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Quantum Lifshitz points and fluctuation-induced first-order phase transitions
in imbalanced Fermi mixtures
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We perform a detailed analysis of the phase transition between the uniform superfluid and normal phases
in spin- and mass-imbalanced Fermi mixtures. At mean-field level we demonstrate that at temperature T → 0
the gradient term in the effective action can be tuned to zero for experimentally relevant sets of parameters,
thus providing an avenue to realize a quantum Lifshitz point. We subsequently analyze damping processes
affecting the order-parameter field across the phase transition. We show that in the low-energy limit, Landau
damping occurs only in the symmetry-broken phase and affects exclusively the longitudinal component of the
order-parameter field. It is however unavoidably present in the immediate vicinity of the phase transition at
temperature T = 0. We subsequently perform a renormalization group analysis of the system in a situation,
where, at mean-field level, the quantum phase transition is second order (and not multicritical). We find that, at T
sufficiently low, including the Landau-damping term in a form derived from the microscopic action destabilizes
the renormalization group flow toward the Wilson-Fisher fixed point. This signals a possible tendency to drive the
transition weakly first order by the coupling between the order-parameter fluctuations and fermionic excitations
effectively captured by the Landau-damping contribution to the order-parameter action.
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I. INTRODUCTION

Ultracold Fermi gases have been a topic of growing interest
over the last years [1–7]. This is related to the rich phe-
nomenology involving the interplay of quantum statistics and
interaction effects, including aspects hardly reachable or con-
trollable in traditional electronic systems. A standard example
is the BEC-BCS crossover [8,9], experimentally realized by
resonantly controlled s-wave interaction strength between par-
ticles in different pseudospin states. In Fermi mixtures, the
possibility of tuning the population [10–12] and mass im-
balance [13–20] allows for studying unconventional pairing
phenomena leading to unusual superfluid phases such as the
breached-pair (Sarma-Liu-Wilczek) superfluids [21,22] or the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases [23,24].

Of substantial interest are quantum phase transitions be-
tween the superfluid and the normal, Fermi-liquid-like phases
in imbalanced systems [4,25–31]. Increasing the composition
(and/or mass) imbalance mismatches the Fermi surfaces and
suppresses pairing. The population and/or mass imbalance
therefore plays the role of a realistically controllable param-
eter to tune the system across the phase transition at both
temperature T = 0 and T > 0.
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An interesting and thus far not fully explored aspect of the
phase diagram of Fermi mixtures concerns multicritical phe-
nomena. It is well recognized that, in a typical situation, the
phase transition between the uniform superfluid and normal
phases is first order for T sufficiently low, and necessarily be-
comes continuous for T higher, above a tricritical temperature
Ttri [32–34]. It has, however, recently been shown [35] that
(in dimensionality d = 3) Ttri can actually be suppressed to
zero for sufficiently large mass imbalance. In this situation,
the phase diagram exhibits a quantum critical point (QCP). As
was indicated by mean-field studies, there is however another,
quite distinct multicritical phenomenon present at T > 0, re-
lated to the so-called Lifshitz point [36,37], where two ordered
phases (uniform and nonuniform superfluids) coexist with the
normal phase. The universal critical singularities at the clas-
sical (T > 0) Lifshitz point [38–40] are completely different
from those controlling the critical or tricritical point. Notably,
while the upper critical dimension du for the tricritical tran-
sition is 3, it is much higher (at least 9/2) for the Lifshitz
transition [38,41,42], making the conventional approaches to
critical phenomena in spatial dimensionality d = 3 based on
the ε expansion (ε = du − d) problematic [41]. The presence
of a Lifshitz point additionally leads to rich and interesting
crossover phenomena [38].

Phase transitions at T > 0 and T = 0 are driven by thermal
and quantum fluctuations, respectively. The natural question
concerning the physics of imbalanced Fermi gases is whether
the Lifshitz point may be suppressed to zero temperature
and arise as a result of purely quantum fluctuations. In this
paper we give a positive answer to this question, deriving
an analytical mean-field criterion for the occurrence of such
a quantum Lifshitz point and providing a proposal for its
potential experimental realization.
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The second problem addressed in the present paper con-
cerns the nature of the quantum phase transition between the
normal and uniform superfluid phases in a situation when the
transition is continuous (and not multicritical) at mean-field
level. The general approach to quantum criticality in Fermi
systems, based on an effective bosonic mode, is recognized
as the Hertz-Millis theory [43,44]. Within this approach, the
interaction between the collective order-parameter mode and
soft fermionic excitations across the Fermi surface is captured
by the so-called Landau-damping term, appearing in the in-
verse propagator of the order-parameter mode. The presence
(or absence) of Landau damping, as well as its precise form,
has a profound impact on the quantum critical behavior; in
particular, it determines the value of the dynamical critical
exponent z, which in turn influences many thermodynamic
and transport properties. As was shown in Ref. [45], Lan-
dau damping is always present in the ordered phase in the
vicinity of the imbalance-driven superfluid quantum phase
transition. We here supplement and extend the analysis of
Ref. [45] by further elucidating the nature of Landau damping
in the superfluid phase. In particular, we demonstrate that it
affects exclusively the longitudinal component of the order-
parameter field. By considering the normal phase, we show in
turn that Landau damping is absent therein. This constitutes
a situation different as compared to that studied for magnetic
quantum critical points and requires a renormalization group
(RG) treatment formulated in the ordered phase. We address
this problem within the framework of nonperturbative RG.
Our results, based on a very simple truncation of a func-
tional RG flow equation, recover the expected behavior of
the system in the absence of Landau damping. However, for
temperatures low enough, the presence of Landau damping
in the form derived from the microscopic model turns out to
destabilize the expected flow toward the Wilson-Fisher fixed
point, so that the asymptotic scaling regime is not reached.
This behavior may indicate a fluctuation-driven first-order
transition induced by Landau damping and would constitute a
mechanism for fluctuation-driven first-order phase transitions
entirely different as compared to the one well studied, e.g., for
the ferromagnetic quantum phase transition [46].

