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Multi-delay complexity collapse

S. Kamyar Tavakoli 1,* and André Longtin 1,2,†

1Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N6N5, Canada.
2Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario Canada

(Received 11 March 2020; revised 16 August 2020; accepted 18 August 2020; published 24 September 2020)

Increasing the number of delays in nonlinear dynamical systems is generally assumed to lead to higher
complexity, but “distributed delay” systems with an infinite number of delays to lesser complexity. This paradox
is studied here using the Lang-Kobayashi laser model by first extending a recent method for Lyapunov exponent
estimation from single to multiple delays. The Kolmogorov-Sinai entropy, permutation entropy, and time delay
signature suppression initially increase with number of delays as the dynamics become more hyperchaotic. At a
large number of delays that depends on the feedback strength, this trend reverses, leading to simpler dynamics.
The phenomenon is also found in other delay equations, such as the Mackey-Glass system. A similar collapse is
uncovered in the distributed delay case with broadening delay kernel.

DOI: 10.1103/PhysRevResearch.2.033485

Delay Differential Equations (DDEs) are a class of dynam-
ical systems governed by some memory of the past. They
exhibit a rich array of behaviors in a broad range of appli-
cations [1–3]. Their multiple timescales [4] can be exploited
for the generation of oscillatory [5] and chaotic time series,
including the recently discovered laminar chaos [6], as well
as for stabilizing complex dynamics [7] and unstable steady
states [8]. What role plays the number of delays M? Adding
a second delay has been shown experimentally to induce
hyperchaotic behavior [9]. More recently, fiber gratings in
semiconductor lasers that synthesize large numbers of ran-
dom delays have been used to produce strongly hyperchaotic
dynamics with application to random number generation and
secure chaos communication [10].

In contrast, stabilizing effects can also arise with multiple
delays. Second and third delays added to the Lang-Kobayashi
(LK) laser system can produce continuous-wave dynamics
with enhanced stability [11]. A second delay can stabilize un-
stable periodic orbits in the Mackey-Glass (MG) system [12],
and many feedback terms with delays that are integer multi-
ples of a fixed delay can control unstable periodic orbits [13].
Feedback control of Chua’s circuit with two different delays
can replace chaos by simpler stabilized steady states [14].
Dependence on an infinite number of past states defines dis-
tributed delay systems with integrodifferential dynamics that
are also generally “simpler”—i.e., with a less positive spec-
trum of Lyapunov exponents (LEs) and smaller dynamical
entropy especially when the feedback kernel is broad (see,
e.g., Ref. [15]).
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Although details matter to some extent, a general paradox
does emerge: More delays can lead to stronger chaos, but a
large number of delays—and sometimes even two delays—
can lead to simpler dynamics. This M-dependent transition is
not well understood, and our paper studies this paradox using
a semiconductor laser model with many delays. Such lasers
with optical feedback are useful in our context due to their
ability to produce high-dimensional hyperchaotic behavior.
Modes with frequency less than the characteristic frequency
of the laser in isolation (i.e., without feedback) can destabilize
the fixed point through a Hopf bifurcation, yielding a limit
cycle, then a torus, and eventually chaos and hyperchaos [16].

Information about the presence of a time delay can
be extracted from the chaotic time series by the auto-
correlation function (ACF), delayed mutual information or
permutation entropy [17]. Setups involving optical injection,
rings [18], or phase conjugate optical feedback mirrors [19]
have been shown numerically and experimentally to suppress
the time-delay signature (TDS) in the ACF, thereby increas-
ing unpredictability. TDS suppression can be achieved with
multiple random (but fixed) delays, a useful property for
random number generation [10,20]. To understand the com-
plexity transition at higher M, we make use of the TDS from
the ACF, but also estimate dynamical invariants, including
Lyapunov exponents through an extension of a method for a
single delay [21]. The dimensionless laser Lang-Kobayashi
semiconductor laser model with multiple discrete delays can
be expressed as

dE (t )

dt
= (1 + iα)

[
GE [N (t ) − N0]

1 + ε|E (t )|2 − γE

]
E (t )

+ κ

M

M∑
i=1

E (t − τi )e
−iωτi , (1a)

dN (t )

dt
= γN [JrNth − N (t )] − GN [N (t ) − N0]

1 + ε|E (t )|2 |E (t )|2, (1b)

where E (t ) is the slowly varying complex electric field, N (t )
is the carrier density, M is the number of delays, and κ is the
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TABLE I. Parameter values used for the simulation of the Lang-
Kobayashi model Eq. (1).

