, and C modes carry a nontrivial
Chern number and support chiral edge magnons [44,48,52].

The color of the bands in Figs. 2(a)–2(c) indicates the
magnonic out-of-plane magnetic moment μk,ν = −∂εk,ν/∂b.
A positive (negative) μk,ν means that an increasing field
shifts the modes towards lower (higher) energies. Flat modes
carry large negative μk,ν because of additional angular mo-
mentum associated with l . Hence, upon increasing the field,
they overtake the dispersive modes, which strongly influences
SQD. To see so, note that �

spon
k,ν

is a weighted two-magnon
DOSD2m

k (ε) = 1
Nu

∑
q

∑
λ,μ δ(ε − εq,λ − εk−q,μ) at ε = εk,ν .

In Figs. 2(d)–2(f) the εk,ν’s are overlaid with colormaps that
showD2m

k (ε). Besides extended regions of moderateD2m
k (ε),

several horizontal features, i.e., sharp yellow lines, at twice
the energy (or at the sum of two energies) of flat modes are
identified. If a single-magnon branch crosses a region of large
D2m

k (ε), it is “in resonance” with flat modes and the kinemat-
ically allowed phase space for SQD, i.e., the number of decay
channels that fulfill both energy and momentum conservation,
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FIG. 2. Low-energy portion of the M = 8 SkX magnon spectrum
dependent on magnetic field b. (a)–(c) Single-particle magnon ener-
gies εk,ν , whose blue/gray/red color encodes negative/zero/positive
magnetic moment μk,ν . (d)–(f) Two-magnon DOS D2m

k (ε) (blue,
zero; yellow, maximal), with red arrows indicating selected points
where εk,ν (white lines) crosses regions of large D2m

k (ε). (g)–(i)
Spectral function Ak(ε) for S = 1, with sharp yellow/broad blue
quasiparticle peaks indicating undamped/damped magnons. Strong
damping is found for the crossing points (red arrows).

is particularly large. Selected instances of such crossings are
marked by red arrows and pronounced �

spon
k,ν

is expected.
We confirm this prediction by calculating �

spon
k,ν

and

Ak(ε) = ∑N
ν=1 Ak,ν (ε), the latter of which is shown in

Figs. 2(g)–2(i). Stable magnons appear as sharp yellow quasi-
particle peaks, while strongly damped magnons experience
considerable lifetime broadening (broad blue features). For
example, consider the regions of pronounced damping marked
by red arrows in Fig. 2(g), which can be traced back to
D2m

k (ε) in Fig. 2(d). These flat-band resonances can be so
large that the spectral weight is almost completely wiped out,
as exemplified by the pentagonal l = 5 mode at b/JS = 0.5

anticlockw
ise

anticlockwise

FIG. 3. Magnon decay at the Brillouin zone center (k = 0) of
an M = 8 SkX dependent on magnetic field b. (a) Two-magnon
DOS D2m

0 (ε) (blue, zero; yellow, maximal), with red arrows in-
dicating selected points where the eigenmode energies ε0,ν (white
lines) cross regions of large D2m

0 (ε). (b) Spectral function A0(ε) for
S = 1, with sharp yellow/broad blue quasiparticle peaks indicating
undamped/damped magnons. Strong damping is found for the cross-
ing points (red arrows). (c) Spontaneous damping �

spon
0,ν of the three

magnetically active modes reveals that the clockwise (anticlockwise)
mode is the least (most) stable.

in Figs. 2(b), 2(e), and 2(h) (cf. the upper right red arrow).
However, a slight magnetic-field detuning of the resonance
condition leads to a reappearing quasiparticle peak. To con-
firm so, see Appendix B 1.

Besides flat-mode resonances, one identifies several re-
gions with large damping but moderate D2m

k (ε), associated
with decays into (at least) one dispersive mode. As an exam-
ple, consider the C mode in Fig. 2(h), indicated by the green
arrow. Its strong damping is not related to a particularly large
D2m

k (ε) in Fig. 2(e). This mechanism is the prime cause of
high-energy magnon damping in Figs. 2(g)–2(i), reflecting the
abundance of kinematically allowed decay channels.

Since all decay channels that contain at least one flat
mode as decay product exhibit a strong field dependence, the
SQD is field tunable and highly energy selective, which sets
SkXs apart from other SQD platforms. This finding can be
confirmed by inelastic neutron or resonant x-ray-scattering
experiments, which measure the dynamical structure factor
[119]. A rich magnetic-field dependence of linewidths is ex-
pected. To pursue this thought further, we continue with an
analysis of uniform excitations (k = 0), which can even be
studied by absorption experiments [120–123]. For the mag-
netic field normal to the SkX, only the ABC modes are active
[23]. However, inclined fields admit additional active modes
[124].
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FIG. 4. Decay channel analysis of an M = 8 SkX at b/JS = 0.5 and k = 0. Histograms show the decay amplitude Cλμ←ν for λ, μ =
1, . . . , 10 and (a) ν = 3, anticlockwise mode (A); (b) ν = 5, breathing mode (B); and (c) ν = 6, clockwise mode (C). The histograms are
symmetric due to decay product symmetry (λ ↔ μ; cf. Appendix A 2). Red squares indicate the subsection of decay channels that could, in
principle, fulfill energy conservation. By comparing the amplitudes of these channels between the three modes, the clockwise (anticlockwise)
mode is found to interact strongly (weakly) with other modes. This explains the two order of magnitude difference in the damping [cf. Fig. 3(c)].

Figure 3(a) shows D2m
0 (ε) dependent on b. Again, strong

damping is found when ε0,ν crosses a region of large
D2m

0 (ε). Several such encounters are highlighted by red ar-
rows, from which a rich structure of strong quasiparticle
peak broadening is expected. Indeed, A0(ε) in Fig. 3(b) re-
veals that high-energy magnons exhibit field intervals within
which their quasiparticle peak disappears and reappears. In
contrast, low-energy magnons exhibit negligible quantum
damping.

There are considerable differences in damping between the
ABC modes [cf. Fig. 3(c)]. The SQD is particularly strong for
the C mode, whose damping (�0.2J) is on par with frustrated
quantum antiferromagnets [84,88,95]. In contrast, the damp-
ing of the B (A) mode is a factor of 10 (100) smaller. These
differences cannot solely be explained in terms ofD2m

0 (ε) but
must be looked for inVλμ←ν

k,q←p.
We analyze each decay channel ν → (λ,μ) by measuring

its integrated decay amplitude Cλμ←ν ≡ 1
Nu

∑
q |Vλμ←ν

q,−q←0|2.
It encodes dynamical rather than kinematic details. Results
for 1000 decay channels, involving the ten lowest modes at
b/JS = 0.5, are presented in Appendix B 2. Here we focus on
the decay of ABC modes (Fig. 4).

The A mode [ν = 3, Fig. 4(a)] exhibits a small interac-
tion with other modes, especially those that could possibly
fulfill energy conservation (G and E). Thus, the A mode is
the most stable out of the ABC modes for both kinematic
and dynamic reasons. The B mode [ν = 5, Fig. 4(b)] prefers
channel B → (B, B), which, however, can never obey energy
conservation, and channels involving the G and/or A mode,
causing the moderate damping found in Fig. 3. In contrast,
channels with polygon modes E, T, and Q as decay products
are suppressed by two orders of magnitude. Finally, being
highest in energy, the C mode [ν = 6, Fig. 4(c)] has several
kinematic possibilities to decay. On top of that are pronounced
instabilities towards the A and B modes. Thus, the C mode
is the least stable among the ABC modes. These findings
are corroborated by the nontrivial b dependence of the ABC
modes’ interaction strengths (see Appendix B 3): While that
of the C mode (and B mode) increases as the field increases,
that of the A mode decreases.