The outline of the present paper is as follows: In Sec. II,
focusing on the symmetry-broken phase, we summarize the
structure of the effective order-parameter action employed
in our study of the superfluid phase transition. Section III
contains an analysis of the pair fluctuation propagator in the
normal phase, in particular the properties of the gradient
expansion (including both analytical and nonanalytical con-
tributions). This leads to insights concerning order-parameter
excitations as well as the dominant instabilities toward the
uniform or nonuniform ordered phases. We derive a criterion
for the occurrence of a quantum Lifshitz point and discuss
its phenomenological implications. We subsequently discuss
the nature of the (nonlocal) terms related to Landau damping
and demonstrate their absence in the normal phase in the low-
energy limit. In Sec. IV we present a study of order-parameter
fluctuation effects focusing on a situation in which the quan-
tum phase transition is second order (and not multicritical) at
mean-field level. We emphasize the necessity to formulate the
RG in the symmetry-broken phase [47]. We discuss the effect
of destabilizing the RG flow toward the Wilson-Fisher fixed

point at temperatures (T > 0) sufficiently low caused by the
Landau damping. We summarize the paper in Sec. V.

II. EFFECTIVE ACTION

We consider a two-component fermionic mixture of parti-
cles of masses mσ and chemical potentials μσ (σ ∈ {+,−}),
where an attractive interspecies contact interaction g < 0
triggers s-wave pairing. The system is described by the mi-
croscopic action

Sψ =
∫

k

∑
σ

ψ̄σ
k

[−G−1
0,σ (k)

]
ψσ

k + g
∫

k,k′,q
ψ̄+

k+qψ̄
−
−kψ

−
k′+qψ

+
−k′

(1)

and the grand-canonical partition function reads

Z =
∫
D

[
ψ̄σ

k , ψσ
k

]
e−Sψ . (2)

Here {ψ̄σ
k , ψσ

k } are Grassmann fields, G0,σ (k) = (ik0 −
ξσ

k )−1, ξσ
k = �k2/(2mσ ) − μσ denotes the dispersion relation,

and k = (k0, �k) collects the (fermionic) Matsubara frequency
k0 = 2πT (n + 1/2) [n ∈ Z] and momentum �k. Throughout
the paper we put kB = h̄ = 1 and use the shorthand notation∫

k (·) = T
∑

k0

∫
�k (·) = T

∑
k0

∫
dd �k

(2π )d (·).
The effective action S0 for the order-parameter field can

be derived using a standard procedure described in detail in
Ref. [25]. We decouple the interaction term in Eq. (1) into the
Cooper channel via the Hubbard-Stratonovich transformation
[48]. This introduces the s-wave pairing field φq conjugate
to the fermionic bilinear B̄q = ∫

k ψ̄+
k+qψ̄

−
−k . Subsequently we

integrate out the Grassmann fields {ψ̄σ
k , ψσ

k }, which leads to
a purely bosonic description of the system. We obtain the
following expression,

S0[φ] = 1

2

∫
q
�∗

q F−1(q) �q +U[φ], (3)

where �∗
q = [φ̃∗

q , φ̃−q], �q = [φ̃q, φ̃
∗
−q]T , and φq = φ0δq,0 +

φ̃q is the bosonic pairing field split into the uniform con-
tribution φ0 and fluctuation φ̃q (notice that φ̃q=0 = 0). The
quantity q encompasses the (bosonic) Matsubara frequency
q0 and momentum �q. All the momentum expansions will
now be performed around �q = 0 which restricts the results
below to uniform phases. Nonuniform ordering tendencies are
discussed in Sec. III.

The termU[φ] may be written as

U[φ] =
∫

x
U (φ), (4)

where x = (τ, �x) collects the imaginary time and position vec-
tor, while

∫
x(·) = ∫ 1/T

0 dτ
∫

dd x (·). The effective potential
U (φ) takes the form [35]

U (φ) = −|φ|2
g

+ T
∫

�k

∑
σ

ln f
( − Eσ

k

)
, (5)

where f (x) = [exp(x/T ) + 1]−1 and

Eσ
k = ξ+

k − ξ−
k

2
+ σ

√(
ξ+

k + ξ−
k

2

)2

+ |φ|2 (6)
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is the excitation energy of fermionic quasiparticles. The global
minimum of U (φ) determines the mean-field grand-canonical
potential per unit volume.

Of our major present interest is the inverse Gaussian pair
fluctuation propagator matrix F−1(q) in Eq. (3), encoding the
dynamical characteristics of the collective excitations in the
system. Its properties in the superfluid phase were recently
addressed in Ref. [45], leading inter alia to the conclusion that
Landau damping of the Anderson-Bogolyubov mode is un-
avoidable close to the quantum phase transition approaching
from the superfluid phase. Damping brings about modification
of the dynamics of the system, which is manifested by terms
∼|q0|

| �q| in a gradient expansion of matrix elements of the inverse

propagator F−1(q). Denoting Mi j (q) := [F−1(q)]i j , we obtain
[45]

M11(q) = M22(−q) = 1

2

[
Z �q2 − iW q0 + Z0q2

0 + Lρ0

2

|q0|
| �q|

]
,

(7)

M12(q) = M21(q) = ρ0

2

[
Y �q2 + Y0q2

0 + L

2

|q0|
| �q|

]
, (8)

where we parametrize the action in such a way that terms
Mi j (0) are contained in the local potential term U[φ]. The
quantities {Z, Z0,Y,Y0,W, L} may be related to the parame-
ters of the microscopic fermionic action Sψ , while ρ0 := |φ0|2.
It is noteworthy that contributions related to the damping of
collective modes are proportional to ρ0

|q0|
| �q| . In the superfluid

phase, the quasiparticles are a superposition of particle-like
and hole-like excitations [6,49]. As a consequence, in the eval-
uation of the matrix elements of F−1(q), both particle-particle
and particle-hole bubble diagrams may give a contribution
[49]. Pair fluctuations φ̃q couple with fermionic particle-hole
excitations across the Fermi level, which gives rise to the
Landau damping [50,51]. However, once we move to the
normal phase (ρ0 = 0), the particle-hole continuum vanishes
and damping terms disappear [45]. This manifests itself by
the proportionality of the damping terms to ρ0. This feature
makes the nature of the phase transition in imbalanced Fermi
mixtures distinct from those studied in the context of magnetic
phase transitions (see, e.g., Refs. [46,52–54]).