Parameter Description Value

α Linewidth enhancement factor 5
ω The frequency of the solitary laser 1.226 × 106

Jr The pumping factor 1.05
N0 The transparency carrier density 81.2585
GE Differential gain for electric-field amplitude 13.8447
GN The gain coefficient for carrier density 0.26156
ε The gain saturation 0.00872
γN Inverse of carrier lifetime 0.490196
γE Inverse of photon lifetime 259.471

for the electric field
λ Wavelength 1.537 × 10−6 m

feedback strength. The τi are the delay times. The intrinsic
relaxation oscillation period of this system is τro = 0.75. The
values and descriptions of the parameters used in Eq. (1) are
presented in Table I. We assume that the random fiber grating
consists of M segments, each with length half of L = 1.8 mm.
The delays are picked randomly for each segment as

τi = τavg − (i − 1)L

2c̄
− 	τi, i odd,

τi = τavg + (i − 2)L

2c̄
+ 	τi, i even, (2)

where i is from one up to the maximum number of delays M,
with τavg > (M + 1)L/(2c̄) is randomly chosen from [0, L

c̄ ],
the average delay is τavg = 5 and c̄ = cT̄ where c is the speed
of light and T̄ normalization constant for time which is 1 ns.
Time series were obtained using a fourth-order Runge-Kutta

FIG. 1. Increase followed by decrease in dynamical complex-
ity with increasing number of delays. Intensity-carrier number
phase plots (left), ACF of the intensity [I (t ) = |E (t )|2] (center),
and intensity time series (right) for (from top to bottom) M =
1, 20, 160, 180, 1000. The feedback strength is κ = 10.

FIG. 2. Broadening of the central peak as the number of delays
M increases for the LK model.

routine with a time-step 4 × 10−4. Figure 1 shows the inter-
play of the different timescales with M for fixed feedback
strength κ . For the single delay case, the ACF displays a
sharp peak at multiples of the delay [Fig. 1(b)]. For 20 delays,
Fig. 1(e) displays no time-delay signature around the time
delays, however, peaks around τro become more pronounced.

For large M, such as 160 delays in Fig. 1(g), the attractor
appears like a torus, and the ACF displays two components
with timescales of τavg and τro. This is reminiscent of the
single-delay weak feedback case where the external cavity
causes periodic oscillations. The time delays still affect the
dynamics; their ACF signatures are seen around lag τavg with
contributions of similar magnitude to that of the intrinsic
response. M = 180 leads to a limit cycle with period τro, and
only the fast intrinsic frequency is left. Increasing M to 1000
leads to a fixed point in Fig. 1(m).

The central peak at lag 0 broadens as the number of delays
increases, and it is modulated by oscillations with a period
near the intrinsic period τro (Fig. 2). It is known [22] that
such oscillations are visible in ACF peaks when the feedback
strength is not too high; otherwise the ACF peaks are too
narrow to resolve those oscillations. In this sense, increasing
the number of delays to 20 seems to have a similar effect to
lowering the coupling strength. But, as we will see below, the
complexity measures behave nonmonotonically as a function
of M in this range of coupling strengths.

We can rewrite Eq. (1a) as a function of optical phase φ

and intensity I = |E |2,

dI (t )

dt
= 2

[
GE [N (t )−N0]

1 + εI (t )
−γE

]
I (t )+ 2κ

M

M∑
i=1

√
I (t )I (t −τi )

× cos{ωτi + 2π [φ(t ) − φ(t − τi )]}, (3a)

dφ(t )

dt
= α

2π

[
GE [N (t ) − N0]

1+εI (t )
− γE

]
− κ

2πM

M∑
i=1

√
I (t −τi )

I (t )

× sin{ωτi + 2π [φ(t ) − φ(t − τi )]}. (3b)
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FIG. 3. Probability density of the total feedback term in Eq. (3a)
for different number of delays.