The results discussed so far apply to zero temperature. In
Appendix B 4 we extend our analysis to finite temperatures:
At kBT/J = 0.2 and b/JS = 0.485 (kB the Boltzmann con-
stant) the thermal damping of the C mode is still only half
of its quantum damping. Thus, even the quantum dynamics
of SkXs stabilized by moderate thermal fluctuations may be
dominated by SQD. However, for consistency of spin-wave
theory, kBT � JS must hold (see Appendix B 5).

IV. DISCUSSION AND CONCLUSION

Spontaneously decaying magnons cause field-tunable in-
trinsic zero-temperature damping of SkX eigenmodes. For
applications in topological magnonics, this damping must
not be larger than the average band gap 
 ≈ 12SJ/N ≈
0.3[JS(D/J )2], hosting chiral edge states. With the topolog-
ically nontrivial ABC modes’ damping �

spon
X ≈ FX J (D/J )4,

with X ∈ {A, B, C} and FA = 10−3, FB = 10−2, and FC =
10−1 (see Appendix B 6), the crucial ratio reads �

spon
X /
 ≈

FX /(0.3S)(D/J )2 � 1 for typical values D/J � 1. For
thin films of the skyrmion-hosting compound Cu2OSeO3,
we estimate �

spon
C /
 ≈ 5.6 neV/4.7 μeV = 1.2 × 10−3 us-

ing S = 1, J/kB ≈ 50 K, and D/J ≈ 0.06 [8]. Even for small
skyrmions (D/J = 1), quantum damping of the A and B
modes is negligible. Hence, SkXs are an excellent platform
for low-energy topological magnonics, which is at variance
with other topological magnets [125–127] whose chiral edge
magnons appear at high energies of the order of the exchange
energy.

At higher energies, SkXs exhibit considerable SQD, which
yields a quantum correction to the classical damping �α

k,ν
≈

αεk,ν ∝ O(S) due to phenomenological Gilbert damping α.
Skyrmion crystals are unique in that not only neutron scatter-
ing but also magnetic resonance experiments can address the
lifetime broadening due to SQD. For the magnetically active
C mode, with energy εC ∼ JS(D/J )2, the relative importance
of quantum to classical damping reads RC ≡ �

spon
C /�α

C ≈
10−1(αS)−1(D/J )2. Since ultralow α ∼ 10−4–10−3 is possi-
ble in both metals [128–137] and insulators [138], quantum
damping may dominate over classical damping (RC > 1), e.g.,
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RC ≈ 3.6 in Cu2OSeO3 with α = 10−4 [138], a prediction
that may be experimentally tested in the recently discovered
low-temperature SkX [139].

Our strictly two-dimensional considerations apply both to
thin films (cf. Appendix B 7) and quasi-two-dimensional lay-
ered structures, e.g., van der Waals magnets [140–142] and
Janus layers [143,144]. Although we concentrated on Néel
skyrmions stabilized by interfacial DM interaction, our results
can be carried over one to one to Bloch skyrmions due to bulk
DM interaction because neither the harmonic magnon bands
nor their damping is influenced by the skyrmion helicity.
Additional anisotropies, exchange frustration [49,145–151],
and dipolar and four-spin interactions [152] are expected to
merely quantitatively renormalize the quantum damping.
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APPENDIX A: DETAILS OF THEORETICAL
DERIVATIONS

1. Classical magnetic ground state

Before studying the dynamics of a spin Hamiltonian Ĥ , we
need to find the classical magnetic ground state, assuming that
spin operators Ŝr are replaced by spin vectors Sr in R3. For
J > 0, neighboring spins prefer ferromagnetic alignment that
competes with the spiralization tendency due to DM interac-
tion. In the absence of a magnetic field, the classical magnetic
ground state is thus a spin spiral. To determine its pitch we
perform a spatial Fourier transformation from coordinates r to
(crystal) momenta k,

Sr = 1√
Ns

∑
k

eik·rSk, (A1)

where Ns is the total number of spins. Thus, the classical
ground-state energy in zero field is recast as

H = 1

2

∑
r,r′

Sr · Ir,r′ · Sr′ (A2a)

= 1

2Ns

∑
k,k′

∑
r,Δr

Sk · (ei(k+k′ )·reik′ ·ΔrIr,r+Δr) · Sk′ (A2b)

= 1

2

∑
k

Sk ·
(∑

Δr

e−ik·ΔrIΔr

)
︸ ︷︷ ︸

Ik

·S−k. (A2c)

We use
∑

r ei(k+k′ )·r = Nsδk,−k′ and r′ = r + Δr, introduc-
ing the distance vector Δr = r′ − r. We set Ir,r′ = Ir,r+Δr =
IΔr, reflecting spatial homogeneity of magnetic interactions.

Since magnetic interactions take place only between near-
est neighbors, the Fourier kernel of the classical ground-state

FIG. 5. Triangular lattice with indicated nearest-neighbor bond
vectors δi and respective DM vectors Dδi (i = 1, . . . , 6). The lattice
constant is a.

energy can be rewritten as

Ik =
6∑

i=1

e−ik·δiIδi , (A3)

where the δi’s are the vectors to the six nearest neighbors on
the triangular lattice, as shown in Fig. 5; explicitly they read

δ1 = a

(
1

0

)
, δ2 = a

(− 1
2

√
3

2

)
, δ3 = a

( − 1
2

−
√

3
2

)
, (A4)

δ4 = −δ1, δ5 = −δ2, and δ6 = −δ3. (We denoted the lattice
constant by a.) The respective interaction matrix

Iδi =

⎛
⎜⎝−J 0 −Dy

δi

0 −J Dx
δi

Dy
δi

−Dx
δi

−J

⎞
⎟⎠ (A5)

contains the DM vectors

Dδ1 = D

(
0

1

)
, Dδ2 = D

(
−

√
3

2

− 1
2

)
, Dδ3 = D

( √
3

2− 1
2

)
, (A6)

Dδ4 = −Dδ1 , Dδ5 = −Dδ2 , and Dδ6 = −Dδ3 . They are indi-
cated by red arrows in Fig. 5.

To find the energy-minimizing spin configuration, we de-
termine the eigenvalues of

Ik =

⎛
⎜⎝

−Zk 0 −Yk

0 −Zk Xk

Yk −Xk −Zk

⎞
⎟⎠, (A7)

which read

V0,k = −Zk, V±,k = −Zk ±
√

|Xk|2 + |Yk|2, (A8)

with

Zk = 2J
3∑

i=1

cos(k · δi ), (A9a)

Xk = −2i
3∑

i=1

Dx
δi

sin(k · δi ), (A9b)

Yk = −2i
3∑

i=1

Dy
δi

sin(k · δi ). (A9c)
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FIG. 6. (a) Spin spiral ordering vector ak
x dependent on D/J (a

lattice constant). (b) Relative error between the exact solution for k
x

and the approximation in Eq. (A10) dependent on D/J .

The ordering vector k of the ground-state texture is given
by the minima of the lowest eigenvalue V−,k. Due to the
sixfold rotational symmetry of the triangular lattice, there are
six minima; one solution reads k = (k

x , 0), with the others
to be obtained by rotation. The numerically obtained solution
for k

x , shown in Fig. 6(a) dependent on D/J , is very well
approximated by

k
x ≈ 2√

3a
arctan

(√
3

2

D

J

)
. (A10)

Figure 6(b) shows the relative error between Eq. (A10) and the
exact solution. Even for ratios as large as D/J = 1, the relative
error is smaller than 0.2 %. From Eq. (A10), we obtain a spin
spiral pitch of

λ = 2π

k
x

≈
√

3πa

[
arctan

(√
3

2

D

J

)]−1

. (A11)

Once the magnetic field is larger than a critical value, the
skyrmion crystal is approximately formed as a superposition
of a ferromagnetic component and three fundamental spin
spirals (neglecting higher harmonics), each pair of which
encloses an angle of ±2π/3. Restricting our focus on com-
mensurate textures, we require λ = Ma to be an integer
multiple of a; thus M ∈ N. It follows that if a skyrmion crystal
with N = M2 spins per magnetic unit cell (i.e., per skyrmion)
is desired, the magnetic interaction parameters must obey

D

J
≈ 2√

3
tan

(√
3π

M

)
≈ tan

(
2π

M

)
. (A12)

We note in passing that we use a triangular lattice be-
cause it naturally lends itself to a description of a hexagonal
skyrmion crystal. Nonetheless, similar results are expected for
other two-dimensional lattices, e.g., the square lattice. The
details of the structural lattice are irrelevant as long as a single
skyrmion’s diameter is large compared to the structural lattice
constant.