We now decompose φ̃q using the Cartesian representation

φ̃q = σq + iπq, φ̃∗
q = σ−q − iπ−q, (9)

where σq and πq are bosonic fields describing longitudinal and
transverse fluctuations of the pairing field, respectively. The
uniform contribution φ0 is chosen real. We have σ ∗

q = σ−q and
π∗

q = π−q since σ (x) and π (x) are real fields. Inserting the
decomposition of Eq. (9) into Eq. (3) and parametrizing the
effective potential via a quartic form

U (φ) = λ

2
(ρ − ρ0)2, ρ := |φ|2, (10)

leads to

S0 = Sσ 2 + Sπ2 + Sσπ + Sσ 3 + Sσπ2

+ Sσ 4 + Sπ4 + Sσ 2π2 , (11)

FIG. 1. A schematic illustration of the mean-field phase diagram
(compare Ref. [35]). The shaded area corresponds to the superfluid
phase (SF). The red dot marks the quantum phase transition located
at h = hc.

where the quadratic terms are obtained as

Sσ 2 = 1

2

∫
q

[
m2

σ + Z0
σ q2

0 + Zσ �q2 + Lρ0
|q0|
| �q|

]
σqσ−q, (12)

Sπ2 = 1

2

∫
q

[
Z0

πq2
0 + Zπ �q2

]
πqπ−q, (13)

Sσπ = −1

2

∫
q

W q0[σqπ−q − πqσ−q]. (14)

Here m2
σ = 2λρ0 is a mass of the σ field, Zσ = Z + ρ0Y , Z0

σ =
Z0 + ρ0Y0, Zπ = Z − ρ0Y , and Z0

π = Z0 − ρ0Y0.
For L = 0 the obtained action S0 is reminiscent of the

one studied for interacting bosons (see, e.g., [55,56]). As ex-
pected, the transverse π mode is massless. We observe that the
Landau-damping term occurs only in the longitudinal mode.
We also note that its presence was not taken into account in
previous studies of fluctuation effects in imbalanced Fermi
systems (e.g., [29,35,57]).

III. PAIR FLUCTUATION PROPAGATOR
IN THE NORMAL PHASE

We now set out to analyze the structure of the pair
fluctuation propagator in the normal phase. We focus on di-
mensionality d = 3 and the situation in which (at mean-field
level) the phase transition is continuous down to T = 0. As
was shown in Ref. [35], this is achievable for the mass ra-
tio r = m−

m+ > rc ≈ 3. Note that (at mean-field level) this is
very different from the case d = 2, where the correspond-
ing quantum phase transition is always discontinuous, but
may be driven second order by order-parameter fluctuation
effects [29]. We treat the “Zeeman” field h = μ+−μ−

2 as the
control parameter tuning the system toward the phase tran-
sition. The system remains disordered for h > hc, where hc

may be expressed via the microscopic model parameters [35].
The occurrence of an instability toward a nonuniform (FFLO)
superfluid manifests itself by a negative gradient coefficient Z
(see below), which is of our particular interest in Sec. III A.
We present a schematic mean-field phase diagram in Fig. 1.
Note that the typical profile of the phase boundary shows
reentrant behavior for r large enough [32,35].
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We employ the Noziriès-Schmitt-Rink method [58] focus-
ing on zero temperature and the vicinity of the phase transition
[59]. We compute the inverse pair fluctuation propagator
F−1

0 (q) by evaluating the particle-particle bubble diagram [6]

F−1
0 (q) = −1

g
−

∫
k

G0,+(k + q)G0,−(−k)

= − m

4πaF
+

∫
�k

[
ϑT

kq

iq0 − ξkq
+ m

�k2

]
, (15)

where m = 2r
1+r m+ is the reduced mass, ξkq = ξ−

k + ξ+
k+q, and

ϑT
kq = 1 − f (ξ−

k ) − f (ξ+
k+q). In the above expression, we reg-

ularized the integral using the Lippmann-Schwinger equation
[60]

1

g
= m

4πaF
−

∫
�k

1

2εk
, (16)

where aF is the fermionic s-wave scattering length, εk =
�k2/2m, and the integrals are cutoff at momentum �UV . The
procedure eliminates ultraviolet divergencies in the limit g →
0− and �UV → ∞ while keeping aF constant [6].

We perform analytical continuation (iq0 
→ ω + i0+) of
Eq. (15), and separate the obtained retarded counterpart of
F−1

0 (q) into real and imaginary parts using the Sokhotski for-
mula 1

x±i0+ = P 1
x ∓ iπδ(x), where P is the Cauchy principal

value. As a result, we find

ReF−1
0,R (ω, �q) = − m

4πaF
+

∫
�k

[
P

ϑT
kq

ω − ξkq
+ m

�k2

]
(17)

and

ImF−1
0,R (ω, �q) = −π

∫
�k
ϑT

kq δ(ξkq − ω). (18)

The present treatment is in a way parallel to that employed in
the context of the random phase approximation for plasmons
in the homogeneous electron gas [61], where however the
bosonic propagator contains the particle-hole bubble diagram
instead of the particle-particle one.

A. Gradient expansion and the quantum Lifshitz point

Focusing on T = 0 we perform the low-frequency and low-
momentum expansion of ReF−1

0,R (ω, �q). We take into account
terms up to second order in ω and �q. This leads to

ReF−1
0,R (ω, �q) = a2 + Z �q2 − W ω − Z0ω

2 + · · · . (19)

The gradient coefficients {Z, Z0,W } as well as a2 can be deter-
mined analytically in the limit T → 0, where f (x) → θ (−x).
The constant contribution ReF−1

0,R (0, �0) = a2 corresponds to
the Landau coefficient of |φ|2 and is given by [35]

a2 = − m

4πaF
+ m

2π2

[
kF,+ + kF

2
ln

( |kF,+ − kF |
|kF,+ + kF |

)]
, (20)

where kF = √
2mμ is the “average” Fermi momentum,

kF,+ = √
2m+(μ + h) denotes the “↑”-particle (σ = +)

Fermi momentum, and μ = μ++μ−
2 is the “average” chemi-

cal potential. Within mean-field theory a2 > 0 in the normal

FIG. 2. The gradient coefficient Z as a function of the “Zeeman”
field h. The red dot corresponds to h∗, where Z = 0. The plot param-
eters (see the main text) are m+ = 1, T = 0, r = 4.03, and μ = 0.1.