The numerically estimated densities of the feedback term
in Eq. (3a) are shown in Fig. 3. The standard deviation clearly
decreases with increasing M, and the shape goes from uni-
modal to multimodal. The density appears almost skewed
Gaussian for M = 20, but this is generally not the case.

A small value of the ACF at a lag around the mean time
delay is suggestive of a parameter regime that is more strongly
chaotic and vice versa. This intuition arises because this sim-
ple ACF measure is inversely proportional to the TDS, which
generally decreases the stronger the chaos is—although no
direct theoretical link has been established between low TDS
as measured in the ACF and positive sub-Lyapunov exponents
(see Ref. [23]). We thus plotted the maximal peak of the
ACF around the mean delay for different M and κ values
in Fig. 4(a). Blue (dark gray) regions, starting at M = 1 and
κ = 3, correspond to regimes where TDS is small, whereas
red (intermediate gray) regions, starting at M = 5 and κ = 2,
reflect torus, limit cycle, and fixed point behavior. Increasing

FIG. 4. (a) Impact of feedback strength κ and number of delays
M on the maximal peak height of the ACF around the mean time
delay for multiple discrete delays. (b) Impact of κ and width of the
delay kernel on the maximal peak height of the ACF around the mean
time delay in the distributed delay case.

FIG. 5. Uniform distributions (left) and attractors in the
intensity-carrier number subspace (right) for total width of the delay
kernel equal to (from top to bottom) σ = 0.05, 0.072, 0.152 and 0.25
for κ = 10.

κ at fixed M, first the value of this maximal peak decreases,
corresponding to transitions from fixed point to limit cycle
to chaos, until it reaches a minimum. In this low-signature
regime, the dominant time scale is the intrinsic response of the
laser. For larger M, however, a stronger feedback coefficient
is needed to enter the chaotic regime, suggestive of relatively
simpler dynamics for large M.

When the number of delays become infinite, the state of the
system depends on a continuum of past states. Such ecologi-
cal [24] or neural feedback [15] distributed delay differential
systems are known to have simpler dynamics, especially when
the delay kernel is broad. They can be expressed using inte-
grodelay differential equations,

dE

dt
=

∫ ∞

0
g(τ )F [N (t ), E (t ), E (t − τ )]dτ, (4)

where g(τ ) denotes the kernel which must satisfy∫ ∞
0 g(τ )dτ = 1. Here, we used the uniform distribution

for g(τ ), F [N (t ), E (t ), E (t − τ )] is the right-hand side of
Eq. (1a), and N (t ) evolves as in Eq. (1b). The maximum
peak of the ACF near τavg for different widths of the delay
distribution σ and feedback strength are depicted in Fig. 4(b).
The periodic structures in Fig. 4(b) show that semiconductor
laser dynamics with distributed delays keep transitioning
between states of high and low TDS, until no more chaos
exists (σ � 0.12). These structures occur when the width
of the distribution (σ ) times ω is approximately 2nπ where
n is a positive integer. In this case, the coupling between
delayed terms and the current state requires a very strong
feedback coefficient since the sum of the exp(ωτi ) factors is a
very small value. Figure 5 shows the collapse of complexity
for this distributed LK model for increasingly broad delay
kernels, i.e., for a larger range of delays. Note that simulating
these dynamics involves a fixed discretization of the delay
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kernel set here to the integration time step; the trapezoidal
rule was used for the integral.