Now that we approximately know the size of the skyrmion
unit cell (M × M spins) for a given D/J ratio, the actual
skyrmion texture within the unit cell is determined numeri-
cally in a finite magnetic field. Starting from a random spin
configuration, we alternate between microcanonical overre-
laxation steps and Landau-Lifshitz-Gilbert (LLG) steps. The

former update each spin according to

Snew
r = 2

Br · Sold
r

|Br|2 Br − Sold
r , (A13)

with Br = −∂H/∂Sr the effective magnetic field at site r. For
the latter, we integrate the LLG equation without a precession
term, i.e.,

Ṡr = − α

1 + α2
Sr × (Sr × Br), (A14)

utilizing the Heun integration scheme [153]. We work in the
overdamped limit with a Gilbert damping α = 0.99.

2. Spin-to-boson transformation

Once the magnetic ground state with N spins per unit
cell is found, we assign a coordinate system {ex

μ, ey
μ, ez

μ} to
each basis site (μ = 1, . . . , N). The local reference frames
are chosen such that ez

μ points along the local ground-state
direction of spin Sr+rμ

. Here r is the position vector to the
magnetic unit cell and rμ is the position vector to the μth basis
site within the unit cell. Then the spin Hamiltonian may be
recast as

Ĥ = 1

2

∑
r,r′

∑
rμ,rν

Ŝr+rμ
· Ir+rμ,r′+rν

· Ŝr′+rν
+
∑

r

∑
rμ

b · Ŝr+rμ
.

(A15)

For the sake of generality, we allow for a magnetic field b in
an arbitrary direction. Here Ir+rμ,r′+rν

is the interaction matrix
between the μth and νth spins belonging to the magnetic unit
cells at r and r′, respectively.

We proceed with a Holstein-Primakoff (HP) transforma-
tion

Ŝr+rμ
=

√
S
(

f̂r+rμ
âr+rμ

e−
μ + â†

r+rμ
f̂r+rμ

e+
μ

)
+ (

S − â†
r+rμ

âr+rμ

)
ez
μ, (A16)

where e±
μ = (ex

μ ± iey
μ)/

√
2 and S is the spin length. The

bosonic operators obey the usual commutation relation
[âr+rμ

, â†
r′+rν

] = δr,r′δrμ,rν
. A Taylor expansion of

f̂r+rμ
=

(
1 − â†

r+rμ
âr+rμ

2S

)1/2

= 1 − 1

2

â†
r+rμ

âr+rμ

2S
− · · ·

(A17)

leads to Ĥ = Ĥ0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 + · · · , with sub-
scripts denoting the number of bosonic operators. Mathemat-
ically, the HP transformation is an expansion in the order of
1/

√
S, which can be made explicit by writing

Ĥ = S

(
SĤ ′

0 +
√

SĤ ′
1 + Ĥ ′

2 + 1√
S

Ĥ ′
3 + 1

S
Ĥ ′

4 + · · ·
)

.

(A18)

The primed Ĥ ’s are independent of S. Thus, when we later
speak of “1/S corrections to the spectrum,” we mean correc-
tions that are 1/S relative to Ĥ2. Those can come both from
Ĥ4 (within first-order perturbation theory) and Ĥ3 (within
second-order perturbation theory).
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a. Harmonic theory

After plugging Eqs. (A17) and (A16) into Eq. (A15), the
harmonic piece of Ĥ is found to read

Ĥ2 = S

2

∑
r,r′

∑
rμ,rν

(
âr+rμ

âr′+rν
I−−

r+rμ,r′+rν
+ â†

r+rμ
âr′+rν

I+−
r+rμ,r′+rν

+ âr+rμ
â†

r′+rν
I−+

r+rμ,r′+rν
+ â†

r+rμ
â†

r′+rν
I++

r+rμ,r′+rν

− â†
r+rμ

âr+rμ
Izz

r+rμ,r′+rν
− â†

r′+rν
âr′+rν

Izz
r+rμ,r′+rν

)
−
∑

rμ

â†
r+rμ

âr+rμ
b · ez

μ, (A19)

where Iξζ

r+rμ,r′+rν
≡ eξ

μ · Ir+rμ,r′+rν
· eζ

ν , with ξ, ζ ∈ {+,−, z}.
We then perform a Fourier transformation

âr+rμ
= 1√

Nu

Nu∑
k

eik·(r+rμ )âk,μ, (A20a)

â†
r+rμ

= 1√
Nu

Nu∑
k

e−ik·(r+rμ )â†
k,μ

, (A20b)

with Nu the number of magnetic unit cells. In compact nota-
tion, the harmonic Hamiltonian becomes

Ĥ2 = 1

2

∑
k

Â
†
k · Hk · Âk, (A21)

with

Âk = (âk,1, . . . , âk,N , â†
−k,1, . . . , â†

−k,N )T (A22)

a Nambu space vector constructed from the Fourier-
transformed HP bosons associated with the N basis sites in
the magnetic unit cell. The 2N × 2N linear spin-wave kernel

Hk = S

(
Mk Nk

N†
k MT

−k

)
(A23)

has entries

(Mk)μν = I+−
k,μν

− δμ,ν

(
1

S
b · ez

μ +
∑

λ

Izz
0,μλ

)
, (A24a)

(Nk)μν = I++
k,μν

. (A24b)

We abbreviated

Iξζ

k,μν
≡

∑
Δr

Iξζ

rμ,Δr+rν
eik·(Δr+rν−rμ ), (A25)

where the sum runs over all difference vectors Δr between
magnetic unit cells.

The free magnon energies εk,ν are obtained from a parau-
nitary Bogoliubov diagonalization from HP bosons to normal
modes

B̂k = PkÂk = (b̂k,1, . . . , b̂k,N , b̂†
−k,1, . . . , b̂†

−k,N )T. (A26)

Thus, we can rewrite Eq. (A21) in the Bogoliubov eigenbasis
as

Ĥ2 = 1

2

∑
k

Â
†
k · P †

k︸ ︷︷ ︸
B̂

†
k

(P †
k )−1HkP

−1
k︸ ︷︷ ︸

Ek

Pk · Âk︸ ︷︷ ︸
B̂k

, (A27)

with the diagonal energy matrix

Ek ≡ (P †
k )−1HkP

−1
k

= diag(εk,1, . . . , εk,N , ε−k,1, . . . , ε−k,N ). (A28)

The paraunitarity of Pk is expressed by

U = P †
k UPk = diag(1N ,−1N ). (A29)

Here U is the bosonic metric, necessary to preserve bosonic
commutation rules. In addition, 1N is the N × N unit matrix.
Note the relation

P−1
k = UP †

kU . (A30)

The above diagonalization procedure follows Ref. [154].
Below we need the expressions

Âk = P−1
k B̂k =

(
XT

k Y †
−k

YT
k X†

−k

)
B̂k, (A31)

or elementwise

âk,α =
N∑

λ=1

[(Xk)λα b̂k,λ + (Y ∗
−k)λα b̂†

−k,λ
], (A32a)

â†
−k,α

=
N∑

λ=1

[(X∗
−k)λα b̂†

−k,λ
+ (Yk)λα b̂k,λ]. (A32b)

To obtain Pk’s submatrices Xk and Yk we invoke the
following numerical recipe. We unitarily diagonalize UHk

and then paranormalize the resulting eigenvectors, i.e., the
columns of P−1

k , by enforcing Eq. (A29). With P−1
k at hand,

Eq. (A31) is used to read off Xk and Yk.

b. Anharmonic (cubic) theory

Before turning to Ĥ3, we note that spin-wave theory is an expansion about a (meta)stable state, that is, about a (local or
global) energy minimum. Consequently, there are no forces that drive the system into a different state. In the second-quantized
language this means that there is no spontaneous creation (decay) of a single particle out of (into) vacuum. Mathematically, this
is expressed by

0 = Ĥ1 = S
√

S

2

∑
r,r′

∑
rμ,rν

(
âr+rμ

I−z
r+rμ,r′+rν

+ â†
r+rμ
I+z

r+rμ,r′+rν
+ âr′+rν

Iz−
r+rμ,r′+rν

+ â†
r′+rν
Iz+

r+rμ,r′+rν

)
+

√
S
∑

r

∑
rμ

(
âr+rμ

b · e−
μ + â†

r+rμ
b · e+

μ

)
. (A33)
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This condition can be used to find the classical magnetic ground state. In our numerical setup, we directly minimize Ĥ0, which
is an equivalent procedure. Numerically, the absence of Ĥ1 can be checked by the positivity and realness of the single-particle
energies.