phase, and a2(h = hc) = 0. The gradient coefficients are given
by

W = m2

4π2

[
kF,+

k2
F,+ − k2

F

− 1

2kF
ln

( |kF,+ − kF |
|kF,+ + kF |

)]
, (21)

Z = 1

2π2

(
m

4

{
m

m+

[
kF,+

k2
F,+ − k2

F

− 1

2kF
ln

( |kF,+ − kF |
|kF,+ + kF |

)]

+ m2

6m+2

[
−5k3

F,+ − 3k2
F kF,+

(k2
F,+ − k2

F )2
+ 3

2kF
ln

( |kF,+ − kF |
|kF,+ + kF |

)]}

+ m+kF,+
(k2

F,+ − k2
F )2

[
m2k2

F,+
3m+2 − m

2m+
(
k2

F,+ − k2
F

)]+

− mkF,+
(
k2

F,+ − k2
F

)
6(k2

F,+ − k2
F )2

)
, (22)

and

Z0 = m

16π2k2
F

[
k3

F,+ + k2
F kF,+(

k2
F,+ − k2

F

)2 + 1

2kF
ln

( |kF,+ − kF |
|kF,+ + kF |

)]
.

(23)

The sign of Z determines whether, for vanishing a2, the system
tends to condense in the uniform (BCS-type) or nonuniform
(FFLO) ground state. We are now interested in a situation in
which both a2 and Z are zero, which provides a criterion for
the occurrence of a (quantum) Lifshitz point. We introduce
h∗ as a value of h defined by the condition Z (h∗) = 0 and
analyze the situation in which h∗ = hc. It is worth noting that
{Z, Z0,W } do not depend on the scattering length aF . One may
therefore tune the system to h∗, and independently vary aF to
adjust hc toward h∗. In Fig. 2 we plot Z for the experimentally
realized mixture of 161Dy and 40K atoms [17,18], which is
characterized by r = 4.03 and μ = 0.1.

We adapt the value of hc [see Eq. (20)] to h∗ by manipulat-
ing the parameter (kF aF )−1 (see Fig. 3). The quantum Lifshitz
point corresponds to (kF aF )−1

∗ = 0.977692 in this situation.
We also note that for the physically relevant range of param-
eters the coefficients W and Z0 are positive, monotonically
decreasing functions of h.
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FIG. 3. The quadratic Landau coefficient a2 as a function of
the “Zeeman” field h and three values of (kF aF )−1. The condition
a2(hc ) = 0 determines the critical value hc of h. The red dot corre-
sponds to h∗, where Z = 0. The quantum Lifshitz point occurs for
hc = h∗ and is found for (kF aF )−1

∗ = 0.977692. Notice that when
hc > h∗ instability toward the FFLO pairing is observed. The plot
parameters (see the main text) are m+ = 1, T = 0, r = 4.03, and
μ = 0.1.

An analogous reasoning may be carried out for other
experimentally studied Fermi mixtures characterized by suf-
ficiently large mass imbalance r = m−

m+ > rc ≈ 3. Examples
are the 6Li - 40K mixture [13–16] (r = 6.67) as well as the
6Li - 53Cr mixture [19] (r = 8.83). The quantum Lifshitz point
is then obtained for (kF aF )−1

∗ = 0.879942 and (kF aF )−1
∗ =

0.836476, respectively (with μ = 0.1 in each case). In gen-
eral, the value of h∗ is reduced upon increasing r since a larger
mass difference results in the occurrence of the FFLO pairing
for smaller population asymmetry.

The occurrence of the quantum Lifshitz point has a pro-
found influence on the scaling behavior of the system for
T → 0. The RG fixed point controlling the phase transition at
T = 0 may then be non-Gaussian even for d = 3, unlike the
typical situations recognized in electronic systems. Bringing
the system to the proximity of the scenario discussed above
should also yield complex and interesting crossover behavior.
Resolution of the critical singular behavior at T → 0 for the
discussed Lifshitz transition is beyond the scope of the present
paper, but certainly depends on the form of the damping term
in the propagator (see the next sections) and therefore will
not fall into any of the classes discussed in the context of
magnetic instabilities in electronic systems [62,63]. It may
also be sensitive to the instability discussed in Sec. IV.

We finally point out that in a beyond-mean-field picture,
the FFLO-type phases are suspected [64–66] to be marginally
unstable to fluctuation effects in dimensionality d = 3 at
T > 0 (but not at T = 0). This would imply that, at least for
infinite and homogeneous systems, the quantum Lifshitz point
should always occur in the phase diagram if there is a phase
transition between the FFLO-type and uniform superfluid
phases at T = 0.

B. Landau damping

We now analyze the imaginary part of the retarded inverse
propagator ImF−1

0,R (ω, �q) at T = 0. Whenever ImF−1
0,R (ω, �q) �=

0, the complex pole of F0,R(ω, �q) develops, which leads to

broadening of the peak corresponding to a collective mode
in the spectral density function S0(ω, �q) = −2ImF0,R(ω, �q)
[48,61]. As a result, Landau damping emerges and the lifetime
of collective excitations is finite. This issue was studied within
the superfluid state [45,50,51] but not in the normal phase.

We consider the limit T → 0 in Eq. (18) and introduce u =
|�k|2 > 0. Angular integration leads to

ImF−1
0,R = − m+

8π | �q|
∫ ∞

0
du[1 − θ (−ξ−

u ) − θ (ξ−
u − ω)]

× θ

[
1 − m+2

u| �q|2
(

ω − u

m
+ 2μ − �q2

2m+

)2
]

= − m+

8π | �q|
∫ λω

0
du

θ

[
1 − m+2

u| �q|2
(

ω − u

m
+ 2μ − �q2

2m+

)2
]
, (24)

where λω = 2m+r(μ − h + ω). In the above expression we
observe that ImF−1

0,R (ω, �q) may be nonzero only if ω > h − μ.
Thus, for values of h = hc > μ [35], where the phase transi-
tion occurs, damping is absent for low energies in the normal
phase.