Calculation of the Kolmogorov-Sinai (KS) entropy can
generally be used to quantify the unpredictability of the mo-
tion since it measures the average information loss rate. It
can be computed by summation of all the positive Lyapunov
exponents, but the estimation of the Lyapunov spectrum for
multiple delays is an open problem. Here, we resolve this
issue by converting the multidelay DDE to mt + 1 ordinary
differential equations [21],

u′
0(t ) = f [x(t ), x(t − τ1), . . . , x(t − τM )],

u′
k (t ) =

mt∑
j=0

dk ju j (t ), k = 1, . . . , mt , (5)

where the u j (t )’s are functions defined on the Cheby-
shev nodes θi j in the interval between x(t ) and x(t −
τM ), f [x(t ), . . . , x(t − τM )] is the right-hand side of Eqs. (1a)
and τM is defined in Eq. (3). The quantity mt is defined further
below. The mi + 1 Chebyshev nodes on each of the M inter-
vals (τi−1, τi ) between successive delay pairs in the discrete
delay distribution are defined as

θi j = (τi − τi−1)

2
cos

(
jπ

mi

)
− (τi + τi−1)

2
,

i = 1, . . . , M, j = 0, . . . , mi. (6)

This formula shows that the nodes between each pair of delays
are spaced differently in a manner that depends on the mi

values. It should be noted that only the evolution of u0(t )
depends on the delayed variable values x(t − τi ). The dk j’s are
the elements of the Chebyshev differentiation matrix. There
are mi + 1 nodes between delays τi and τi−1. The mi values
can be determined by numerically solving [25](

τ1 − τ0

m1

)m1

=
(

τ2 − τ1

m2

)m2

= · · · =
(

τM − τM−1

mM

)mM

,

(7)
in such a way that

∑M
i=1 mi = mt and τ0 = 0. We calculate the

Lyapunov exponents from the evolution of the state vectors for
the associated linearized differential equations of Eq. (6) with
reorthogonalization after each time step using the modified
Gram-Schmidt method [26,27].

Lyapunov exponents have not been computed previously
for the multidelay LK model using this method, nor have
they been estimated experimentally, and thus it is not possi-
ble to independently validate our new method for estimating
Lyapunov exponents. We can, nevertheless, get a good de-
gree of confidence by checking that it reproduces known
exponent values when restricted to the single delay case. We
plotted the four largest Lyapunov exponents in Fig. 6(a) for
the LK model with a single delay in the weak chaos regime
(at high feedback strength). We can see the dependency of
the Lyapunov exponents on the time delay. As mentioned in
Ref. [23], using a larger delay makes the Lyapunov exponents
smaller such that after a limit, λmτ becomes almost constant
where λm is the maximal Lyapunov exponent. The effect of
feedback strength κ on these maximum Lyapunov exponents
is shown in Fig. 6(b). The highest value of the maximal LE
is found for κ = 13. Further increasing the feedback strength

FIG. 6. The four largest LEs (a) versus the time-delay τ with
fixed feedback strength κ = 35, and (b) versus κ for fixed time-delay
τ = 2. The LK model here has only a single delay.

decreases these four maximal Lyapunov exponents, and they
also get closer to each other. Parameters used in Eq. (1) for
Figs. 6 and 7 are taken from Ref. [28] in order to compare the
values obtained for the LK model. We found a good match
between the Lyapunov exponents calculated in Ref. [28] and
we further extended the simulation for higher feedback coef-
ficients. Namely, to compare some values, we got λm = 0.44
and λm = 2.43 for κ = 3.4 and κ = 7.8, respectively, whereas
the values found in Ref. [28] were approximately 0.43 and
2.5.

We can obtain further validation using another test where
a second feedback pathway with a different delay (τ2 = 1.4)
is added to the single delay case above (τ1 = 2) and check
the behavior of the exponents as the strength of the second
pathway becomes small. Specifically, instead of normalizing
the feedback strength in Eq. (1) by the usual constant factor
1/M, we assumed that each delayed feedback pathway has
its own weight wi which is multiplied by κ . We performed
the calculation for a two-delay system. In the first case, we set
w1 = w2 = 0.5. We see, in Fig. 7(a), that the largest Lyapunov
exponent occurs for κ = 19, that this value is larger than in
the single delay case Fig. 6(b) and that the exponents again
converge for larger values of κ . In the second case shown in

FIG. 7. The four largest Lyapunov exponents versus feedback
strength for a configuration with two delayed feedback pathways.
The delays are τ1 = 2 and τ2 = 1.4. (a) Both pathways have the same
weight: w1 = w2 = 0.5. (b) Pathway weights are asymmetric with
w1 = 0.95, w2 = 0.05. The upper curve in (b) is close to the upper
curve in Fig. 6(b). This is one validation of the Lyapunov exponent
estimation method: the spectrum for two delays converges to that for
the larger delay on its own when that larger delay pathway dominates.
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FIG. 8. KS entropy (a) as a function of the number of delays
when the feedback strength is fixed, and (b) as a function of the
feedback strength when the number of delays is fixed.