The full cubic Hamiltonian after HP transformation reads

Ĥ3 = −
√

S

2

∑
r,r′

∑
rμ,rν

(
âr+rμ

â†
r′+rν

âr′+rν
I−z

r+rμ,r′+rν
+ â†

r+rμ
â†

r′+rν
âr′+rν

I+z
r+rμ,r′+rν

+ â†
r+rμ

âr+rμ
âr′+rν

Iz−
r+rμ,r′+rν

+ â†
r+rμ

âr+rμ
â†

r′+rν
Iz+

r+rμ,r′+rν

) − 1

4

⎡
⎣√

S

2

∑
r,r′

∑
rμ,rν

(
â†

r+rμ
âr+rμ

âr+rμ
I−z

r+rμ,r′+rν

+ â†
r+rμ

â†
r+rμ

âr+rμ
I+z

r+rμ,r′+rν
+ â†

r′+rν
âr′+rν

âr′+rν
Iz−

r+rμ,r′+rν
+ â†

r′+rν
a†

r′+rν
âr′+rν

Iz+
r+rμ,r′+rν

)
+ 1√

S

∑
r

∑
rμ

(
â†

r+rμ
âr+rμ

âr+rμ
b · e−

μ + â†
r+rμ

â†
r+rμ

âr+rμ
b · e+

μ

)⎤⎦. (A34)

The term with the 1
4 factor in front has the same structure as Ĥ1 because within each term all bosonic operators belong to the

same site. Consequently, if Ĥ1 vanishes, so does this part of Ĥ3. In the remaining part of Ĥ3, we move creators to the left of
annihilators,

Ĥ3 = −
√

S

2

∑
r,r′

∑
rμ,rν

(
â†

r+rμ
â†

r′+rν
âr′+rν

I+z
r+rμ,r′+rν

+ â†
r+rμ

â†
r′+rν

âr+rμ
Iz+

r+rμ,r′+rν
+ H.c.

)
. (A35)

We used that no spin interacts with itself, i.e., Ir,r = 0.
After a Fourier transformation, Eq. (A35) assumes the form

Ĥ3 = −
√

S

2
√

Nu

∑
k,q

∑
μ,ν

(
â†

k,μ
â†

q,ν âk+q,νI+z
k,μν

+ â†
k,μ

â†
q,ν âk+q,μIz+

−q,μν + H.c.
)
. (A36)

We simplified notation: The sum over rμ and rν is denoted as a sum over μ and ν. One can show thatIz+
−q,μν = (Iz+

−q,μν )T = I+z
q,νμ,

using the general property Ir,r′ = (Ir′,r)T of magnetic interaction matrices. Finally, we find the following generic form of the cubic
Hamiltonian in terms of HP bosons:

Ĥ3 =
√

S√
Nu

∑
λ,μ,ν

p=k+q∑
k,q,p

(
1

2!1!
V λμ←ν

k,q←p â†
k,λ

â†
q,μâp,ν + H.c.

)
. (A37)

The interaction vertex V λμ←ν

k,q←p = −δμνI+z
k,λμ

− δλνI+z
q,μλ is a complex number in general; its expression agrees with that derived

in Ref. [155]. The factorial factors are written to stress the symmetric nature of Ĥ3, i.e., creators and annihilators can be permuted
among themselves.

In terms of normal modes, Eqs. (A32a) and (A32b), the cubic Hamiltonian reads

Ĥ3 =
√

S

2
√

N

∑
α,β,γ

p=k+q∑
k,q,p

[
V αβ←γ

k,q←p â†
k,α

â†
q,β âp,γ + (

V αβ←γ

k,q←p

)∗
â†

p,γ âq,β âk,α

]

=
√

S

2
√

N

∑
α,β,γ

∑
λ,μ,ν

p=k+q∑
k,q,p

{
V αβ←γ

k,q←p [(X∗
k )λα b̂†

k,λ
+ (Y−k)λα b̂−k,λ][(X∗

q )μβ b̂†
q,μ + (Y−q)μβ b̂−q,μ][(Xp)νγ b̂p,ν + (Y ∗

−p)νγ b̂†
−p,ν]

+ (
V αβ←γ

k,q←p

)∗
[(X∗

p)νγ b̂†
p,ν + (Y−p)νγ b̂−p,ν][(Xq)μβ b̂q,μ + (Y ∗

−q)μβ b̂†
−q,μ][(Xk)λα b̂k,λ + (Y ∗

−k)λα b̂†
−k,λ

]
}
. (A38)

Upon expansion, one finds that the cubic Hamiltonian assumes the form Ĥ3 = Ĥd
3 + Ĥ s

3 , where the decay (d) part reads

Ĥd
3 =

√
S

2
√

N

∑
α,β,γ

∑
λ,μ,ν

p=k+q∑
k,q,p

[
V αβ←γ

k,q←p (X∗
k )λα (X∗

q )μβ (Xp)νγ b̂†
k,λ

b̂†
q,μb̂p,ν + (

V αβ←γ

k,q←p

)∗
(Y ∗

−k)λα (Y ∗
−q)μβ (Y−p)νγ b̂†

−k,λ
b̂†

−q,μb̂−p,ν

+ V αβ←γ

k,q←p (X∗
k )λα (Y−q)μβ (Y ∗

−p)νγ b̂†
−p,ν b̂†

k,λ
b̂−q,μ + (

V αβ←γ

k,q←p

)∗
(Y ∗

−k)λα (Xq)μβ (X∗
p)νγ b̂†

p,ν b̂†
−k,λ

b̂q,μ

+ V αβ←γ

k,q←p (Y−k)λα (X∗
q )μβ (Y ∗

−p)νγ b̂†
q,μb̂†

−p,ν b̂−k,λ

(
V αβ←γ

k,q←p

)∗
(Xk)λα (Y ∗

−q)μβ (X∗
p)νγ b̂†

−q,μb̂†
p,ν b̂k,λ + H.c.

]
(A39)
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and the source (s) part

Ĥ s
3 =

√
S

2
√

N

∑
α,β,γ

∑
λ,μ,ν

p=k+q∑
k,q,p

[
V αβ←γ

k,q←p (X∗
k )λα (X∗

q )μβ (Y ∗
−p)νγ b̂†

k,λ
b̂†

q,μb̂†
−p,ν

+ (
V αβ←γ

k,q←p

)∗
(X∗

p)νγ (Y ∗
−q)μβ (Y ∗

−k)λα b̂†
p,ν b̂†

−q,μb̂†
−k,λ

+ H.c.
]
. (A40)

We now reverse the sign of the momenta in every second term to obtain

Ĥd
3 =

√
S

2
√

N

∑
α,β,γ

∑
λ,μ,ν

p=k+q∑
k,q,p

{[
V αβ←γ

k,q←p (X∗
k )λα (X∗

q )μβ (Xp)νγ + (V αβ←γ

−k,−q←−p)∗(Y ∗
k )λα (Y ∗

q )μβ (Yp)νγ

]
b̂†

k,λ
b̂†

q,μb̂p,ν

+ [
V αβ←γ

k,q←p (X∗
k )λα (Y−q)μβ (Y ∗

−p)νγ + (V αβ←γ

−k,−q←−p)∗(Y ∗
k )λα (X−q)μβ (X∗

−p)νγ

]
b̂†

−p,ν b̂†
k,λ

b̂−q,μ

+ [
V αβ←γ

k,q←p (Y−k)λα (X∗
q )μβ (Y ∗

−p)νγ + (V αβ←γ

−k,−q←−p)∗(X−k)λα (Y ∗
q )μβ (X∗

−p)νγ

]
b̂†

q,μb̂†
−p,ν b̂−k,λ + H.c.