The integrand in Eq. (24) is equal unity in the interval
[u−, u+] and zero otherwise. Only u± > 0 are physically rel-
evant. These values are obtained as

u± = m2

2

⎡
⎣(

A + 2B

m

)
±

√(
A + 2B

m

)2

−
(2B

m

)2
⎤
⎦, (25)

where A = ( | �q|
m+ )2 and B = ω + 2μ − �q2

2m+ . The above ex-

pression is real when ω � 1
r+1

�q2

2m+ − 2μ. As we find,
ImF−1

0,R (ω, �q) �= 0 iff [u−, u+] ∩ [0, λω] �= ∅, which divides
the (| �q|, ω) plane into three distinct regions. The first of them
(region 1) is defined by u+ � λω. Here Landau damping is
present and ImF−1

0,R (ω, �q) is given by

ImF−1
0,R [(ω, �q) ∈ region 1] = −m3/2

4π

√
ω + 2μ − 1

r + 1
�q2

2m+ .

(26)

Analogously, the second regime (region 2) is obtained from
the condition u− � λω < u+. In this situation damping is ac-
tive as well, but the form of ImF−1

0,R (ω, �q) reads

ImF−1
0,R [(ω, �q) ∈ region 2]

= − m+

8π | �q|

[
2m+r(μ − h + ω) − m

{
ζ

�q2

2m+ + ω + 2μ

− |�q|
m+

√
m

(
ω + 2μ − 1

r + 1
�q2

2m+

)}]
, (27)

where ζ = r−1
r+1 . The last regime (region 3) occurs whenever

λω < u−. Here ImF−1
0,R [(ω, �q) ∈ region 3] = 0 and Landau

damping is absent. The obtained results are schematically
summarized in the diagram of Fig. 4.
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FIG. 4. A schematic illustration of the (| �q|, ω) diagram at T =
0 showing distinct regions for which Landau damping is active or
absent in the normal phase.

The obtained picture has a transparent physical interpre-
tation. In our reasoning we identified two conditions: (a)
ω > h − μ and (b) ω � 1

r+1
�q2

2m+ − 2μ. Violation of any of
them implies that ImF−1

0,R (ω, �q) = 0. Recall that the quantum
phase transition takes place between a fully polarized gas
and the superfluid phase. Thus, “↓” particles are absent in
the normal phase at T = 0, which is implied by μ− < 0
for h > hc > μ. We may reformulate the condition (a) as
ω > |μ−| > 0, which means that damping may occur only
when the energy is high enough to introduce the “↓” particle
into the system. On the other hand, we may also restate the
condition (b) as ω � ξpair (�q) = �q2

2mpair
− μpair, where mpair =

m+ + m− = m+(1 + r) is the mass of a pair composed of “↑”
and “↓” particles, and μpair = μ+ + μ− = 2μ is its chemical
potential. Therefore, damping may be active only when the
excitation of a pair carrying momentum �q is achievable.

However, conditions (a) and (b) do not take into account
the momentum conservation, which leads to further restric-
tions of areas in which ImF−1

0,R (ω, �q) �= 0. In particular, the
step function in Eq. (24) inflicts values of ω and �q, which are
consistent with possible directions of the momentum given by
cos θ = �k · �q/|�k|| �q| ∈ [−1, 1].

We note that ImF−1
0,R (ω, �q) is a nonpositive function of ω

and | �q| in both regions where Landau damping is active. This
feature ensures that the spectral density function S0(ω, �q) is
non-negative for all values of ω and | �q|.

Notice that at | �q| small damping occurs for ω > 2h −
r−1
2r μ > 0, because hc > μ [35]. Therefore, in the proximity

of the quantum phase transition within the normal phase,
the damping terms do not appear in the low-frequency and
low-momentum expansion. As already emphasized, this situ-
ation is entirely different as compared to the symmetry-broken
phase (see Sec. II).

In the following Sec. IV we analyze the impact of the
Landau damping in the form discussed in Sec. II on the renor-
malization group flow in the vicinity of the quantum critical
point.

IV. RENORMALIZATION GROUP FLOW

We now focus on the situation in which the phase tran-
sition between the normal and uniform superfluid phases is
second order (and not multicritical). We examine fluctuation
effects within the renormalization group framework. We con-
nect to the Hertz-Millis theory [43,44] which originally was
formulated with reference to the symmetric phase and ad-
dressed magnetic phase transitions in itinerant Fermi systems.
An important insight of the Hertz-Millis theory is that the
(second-order) quantum phase transition at T = 0 belongs
to the universality class of the appropriate O(N )-symmetric
model in effective dimensionality D = d + z, where the dy-
namical exponent z takes the value z = 3 for instabilities
at ordering wave vector �Q = 0. The value of z stems from
Landau damping and the present situation is, from this per-
spective, not immediately obvious, since Landau damping is
present only in the symmetry-broken phase and the coefficient
of the term ∼|q0|

| �q| is proportional to ρ0 and therefore van-
ishes at the critical point. We further note that the quantum
critical point corresponds to a state which is ordered at the
level of the mean-field theory so that the Landau-damping
term is present in the entire (critical) renormalization group
flow and vanishes only for asymptotically low RG scales.
The Hertz-Millis theory is, on the other hand, formulated in
the symmetric phase. Below we employ a nonperturbative
renormalization group framework applicable to both symmet-
ric and symmetry-broken phases [47] and capturing both the
Gaussian and Wilson-Fisher fixed points. We show how the
expected quantum-classical crossover at T > 0 is accurately
recovered by our approach in the absence of Landau damping.
We subsequently include the Landau-damping term ∼ρ0

|q0|
| �q| .

Our results indicate that this leads to an obstruction of the
RG flow toward the Wilson-Fisher fixed point occurring at in-
termediate RG scales and point toward a possible occurrence
of a fluctuation-induced weakly first-order phase transition
driven by Landau damping of the longitudinal (σ ) mode. The
mechanism of destabilizing the quantum critical point active
here is entirely different from those studied before [46,54],
e.g., for the ferromagnetic transitions [67] or superconductors
[68,69].

We employ the one-particle-irreducible variant of non-
perturbative renormalization theory, taking the Wetterich
equation [70]

�̇ = 1

2

∫
q

(Ṙσ Gσ + ṘπGπ ) (28)

as the starting point. This framework is exceptionally conve-
nient for resolution of crossover phenomena due to multiple
fixed points governing the RG flow at distinct scales (see, e.g.,
Refs. [71–76]). Equation (28) describes the renormalization
group flow of the effective action � = �t [φ] upon reducing
the RG scale, implemented here as the momentum cutoff
� = �0et with t ∈ (−∞, 0) and �0 denoting the microscopic
momentum scale. The quantity � = �t [φ] thus continuously
connects the microscopic actionS[φ] = �t→0[φ] and the ther-
modynamic free energy F [φ] = �t→−∞[φ].