}
(A41)

and

Ĥ s
3 =

√
S

2
√

N

∑
α,β,γ

∑
λ,μ,ν

p=k+q∑
k,q,p

{[
V αβ←γ

k,q←p (X∗
k )λα (X∗

q )μβ (Y ∗
−p)νγ + (V αβ←γ

−k,−q←−p)∗(X∗
−p)νγ (Y ∗

q )μβ (Y ∗
k )λα

]
b̂†

k,λ
b̂†

q,μb̂†
−p,ν + H.c.

}
.

(A42)

Finally, for symmetrization, we relabel momenta and band indices in the second and third lines of Eq. (A41). Using ν → λ →
μ → ν and −p → k → q → −p in the second line and μ → λ → ν → μ and q → k → −p → q in the third line, we arrive
at

Ĥd
3 =

√
S√
N

∑
λ,μ,ν

p=k+q∑
k,q,p

(
1

2!1!
Vλμ←ν

k,q←pb̂†
k,λ

b̂†
q,μb̂p,ν + H.c.

)
, (A43)

with the decay vertex

Vλμ←ν

k,q←p =
∑
α,β,γ

[
V αβ←γ

k,q←p (X∗
k )λα (X∗

q )μβ (Xp)νγ + (
V αβ←γ

−k,−q←−p

)∗
(Y ∗

k )λα (Y ∗
q )μβ (Yp)νγ + V αβ←γ

q,−p←−k(X∗
q )μα (Yp)νβ (Y ∗

k )λγ

+ (
V αβ←γ

−q,p←k

)∗
(Y ∗

q )μα (Xp)νβ (X∗
k )λγ + V αβ←γ

−p,k←−q(Yp)να (X∗
k )λβ (Y ∗

q )μγ + (V αβ←γ

p,−k←q)∗(Xp)να (Y ∗
k )λβ (X∗

q )μγ

]
. (A44)

Similarly, in Eq. (A42), we add the summand another two times, divide by 3, and cyclically permute momenta and band indices.
We arrive at

Ĥ s
3 =

√
S√
N

∑
λ,μ,ν

−p=k+q∑
k,q,p

(
1

3!0!
Wλμν

k,q,pb̂†
k,λ

b̂†
q,μb̂†

p,ν + H.c.

)
, (A45)

with the source vertex

Wλμν

k,q,p =
∑
α,β,γ

[
V αβ←γ

k,q←p (X∗
k )λα (X∗

q )μβ (Y ∗
p )νγ + (

V αβ←γ

−k,−q←−p

)∗
(Y ∗

k )λα (Y ∗
q )μβ (X∗

p)νγ + V αβ←γ

q,p←k (X∗
q )μα (X∗

p)νβ (Y ∗
k )λγ

+ (
V αβ←γ

−q,−p←−k

)∗
(Y ∗

q )μα (Y ∗
p )νβ (X∗

k )λγ + V αβ←γ

p,k←q (X∗
p)να (X∗

k )λβ (Y ∗
q )μγ + (

V αβ←γ

−p,−k←−q

)∗
(Y ∗

p )να (Y ∗
k )λβ (X∗

q )μγ

]
. (A46)

Again, we explicitly denoted the factorial factors, arising from symmetrization under permutation of creators (or annihilators)
among themselves.

3. Many-body perturbation theory up to order 1/S

Up to second-order many-body perturbation theory, the normal one-magnon temperature Green’s function Gk,νν ′ (τ ) =
−〈Tτ bk,ν (τ )b†

k,ν ′ 〉 reads [156]

Gk,νν ′ (τ ) ≈ G(0)
k,νν ′ (τ ) + 1

h̄

∫ h̄β

0
dτ1〈Tτ Ĥ4(τ1)b̂k,ν (τ )b̂†

k,ν ′ 〉con
(0) − 1

2!h̄2

∫ h̄β

0
dτ1

∫ h̄β

0
dτ2〈Tτ Ĥ3(τ1)Ĥ3(τ2)b̂k,ν (τ )b̂†

k,ν ′ 〉con
(0) ,

(A47)

with G(0)
k,νν ′ (τ ) the bare propagator. The τ ’s denote imaginary time, Tτ is the “time”-ordering operator, the subscript (0) denotes

averaging with respect to Ĥ2, and “con” refers to connected diagrams; β = (kBT )−1, where kB is Boltzmann’s constant and
T temperature. Both the first-order and the second-order term are 1/S corrections to G(0)

k,νν ′ (τ ). Note that a second-order term
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FIG. 7. Feynman diagrams of order-1/S self-energies. Gray (Black) lines denote external (internal) legs and green/red/blue circles denote
interaction vertices. The green circle is the two-in–two-out four-magnon vertex (not given) and the red/blue circles are the decay (V) and source
(W) three-magnon vertices (or their conjugates) given in Eqs. (A44) and (A46), respectively. (a) First-order Hartree-Fock corrections due to
Ĥ4 that yield a static real self-energy. (b) Second-order tadpole diagrams due to Ĥ3 that also yield a static real self-energy. (c) Second-order
bubble diagrams due to Ĥ3 that yield a dynamic self-energy. However, only the first two diagrams contribute to the imaginary part of the
self-energy.

in Ĥ4 would yield a 1/S2 correction and is therefore dropped. [Even for S � 1, spin-wave theory is surprisingly reliable and
higher-order terms may be dropped because the expansion in Eq. (A17) is also effectively an expansion in the magnon number
〈a†a〉, which is small at low temperatures.]

By virtue of Wick’s theorem, one shows that the first-order Ĥ4 term gives rise to frequency-independent Hartree-Fock
corrections [cf. Fig. 7(a)] that cause a real self-energy [156,157]. Similarly, the second-order Ĥ3 term gives rise to frequency-
independent tadpole diagrams [cf. Fig. 7(b)] that also contribute a real self-energy [157]. Being interested in magnon damping,
which is associated with the imaginary part of the self-energy, we drop all frequency-independent 1/S corrections. Out of
the remaining bubble diagrams [cf. Fig. 7(c)], which also derive from Ĥ3, only the first two yield complex diagonal normal
self-energies (ν = ν ′):

Σk,ν (ε) = 1

Nu

∑
q

∑
λ,μ

(
1

2

∣∣Vλμ←ν

q,k−q←k

∣∣2 ρ(εq,λ) + ρ(εk−q,μ) + 1

ε + i0+ − εq,λ − εk−q,μ

+ ∣∣Vνμ←λ

k,q←k+q

∣∣2 ρ(εq,μ) − ρ(εk+q,λ)

ε + i0+ + εq,μ − εk+q,λ

)
. (A48)

Here ρ(x) = (eβx − 1)−1 is the Planck distribution. Note that the source vertex Wλμν

k,q,p does not enter Eq. (A48) because the
source-sink bubble [right diagram of Fig. 7(c)] is off-resonance and we dropped it. Within the on-shell approximation ε →
εk,ν , the magnon damping rate is given by �k,ν ≡ −Im[Σk,ν (εk,ν )]. Ignoring the real part of the self-energy, the normal one-
magnon (retarded) Green’s function reads G−1

k,ν
(ε) ≈ ε − εk,ν + i�k,ν , from which we obtain the spectral function Ak,ν (ε) ≈

−ImGk,ν (ε)/π of band ν. It follows from the Sokhotski-Plemelj theorem that the temperature-dependent damping reads

�k,ν (T ) = π

2Nu

∑
q

∑
λ,μ

∣∣Vλμ←ν

q,k−q←k

∣∣2δ(εk,ν − εq,λ − εk−q,μ)[ρ(εq,λ, T ) + ρ(εk−q,μ, T ) + 1]

+ π

Nu

∑
q

∑
λ,μ

∣∣Vνμ←λ

k,q←k+q

∣∣2δ(εk,ν + εq,μ − εk+q,λ)[ρ(εq,μ, T ) − ρ(εk+q,λ, T )]. (A49)

The first line in Eq. (A49) comprises magnon decay. The spontaneous damping �
spon
k,ν

in Eq. (2) is obtained by taking the limit
T → 0. The second line in Eq. (A49) is a two-magnon collision. It takes finite temperature to have thermal magnons available
for collisions, which is why this term is frozen out as T → 0.