In the shorthand notation used in Eq. (28) the dot in-
dicates differentiation with respect to the logarithmic scale
t = ln (�/�0), i.e., Ẋ = ∂t X , the two-component real field
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φ is decomposed (compare Sec. II) into the longitudinal and
transverse modes φ(x) = φ0 + σ (x) + iπ (x) with φ0 chosen
real, and Rσ/π denotes the cutoff function added to the inverse
σ/π propagator to regularize the low-momentum fluctuations.
Finally, Gσ/π is the regularized σ/π propagator, obtained by
taking the second field derivative of the regularized action in
the σ/π direction. For a detailed exposition of the framework,
we refer to Refs. [77–80]. The approximation strategy taken
below is an adaptation of the framework developed in pre-
vious studies of magnetic phase transitions in Fermi systems
with Ising symmetry [47,81,82] and conventional Hertz-Millis
action. For the reason of the highly anisotropic propagator
obtained in the previous sections (Secs. II and III), we use
two different cutoff functions Rσ/π for the distinct directions.

We aim here at distilling the impact of the specific form
of the Landau-damping term on the quantum-critical scaling,
and for the sake of simplicity, we will neglect the off-diagonal
σ − π propagator. This term is absent for particle-hole sym-
metric systems and is supposed to scale to zero under RG
flow in the entire symmetry-broken phase [56]. In general, it
however influences some of the transport and thermodynamic
properties, such as the condensate compressibility [55].

With this simplified picture in mind, proceeding along the
standard track [77], we obtain the flow of the effective poten-
tial U (ρ) by evaluating the Wetterich equation [Eq. (28)] at a
constant field configuration. This yields

U̇ (ρ) = 1

2

∫
q
{Ṙσ [γσ (ρ)]−1 + Ṙπ [γπ (ρ)]−1}, (29)

where, within our parametrization, the inverse propagators are
given by

γσ (ρ) = Zσ �q2 + Z0
σ q2

0 + Lρ0
|q0|
| �q| + U ′(ρ) + 2ρU ′′(ρ) + Rσ

(30)

and

γπ (ρ) = Zπ �q2 + Z0
πq2

0 + U ′(ρ) + Rπ . (31)

In what follows, we parametrize the flowing effective potential
with the simple quartic form

U (ρ) = λ

2
(ρ − ρ0)2. (32)

In the present approximation, we also neglect the flow of the
gradient coefficients (both in the space and time directions).
This is equivalent to dropping the anomalous dimensions
(which are anyway small for the three-dimensional systems
studied here). In consequence, the RG flow is parametrized
by a set of only two flowing couplings (ρ0 and λ). In contexts
concerning quantum criticality in itinerant Fermi systems
(see, e.g., Ref. [82]) this simple approximation level captures
the relevant aspects of physics in dimensionality d = 3. Note
however that it is quite insufficient in d = 2, where the flow
of the Z factors and the related anomalous dimensions play a
prominent role.

We now extract the flow of ρ0 from d
dt U

′(ρ0) = ∂tU ′(ρ0) +
U ′′(ρ0)ρ̇0. Differentiating Eq. (29) we obtain

ρ̇0 = 1

2

∫
q

(
3Ṙσ γ −2

σ + Ṙπγ −2
π

)
, (33)

where we denoted γσ/π (ρ0) = γσ/π . The flow of the quartic
interaction coupling λ is obtained by taking the second ρ

derivative of Eq. (29) and evaluating at ρ = ρ0. This yields

λ̇ = λ2
∫

q

(
9Ṙσ γ −3

σ + Ṙπγ −3
π

)
. (34)

Note that since U ′(ρ0) = 0, putting ρ = ρ0 leads to a massless
π propagator γ −1

π [Eq. (31)]. The mass of the σ propagator
is on the other hand given by m2

σ = U ′(ρ0) + 2ρ0U ′′(ρ0) =
2λρ0. As concerns the cutoff: in the following calculation we
implement the direction-dependent Litim cutoff [83]

Rσ/π = Xσ/πθ (Xσ/π ), (35)

where

Xσ = Zσ (�2 − �q2) − Z0
σ q2

0 − Lρ0
|q0|
| �q| (36)

and

Xπ = Zπ (�2 − �q2) − Z0
πq2

0. (37)

With this convenient choice the integrals in the flow equations
for ρ0 and λ become effectively constrained to the regions
of the (q0, �q) space, where γσ and γπ are constant (i.e., q
independent), which yields the momentum integrals straight-
forward. In what follows, we use the set of variables rescaled
according to the canonical classical dimensions:

κ = Zπ�2−dρ0, u = Z−2
π �d−4λ, (38)

so that at T > 0 the flow manifestly reaches the (Wilson-
Fisher) fixed point if the initial condition for the flow is chosen
at the critical manifold. The right-hand sides of the flow equa-
tions are split into the classical (q0 = 0) and quantum (q0 �= 0)
contributions, so that

κ̇ = βcl
κ + βq,π

κ + βq,σ
κ , (39)

u̇ = βcl
u + βq,π

u + βq,σ
u . (40)

We additionally separated the quantum contributions from
the longitudinal (σ ) and transverse (π ) fluctuations [compare
Eqs. (33) and (34)]. The Matsubara summations occurring
in the quantum contributions must be carried our numeri-
cally. The explicit expressions for the flow equations are given
in the Appendix. The flow equations are written for arbitrary
dimensionality d; from now on however we restrict ourselves
to d = 3. As already mentioned, the present approximation
level is inadequate for the case d = 2 since the anomalous
dimensions are neglected. The critical singularity is controlled
by the Gaussian fixed point at T = 0 and by the classical
Wilson-Fisher fixed point for T > 0.