APPENDIX B: ADDITIONAL RESULTS

1. Extended Fig. 2

Figure 8 extends Fig. 2. In Figs. 8(a)–8(g) the pronounced
shift of the flat modes due to the Zeeman energy can be
noticed. The two-magnon DOS, shown in Figs. 8(h)–8(n),
inherits this field dependence, as revealed by the field-tunable
sharp yellow features. The overlap of the single-particle bands
with regions of a large two-magnon DOS leads to strong
quasiparticle decay and lifetime band broadening in the spec-
tral function [Figs. 8(o)–8(u)]. Several instances are marked
by red arrows.

2. Analysis of 1000 decay channels at k = 0, involving
the ten lowest magnon modes

In the main text, we presented a decay channel analysis of
the ABC modes. Here we extend this analysis to the lowest ten
magnon bands, resulting in 1000 possible decay channels. In

Fig. 9 we use a data representation similar to that in Fig. 4
(histograms viewed from above and square color and size
denoting the same information).

Two additional conclusions can be drawn.
First, note that the symbol × in Fig. 9 marks for-

bidden decay channels. (Numerically, we found that they
have amplitudes less than 10−22 meV2, which is negligi-
ble compared to other weak channels with amplitudes of
the order of 10−4 meV2.) Thus, decay channels with identi-
cal decay products are inactive for the G, A, T, C, ν = 9,
and P modes. We conclude that these modes cannot decay
into a single flat mode at half their energy. Note that this
result is only correct for k = 0 excitations. (We numeri-
cally verified that all decay channels are possible for k �= 0
excitations.)

Second, the decay efficiencies of polygon modes [ν = 1,
2, 4, 7, and 10 for the G, E, T, Q, and P mode in Figs. 9(a),
9(b), 9(d), 9(g), and 9(j), respectively] are overall larger than
those of the ABC modes. Moreover, we find particularly large
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FIG. 8. Same as Fig. 2 but for additional magnetic field values.

Cλμ←ν for decays that conserve l , e.g.,

10 → (2, 4), l = 5 = 2 + 3 [Fig. 9(j), P mode],

10 → (1, 7), l = 5 = 1 + 4 [Fig. 9(j), P mode],

7 → (2, 2), l = 4 = 2 + 2 [Fig. 9(g), Q mode],

7 → (1, 4), l = 4 = 1 + 3 [Fig. 9(g), Q mode],

4 → (1, 2), l = 3 = 1 + 2 [Fig. 9(d), T mode],

which may be understood as a kind of “weak” selection rule.
However, since there is no conservation law for l , processes
that increase or decrease l also have nonzero amplitude; see,
e.g., Fig. 9(b), E mode, 2 → (3, 4), for which l increases.

This nonconservation is attributed to broken rotational
symmetry. While an isolated skyrmion (with size much larger
than the lattice spacing) is rotationally symmetric, which
translates into conservation of azimuthal mode number l
similar to what was found for magnetic vortices [158], the
skyrmions in a SkX experience a hexagonal deformation.
With the necessary continuous symmetry broken, there is no
conserved quantity.

3. Decay channels analysis of ABC modes dependent
on the magnetic field

Here we study the magnetic-field dependence of the decay
channels of the ABC modes. Results are presented in Fig. 10.
As far as the mode labeling is concerned, recall that the flat
polygon modes overtake the dispersive modes as the field
increases, which is why the labels in Fig. 10 are different for
different fields.

The field increases going from left to right. The instability
of the C mode [Fig. 10(a)] towards the channel C → {A, G}
increases, while that towards the C → {E, G} channel de-
creases. Other decay channels exhibit a weaker increase.

For the B mode [Fig. 10(b)] we find that channels towards
lower-energy modes (G, E, and A) become less efficient at
higher fields, resulting in an effective field-enhanced stability
of the B mode, although decay channels towards higher-
energy modes increase considerably.

Finally, we find that almost all decay channels of the A
mode [Fig. 10(c)] get frozen out by the field. This complies
with the finding that the A mode is the most stable mode
among the ABC modes. Notice in particular that the decay
channels towards lower-energy modes (G and E modes) are
always negligible, even at low fields.
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(a) ν = 1: gyrotropic (G, l = 1)
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(b) ν = 2: elliptic (E, l = 2)
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(d) ν = 4: triangular (T, l = 3)
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(e) ν = 5: breathing (B)
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(f) ν = 6: clockwise (C)
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(g) ν = 7: quadrupolar (Q, l = 4)
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(j) ν = 10: pentagonal (P, l = 5)

FIG. 9. Decay channel analysis of an M = 8 SkX at b/JS = 0.5 and k = 0. (a)–(j) Decay channel efficiency Cλμ←ν for λ,μ, ν = 1, . . . , 10:
(a) ν = 1, gyrotropic mode, l = 1; (b) ν = 2, elliptic mode, l = 2; (c) ν = 3, anticlockwise mode; (d) ν = 4, triangular mode, l = 3;
(e) ν = 5, breathing mode; (f) ν = 6, clockwise mode; (g) ν = 7, quadrupolar mode, l = 4; (h) ν = 8; (i) ν = 9; and (j) ν = 10, pentagonal
mode, l = 5. Small blue/large red squares indicate small/large Cλμ←ν . The symbol × indicates exactly zero Cλμ←ν . Notice the decay product
symmetry λ ↔ μ.

4. Effects of finite temperature on magnon damping

At finite T , one obtains not only additional thermal weight-
ing of the decay processes [first line in Eq. (A49)], but also
additional collision processes (second line). Here we evalu-
ate the temperature dependence of the damping of the ABC
modes (ν = 3, 5, 6 at b/JS = 0.485). We decompose the total
damping as

�total
0,ν (T ) = �

spon
0,ν

+ �
decay
0,ν

(T ) + �coll
0,ν (T ), (B1)

where the spontaneous part �
spon
0,ν is what we have discussed

so far,

�
decay
0,ν

(T ) = π

2Nu

∑
q

∑
λ,μ

∣∣Vλμ←ν

q,−q←0

∣∣2δ(ε0,ν − εq,λ − ε−q,μ)

× [ρ(εq,λ, T ) + ρ(ε−q,μ, T )] (B2)

is damping due to thermally activated decay processes, and

�coll
0,ν (T ) = π

Nu

∑
q

∑
λ,μ

∣∣Vνμ←λ

0,q←q

∣∣2δ(ε0,ν + εq,μ − εq,λ)

× [ρ(εq,μ, T ) − ρ(εq,λ, T )] (B3)

is damping due to thermally activated collisions.
We choose a field b/JS = 0.485, for which the sponta-

neous damping of the C mode is maximal [cf. Fig. 3(c)].
Results for the total damping dependent on temperature are
shown in Fig. 11(a). As expected, finite temperatures lead to
an increase of magnon damping.

As shown in Fig. 11(b), the A mode (blue line) exhibits
the largest relative increase in damping due to thermally acti-
vated decays, �

decay
0,ν (T ). This can be explained by the factor

[ρ(εq,λ, T ) + ρ(ε−q,μ, T )] in Eq. (B2). If one of the two de-
cay products happens to be the G mode, which is lowest in
energy, the thermal Bose weight is large, especially for small
q. However, if one of the decay products has low energy and
low momentum, the energy and momentum of the other decay
product have to be close to those of the decaying magnon, that
is, within the same mode (but necessarily at lower energy).
Such a decay process is sketched in Fig. 11(d). Reviewing the
energy dispersion of the ABC modes, one finds that only that
of the A mode is concave at the Brillouin zone center. Hence,
the aforementioned type of thermally enhanced decay process
can only happen for the A mode.

The scenario for damping due to collisions �coll
0,ν (T ), shown

in Fig. 11(c), is opposite; the A mode exhibits the lowest rela-
tive increase. The factor [ρ(εq,μ, T ) − ρ(εq,λ, T )] in Eq. (B3)
tells us that a low-energy magnon at εq,μ, which collides
with the magnon at ε0,ν to form a εq,λ magnon, dominates
the thermal weight. If this low-energy magnon is in the G
mode, its contribution in energy and momentum to the final
magnon is small. Thus, the final magnon must have energy
and momentum close to the ε0,ν magnon (but necessarily
higher energy). Such states are only available for the convex
B and C modes, as indicated in Fig. 11(e), but absent for the
concave A mode.

Combined, thermal damping and collision processes lead
to the rather similar temperature trend of the ABC modes’
damping shown in Fig. 11(a). The takeaway message from
this analysis is that the thermally enhanced damping of the C
mode at kBT/JS = 0.2 is still a factor of 2 smaller than its
spontaneous damping at T = 0 [cf. green line in Fig. 11(a)].
We conclude that the quantum damping is also observable for
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(a) clockwise mode (C)

b = 0.2/(JS)
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(a) anticlockwise mode (A)

b = 0.4/(JS)
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(a) anticlockwise mode (A)

b = 0.6/(JS)
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(a) anticlockwise mode (A)

b = 0.8/(JS)
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(b) breathing mode (B)
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(a) anticlockwise mode (A)
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(c) anticlockwise mode (A)
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(a) anticlockwise mode (A)
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(a) anticlockwise mode (A)
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(a) anticlockwise mode (A)

Magnetic field

FIG. 10. Decay channel efficiencies Cλμ←ν for the (a) C mode, (b) B mode, and (c) A mode dependent on magnetic field b. For each of the
three modes, we used relative color scales, normalized to the largest Cλμ←ν (large red squares).

finite-temperature SkXs, whose stability relies on moderate
thermal fluctuations.

5. Consistency of spin-wave theory

The Mermin-Wagner theorem states that two-dimensional
magnets with spin space isotropy exhibit no long-range order
at nonzero temperatures [159]. Within spin-wave theory, as
pioneered by Bloch [160], this is signaled by a diverging
magnetization M(T ) for T > 0, indicating the failure of the
initial assumption of an ordered ground state.

For a chiral magnet, spin space isotropy is broken due to
DM interaction and the Mermin-Wagner theorem does not
apply. Nonetheless, we need to check for consistency to val-
idate our spin-wave theory approach. We do so by noting
that up to harmonic order the magnetization assumes the

form

M(T ) ≈ M0 + δM0 + M2(T ). (B4)

Here M0 = −V −1∂E0/∂b is the classical ground-state mag-
netization obtained from the classical ground-state energy E0

(or Ĥ0) and V is the sample’s volume. The lowest-order quan-
tum correction to the magnetization δM0 = −V −1∂δE0/∂b
is associated with the harmonic zero-point energy δE0 =∑

ν,k[εk,ν − (Mk)νν]/2, with Mk given in Eq. (A24a). Fi-
nally, M2(T ) = −V −1 ∑

ν,k ρ(εk,ν , T )∂εk,ν/∂b accounts for
the thermal occupation of magnons. Consistency demands
that neither δM0 nor M2(T ) diverges, i.e., neither quantum nor
thermal fluctuations destroy magnetic order.

Let us quickly review the failure of spin-wave theory for a
two-dimensional ferromagnet with spin space isotropy [160].
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anticlockwise

FIG. 11. Damping of ABC modes of an M = 8 SkX at b/JS = 0.485 dependent on temperature T . (a) Total damping �total
0 (T ) = �

spon
0 +

�
decay
0 (T ) + �coll

0 (T ), (b) damping �
decay
0 (T ) due to thermally activated decays, and (c) damping �coll

0 (T ) due to thermally activated collisions.
Also shown is the magnon band structure in the vicinity of the Brillouin zone center with (d) the exemplary decay process and (e) the exemplary
collision process.

Since there are no quantum fluctuations (δM0 = 0), only

M2(T ) ∝
∑

n

∫
BZ

1

eεk,ν /(kBT ) − 1
d2k (B5)

remains to be investigated. Integration is over the first Bril-
louin zone. (We used that −∂εk,ν/∂b is constant because all
magnons carry the same nonzero magnetic moment.) The
lowest-energy magnon with energy εk,1 ∝ k2 is a Goldstone
mode. Thus, for T > 0, there is a region k = |k| < � for
which εk,1 � kBT (� > 0 being an upper cutoff). Conse-
quently, after expanding the exponential in Eq. (B5), we find

M2(T ) ∝ T
∫ �

0

k

εk,1
dk ∝ T

∫ �

0

1

k
dk (B6)

and encounter the divergence of thermal fluctuations.
For a SkX in the continuous limit, there is also a Goldstone

mode with εk ∝ k2. It is associated with the spontaneously
broken translational invariance. Hence, it costs no energy to
rigidly translate the SkX in space. In our discrete simulations,
translational invariance is already broken on the Hamiltonian
level and the Goldstone mode becomes the gyrotropic mode
with a tiny spin-wave gap. Nonetheless, we can extract its
magnetic moment −∂εk,1/∂b, as depicted in Fig. 12(a). For

FIG. 12. Magnetic moment of a SkX’s translational Goldstone
mode (a) along high-symmetry paths and (b) dependent on the dis-
tance from the Brillouin zone center.

low momenta, we find that is goes as k2 [Fig. 12(b)]. Conse-
quently, the divergence of the magnetization is lifted:

M2(T ) ∝ T
∫ �

0

1

k

∂εk

∂b
dk ∝ T

∫ �

0
k dk < ∞. (B7)

Since typical chiral magnets have small D/J ratios, the
crucial ingredient to break spin space isotropy is also small.
This installs a threshold temperature above which spin-wave
theory breaks down. The first almost flat magnon mode, which
may exhibit a divergent thermal contribution to the magneti-
zation, approximately appears at an energy ε0 = JS(D/J )2.
Due to the almost constant magnetic moment of flat modes,
its thermal contribution to M(T ) reads

M2(T ) ∝ ρ(ε0, T )
∫

BZ
d2k. (B8)

In the limit of D/J � 1 and ε0 � kBT , we have ρ(ε0, T ) ∝
kBT

JS(D/J )2 and the Brillouin zone area
∫

BZ d2k ∝ (D/J )2; hence

M2(T ) ∝ kBT

JS
. (B9)

Notice that the D/J ratio cancels out. Thus, spin-wave theory
for a two-dimensional SkX is consistent if

kBT � JS. (B10)

Since kBTc ∼ JS is approximately the ordering temperature of
the SkX [116], Eq. (B10) tells us that validity of (harmonic)
spin-wave theory is restricted to temperatures well below the
ordering temperature, which is the usual realm of applicabil-
ity.