A. RG flow in absence of Landau damping

We now summarize the renormalization group flow ne-
glecting the Landau damping of the longitudinal mode. This
amounts to putting L = 0 in β

q,σ
κ and β

q,σ
u . The flow is ini-

tiated at s = −t = − ln(�/�0) = 0 with fixed temperature
T > 0 and given values of κ = κ0 > 0 and u = u0 > 0 deriv-
ing from the microscopic values. In the numerical solutions
presented below we put u0 = �0 = Zσ = Zπ = Z0

σ = Z0
π =
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FIG. 5. Renormalization flows of κ for a sequence of tempera-
tures: T = 10−4 (the uppermost curve), T = 10−3, T = 10−2, T =
10−1 (the lowermost curve) in the absence of Landau damping. The
intermediate regime of the flow is controlled by the Gaussian fixed
point, while the infrared sector (s large) is governed by the Wilson-
Fisher fixed point. The crossover scale scross, where the flow departs
from the Gaussian fixed point, diverges for T → 0. One generally
expects [44] scross ∼ − 1

z ln(T ). This is in full agreement with our
results with z = 1.0, as demonstrated by the inset plot.

1. Integrating the flow toward large positive values of s (cor-
responding to � → 0) we find either κ reaching zero at a
finite scale, indicating flow into the symmetric phase, or its
divergence for s large (corresponding to ρ0 converging to a
finite value), indicating the symmetry-broken state. By tuning
the system toward the phase transition, we observe the flow
of (κ, u) toward fixed-point values. The results for the flow
of κ are exhibited in Fig. 5 for a sequence of temperatures
approaching zero. The crossover scale, where the flow departs
from the Gaussian fixed point (governing the critical singu-
larity at T = 0) and flows toward the Wilson-Fisher fixed
point (controlling the critical singularity at T > 0) diverges
for T → 0+ according to scross ∼ − 1

z ln(T ) (see Ref. [44]). A
data fit gives z = 1.0 in full accord with the expected behav-
ior. The momentum range (0, scross) corresponds to the flow
regime dominated by the quantum (q0 �= 0) contributions,
while the range (scross,∞) is dominated by the classical (q0)
contribution to the flow equations.

We now present the results obtained for the critical line
Tc(κ0) by integrating the RG flow. The general expectation
[44] yields (for T low) the power-law behavior

Tc ∼ (
κ0 − κ

(0)
0

)ψ
with ψ = z

d + z − 2
. (41)

Note that ψ as given by this formula depends exclusively on
d and z and appears completely insensitive to the nature of
the symmetry-broken phase. Exemplary results for the critical
line, obtained by integrating the flow equations [Eqs. (39),
(40)] are presented in Fig. 6. The obtained power law yields
ψ = 0.5 in full agreement with the expected behavior with
z = 1 (ψ = 1/2). Also observe that the universal shape of
the Tc line is incompatible with the reentrant behavior quite
generically obtained at mean-field level (see the illustrative
Fig. 1, and, e.g., Ref. [35]).
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FIG. 6. The critical line evaluated from integrating the RG flow
in the absence of Landau damping (L = 0). The phase boundary fol-
lows a power law with ψ = 0.5 in full agreement with the prediction
of Eq. (41) with z = 1. In the inset we present the same data plotted
in linear scale.

The above calculation reproduces the anticipated picture of
quantum criticality upon dropping the Landau-damping term
in the flow equations. We emphasize the role of the dynamical
exponent, which governs both the Tc line and the quantum-
classical crossover scale. It is now our aim to investigate how
this picture becomes deformed if the Landau-damping con-
tribution to the σ -mode propagator (as found in the effective
action analyzed in Secs. II and III) is included.

B. RG flow in presence of Landau damping

We proceed by repeating the analysis of the previous sub-
section for nonzero Landau-damping coupling L. We solve the
flow equations [Eqs. (39) and (40)] following the procedure
of tuning κ0 toward its critical value for a sequence of tem-
peratures approaching zero. The quantum regime of the flow
is now governed by the interplay of the distinct contributions
(coming from the terms ∼q2

0 and ∼ρ0
|q0|
| �q| ). The analysis of

the flow of κ is depicted in Fig. 7 for a relatively small value
of L (= 0.1) and low temperature. The flow is superimposed
with the corresponding situation obtained at the same T (as
well as the remaining parameters) for L = 0. The dichotomy
procedure as described in the previous subsection leads to
identification of the two phases present in the system as well
as the phase boundary in the parameter space. The phase
transition is however not accompanied by the convergence of
the flow to the fixed point and the associated scale invariance.
This behavior may indicate a fluctuation-induced first-order
transition originating from Landau damping. The effect oc-
curs only for temperatures sufficiently low; at T higher we
find a continuous transition as before. This would imply the
presence of a tricritical point at a temperature Ttri in the phase
diagram. We note that for T > Ttri the system shows behavior
very similar to what we obtained for L = 0. The value of Ttri

increased with L and for T � Ttri the critical value of the
control parameter κ0 is practically independent of T , so that
the Tc line in the (κ0, T ) plane is a vertical straight line. The
obtained Tc line is plotted in Fig. 8 for a sequence of values
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FIG. 7. Renormalization flow of κ for T = 10−4 in the presence
of Landau damping with L = 0.1 (black points) superimposed with
the corresponding flow for L = 0 (light red points). The presence of
Landau damping obstructs the flow toward the fixed point. The phase
transition is still present (as signaled by κ either reaching zero, or
flowing to infinity), but the system does not exhibit scale invariance.
This indicates a first-order phase transition. The inset is the zoom of
the region where the RG trajectories separate.

of L. Clearly visible is the deviation from the scaling behavior
with z = 1 at low T .

Below the lowest-lying point in each of the plotted curves,
the critical value of κ0 is T -independent, so that ln(κ0 − κ

(0)
0 )

approaches −∞.
It is worth emphasizing at this point that in the stan-

dard situation pertinent to metallic quantum critical points
(where the coefficient of the Landau-damping term remains
finite under RG flow) the present nonperturbative RG frame-
work is fully consistent with the Hertz-Millis theory (see
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FIG. 8. The critical temperature as function of κ0 obtained for a
sequence of values of L. At high temperatures the Tc line follows
the power-law behavior with the exponent ψ = 1/2. A deviation
from this scaling occurs below a threshold value of T (which de-
pends on L). Below the lowest-lying point in each of the plotted
curves, the critical value of κ0 is T -independent, so that ln(κ0 − κ

(0)
0 )

approaches −∞.