At T = 0, we are still concerned with quantum fluctuations

δM0 = − 1

2V

∑
ν,k

(
∂εk,ν

∂b
− ∂ (Mk)νν

∂b

)
(B11)

due to the noncollinearity of the SkX. Note that there are no
divergent contributions in Eq. (B11). This is verified by direct
numerical evaluation. In Fig. 13 we show the ratio δM0/SM0,
encoding the relative importance of quantum corrections with
respect to the classical ground-state magnetization M0, depen-
dent on the skyrmion unit cell size. Even for tiny skyrmion

033491-14



QUANTUM DAMPING OF SKYRMION CRYSTAL … PHYSICAL REVIEW RESEARCH 2, 033491 (2020)

FIG. 13. Ratio of quantum corrections to the magnetization δM0

and the classical ground-state magnetization M0 dependent on D/J
(or linear skyrmion size M). We set b/JS = 0.5(D/J )2.

unit cells with a linear size of M = 5 (25 spins per unit
cell), the quantum mechanical magnetization corrections are
smaller than 3% (for S = 1). We conclude that quantum fluc-
tuations are negligible.

6. Dependence of quantum damping on skyrmion size

In Fig. 14 we plot the total three-magnon vertex

V total
k,q←k+q ≡

∑
λ,μ,ν

V λμ←ν

k,q←k+q = −
∑
λ,μ,ν

(
δμνI+z

k,λμ
+ δλνI+z

q,μλ

)
(B12)

per magnetic unit cell at zero momenta (k = q = 0), i.e.,

V total
0,0←0 = −2

∑
μ,ν

I+z
0,μν, (B13)

dependent on the D/J ratio (skyrmion size). As D/J → 0, a
single skyrmion becomes infinitely large, but the total three-
magnon vertex V total

0,0←0 converges to a nonzero constant. Thus,

FIG. 14. Integrated three-magnon vertex dependent on D/J
(bottom abscissa) and linear skyrmion size M (top abscissa). We set
b/JS = 0.5(D/J )2.

the averaged three-magnon vertex

V λμ←ν

0,0←0 ≡ 1

6

V total
0,0←0

N
≈ 1

6

V total
0,0←0[

2π/arctan
(

D
J

)]2 ∝ J

(
D

J

)2

(B14)

scales with J (D/J )2 if D/J � 1. The same finding applies to
finite momenta, which merely introduce phase factors. (The
factor 1

6 is due to the six nearest neighbors on the triangular
lattice.)

In the limit of large skyrmions, the degree of noncollinear-
ity is tiny, which means for the spin-wave kernel Hk in
Eq. (A23) that the anomalous coupling matrix Nk ∝ D/J
is tiny. Consequently, the Yk ∝ D/J submatrix of Pk in
Eq. (A31) is tiny too. As for the decay vertex in Eq. (A44),
we conclude that on average

Vλμ←ν

k,q←k+q ≈
∑
α,β,γ

V αβ←γ

k,q←k+q(X∗
k )λα (X∗

q )μβ (Xp)νγ ∝ J

(
D

J

)2

(B15)

is the dominating contribution because Xk ∝ (D/J )0. Intro-
ducing the mean decay amplitude as

∣∣Vν
k

∣∣2 ≡ 1

Nu

1

N2

∑
q

∑
λ,μ

∣∣Vλμ←ν

k,q←k+q

∣∣2 ∝ J2

(
D

J

)4

(B16)

(note that the sum over λ and μ and the 1/N2 factor have
inverse scaling with D/J such that their influence cancels out),
we find for the spontaneous damping that

�
spon
k,ν

≈ π

2

∣∣Vν
k

∣∣2D2m
k (εν,k) ∝ J

(
D

J

)4

as
D

J
→ 0 (B17)

because D2m
k ∝ 1/J . We use Eq. (B17) to estimate the damp-

ing of the ABC modes �
spon
X , with X = A, B, C. As shown in

Fig. 3(c), �spon
X ≈ FX J , with FA = 10−3, FB = 10−2, and FC =

10−1 (for D/J = 1). Hence, we expect �
spon
X ≈ FX J (D/J )4.

7. Influence of dimensionality on magnon damping

As mentioned in the main text, the zero-temperature damp-
ing is directly related to the two-magnon density of states,
which derives from the δ function in Eq. (A49) (first sum).
In two dimensions, the onset of the two-magnon DOS is a
Heaviside step function. Thus, as a single-particle band
crosses the onset of the two-magnon DOS, its damping also
exhibits a step, which renders the magnon damping and
linewidth broadening discontinuous. In contrast, in three di-
mensions, the onset is given by a square root (see also
Refs. [95,97]). Hence, if instead of a two-dimensional SkX
we studied a three-dimensional SkX, e.g., built from stack-
ing SkX layers, we would expect a renormalization of the
step. However, this renormalization is not as drastic as that
associated with going from one to two dimensions, for
which the Van Hove singularity of the two-magnon DOS
changes from an inverse square root to the step function
[97]. Thus, in general, the overall magnitude of the sponta-
neous magnon damping is not expected to be considerably
smaller in three than in two dimensions. Hence, details be-
come important, above all the magnetic texture along the third
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dimension. For example, skyrmion tubes, which are stacks of
two-dimensional skyrmion crystals, are expected to exhibit
spontaneous decay different from that of Bloch point crystals,
which are genuinely three-dimensional noncollinear textures.
For a noncollinear order along the third direction, larger con-
tributions to the three-magnon vertices are expected than for a
collinear order.

There is another important aspect of three-dimensional
SkXs, associated with the magnon bands acquiring dispersion
along the third direction [161]. For quasi-two-dimensional
layered structures with weak interlayer coupling much smaller
than the size of typical magnon band gaps in two dimensions,
the dispersion along the additional dimension is negligible.
However, for interlayer coupling as large as (or larger than)
magnon band gaps, the flat bands in two dimensions can
no longer be considered flat and their influence on magnon
damping becomes less abrupt.

For a real sample of finite thickness L, we expect a
transition between two-dimensional and three-dimensional
behavior with increasing thickness. The finite thickness acts
as a quantum well, introducing several magnon energy levels

E j
n = ε2D

n + j2π2h̄2

2m∗L2
, (B18)

with quantum number j for each magnon band n with energy
ε2D

n in two dimensions. We assumed a parabolic dispersion
along the third direction, ignoring subleading nonreciprocal
shifts due to DMI. The respective effective magnon mass
m∗ = h̄2/2SJ⊥d2 includes the exchange interaction J⊥ along
the third direction and the layer spacing d . The E j

n ’s become
dense as L → ∞ and periodic boundary conditions may be
applied. A critical thickness L′ may be defined by the con-
dition that the broadening of the discrete magnon quantum
well levels, due to either spontaneous decay or Gilbert damp-
ing, equals their energetic spacing 
E ≈ SJ⊥(πd/L)2, which

we approximate by setting j = 1. For the classical Gilbert
damping, the magnon damping reads �α

n, j ≈ αE j
n ≈ αε2D

n .
The associated critical thickness is thus

L′
class ≈ π

√
SJ⊥
αε2D

n

d. (B19)

Taking the C mode as reference, we have ε2D
n ≈ JS(D/J )2.

With J⊥ = J , as expected for a cubic crystal, it follows that

L′
class ≈ π√

α

J

D
d, (B20)

which amounts to L′
class ∼ 5000d for parameters of

Cu2OSeO3 (α = 10−4 and D/J ≈ 0.06, taken from
Refs. [138] and [8], respectively). In contrast, for the
spontaneous quantum damping, we set �

spon
C ≈ 0.1J (D/J )4

(see Appendix B 6) and find

L′
spon ≈ π

√
10SJ⊥

J

(
J

D

)2

d. (B21)

With S = 1 and J⊥ = J , we obtain L′
spon ∼ 2700d for

Cu2OSeO3. In terms of the relative importance of quantum
to classical damping RC, as introduced in Sec. IV, the relation

L′
class =

√
RCL′

spon (B22)

is extracted. Obviously, if the quantum damping is stronger
than the classical damping, it sets the critical thickness for the
crossover between two-dimensional and three-dimensional
behavior.

We conclude that the results on spontaneous decay we have
obtained in the strictly two-dimensional limit apply to thin
films with a thickness L � min(L′

class, L′
spon).
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