Refs. [47,81,82,84]) and the scaling solution is robustly
reached both for z = 2 and z = 3. In addition, the nonpertur-
bative RG (even in relatively simple truncations) is capable of
addressing the thermal fluctuation effects beyond the Gaus-
sian level, and easily accounts for the anomalous dimensions
of the order-parameter field. As was analytically demon-
strated in Ref. [82] the nonperturbative RG flow equations
precisely recover the content of the Hertz-Millis equations
upon linearizing around the Gaussian fixed point at T = 0.
The presently addressed situation is however quite different,
since the Landau-damping coefficient is proportional to ρ0

and therefore, at the phase transition, scales to zero under
RG (as dictated by the flow equation for the order parame-
ter). This introduces a strong effect of renormalization of the
frequency/momentum dependencies of the propagator, which
in turn feed backs on the flow of the effective potential. The
resulting problem is in consequence intrinsically nonlinear
and cannot be treated within a (linearized) approach of the
Hertz-Millis type.

We close this section by remarking that the obtained devi-
ation from the quantum-critical scaling with z = 1, signaling
a possible first-order transition is visible only for very low
temperatures. We obtained no scaling regime characteristic
of z = 3. We finally point out that the damping-induced ob-
struction of the flow toward the Wilson-Fisher fixed point was
demonstrated here only within a very simple parametrization
of the flowing effective action and for a φ4-type initial condi-
tion. We can make no statement concerning the generality of
this phenomenon beyond this approximation level.

V. CONCLUSION AND OUTLOOK

In this paper we addressed two distinct aspects concerning
the superfluid phase transition in imbalanced Fermi mixtures.
By analyzing the structure of the effective action for the
order-parameter field, we have shown that for experimentally
realized mixtures and physically relevant sets of parameters,
the Lifshitz point located between the normal, FFLO-type,
and uniform superfluid phases may be tuned to zero tem-
perature. A resulting Lifshitz quantum critical point (or its
proximity) would present in dimensionality d = 3 a not-yet-
explored situation involving a potentially non-Gaussian phase
transition at temperature T = 0. This may have important
consequences for the system, which require further studies.
For example, the scaling shape of the Tc line might no longer
be described by Eq. (41), but instead be controlled by the
correlation length exponent ν akin to the case of the two-
dimensional quantum Ising model [85]. Note however that
there are two distinct critical exponents [38] (ν⊥ and ν‖)
characterizing the behavior of the correlation function at the
Lifshitz point.

We subsequently studied the pairing field propagator
across the superfluid phase transition (not necessarily of
Lifshitz type). We established a characteristic feature of
the presently addressed system which concerns the Lan-
dau damping. This turns out to occur exclusively on the
symmetry-broken side of the phase transition and affect only
the longitudinal (σ ) mode. Landau damping manifests itself
by the presence of a term ∼ρ0

|q0|
| �q| in the inverse σ propa-

gator. With the aim of assessing the role of this term, we
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performed a renormalization group calculation. Our results
indicate an obstruction of the RG flow toward the scaling
solution (Wilson-Fisher fixed point). Physically, this indicates
a possibility of obtaining a weakly first-order transition due to
the coupling between the order-parameter mode and fermionic
excitations (effectively described by the damping term). The
obtained instability occurs only at very low temperatures.
Upon increasing T a quantum-critical scaling characteristic
of the dynamical exponent z = 1 is recovered, so that Landau
damping has no impact on the physical properties. In a real-
istic situation and away from the Lifshitz point scenario, one
may therefore expect a scaling behavior resembling the d = 3
quantum Ising model, but cutoff at low T . A similar instability
may also affect the quantum Lifshitz point analyzed in the first
part of the paper.

The recently realized Fermi mixtures involving large mass
imbalance constitute candidates for an experimental real-
ization of the situation analyzed in the present paper. One

promising candidate is the mixture of 161Dy and 40K atoms
[17,18], which, due to the existence of a broad Feshbach
resonance [86], can be tuned more flexibly than the earlier
studied mixtures of 6Li and 40K atoms [13–16].
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APPENDIX

Below we give explicit expressions for the distinct contri-
butions occurring in the flow equations [Eqs. (39) and (40)].
For the flow of κ we obtained

βcl
κ = (2 − d )κ + Ad T

d

(
3z

(z + m̃2
σ )2

+ 1

)
, (A1)

βq,π
κ = 2Ad T

d

q̃π
0∑

q0>0

[
yM
π (q0)

]d/2
, (A2)

βq,σ
κ = 3Ad T

(z + m̃2
σ )2

q̃σ
0∑

q0>0

(
2z

d

{[
yM
σ (q0)

]d/2 − [ym
σ (q0)]d/2} − q0LZ−2

π �d−5

d − 1
[κ̇ + (d − 2)κ]

{[
yM
σ (q0)

](d−1)/2 − [ym
σ (q0)](d−1)/2})

,

(A3)

where Ad = Sd−1

(2π )d with Sd−1 denoting the surface area of the (d − 1)-dimensional unit sphere, z = Zσ /Zπ , m̃2
σ = 2κu, yM

π (q0) =
1 − Z0

π

Zπ �2 q2
0, while yM/m

σ (q0) are the (positive) roots of the equation

y3/2 −
(

1 − Z0
σ

Zσ�2
q2

0

)
y1/2 + Lρ0

Zσ�3
|q0| = 0. (A4)

The Matsubara summation for the π contribution [Eq. (A2)] runs from q0 = 2πT up to q̃π
0 =

√
Zπ

Z0
π
�. For the σ contribution

[Eq. (A3)], the summation over q0 = 2nπT (n ∈ N+) is restricted to values fulfilling the inequality

q2
0

Z0
σ

Zσ�2
+ 3(2)−2/3

( Lρ0

Zσ�3
q0

)2/3

− 1 < 0. (A5)

The largest value of q0 fulfilling this condition is identified as q̃σ
0 .

The corresponding contributions to the flow of the interaction coupling u may be expressed as follows:

βcl
u = (4 − d )u + 2Ad T

d

(
9z

(z + m̃2
σ )3

+ 1

)
u2, (A6)

βq,π
u = 2u2βq,π

κ , (A7)

βq,σ
u = 6u2

z + m̃2
σ

βq,σ
κ . (A8)
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