Fig. 7(b), we weaken the second delayed feedback by setting
w1 = 0.95 and w2 = 0.05. The maximum Lyapunov exponent
now occurs for a smaller κ; in fact, the curve is seen to con-
verge to the one in Fig. 6(b). In other words, when the shorter
delayed feedback pathway makes a very weak contribution to
the dynamics, the system behaves dynamically very closely
to the single delayed LK model in Fig. 6, an intuition that is
reflected in our exponent estimations.

The KS entropy is plotted versus M and κ in Fig. 8 using
parameter values in Table I and τavg = 5. One sees that for low
κ , increasing M brings the KS entropy to zero as the dynamics
transition from hyperchaos to limit cycle. There is a small
remnant of chaos even for M = 16 for which the entropy is
0.3 (κ = 2); it is essentially zero for M = 40. For larger κ , the
entropy is still relatively high at M = 40 but exhibits the key
decreasing trend that qualitatively agrees with Fig. 1. Numer-
ical calculation of entropies for the large M values in Fig. 1
are prohibitive, but the slow decay seen in Fig. 8(a) suggests
that simpler dynamics may, in fact, consist of a small scale
chaotic attractor with a simple (e.g., limit cycle) skeleton. For
a fixed number of delays, increasing κ first brings on a strong
chaos regime (unpredictability increases), followed by a weak
chaos regime (unpredictability decreases) [Fig. 8(b)]. These
notions were first introduced in Ref. [23]: for strong chaos,
the nonlinearity due to the relaxation oscillation is high, and
for weak chaos, the feedback strength is either high or low.
It can be seen that for more delays, a higher KS entropy can
be obtained. However, the starting entropy values for small κ

shift rightward for larger M, i.e., predictability increases, and
the motion is simpler.

We also calculated permutation entropy (PE) of the inten-
sity time series to study the dependency of the complexity
(entropy production) on M and κ [29]. Since the mean time
delay is approximately the same for any M, we used the time
delay for the single delay case in Fig. 1 as the embedding
delay. PE can take values between 0 and maximal complexity
1. In agreement with the analyses up to now, Fig. 9(a) shows
that PE is a nonmonotonic function of M when κ is sufficiently
large, although the decrease is very slow at large M. We can
see in Fig. 9(b) that, the smaller M gets, the weaker κ must be
to reach high complexity. But the ordering of the curves with
M inverses at stronger feedback like for the KS entropy, with
a stronger κ being needed to reach higher values of PE.

FIG. 9. Permutation entropy (a) as a function of the number of
delays when the feedback strength is fixed, and (b) as a function of
the feedback strength when the number of delays is fixed.

Whereas increasing M in the discrete delay case or the
kernel’s width in the distributed delay case, the mean and
standard deviation of the feedback term [last term in Eq. (3a)]
decreases (Fig. 3). This is not surprising for the LK system
where the sum of harmonic functions at random phases in the
numerator is overtaken by the 1

M normalization factor. As M
increases, the density of the feedback fluctuations that was
unimodal at low M becomes more U-shaped, similar to that
for a sine wave, and narrows as well. The intuitive picture
offered by the complexity collapse is one where large M
delayed dynamics increasingly resemble those of a periodi-
cally driven, nondelayed, and underdamped stochastic system
with small residual chaotic fluctuations thickening apparently
simple limit cycles [Fig. 1(g)]; this analogy will be pursued
elsewhere.

We also observed the complexity collapse with M in the
Ikeda model after an initial increase (not shown). Next, to
illustrate the generality of this multidelay complexity collapse
phenomenon, we turn to its investigation in a nonlinear delay-
differential system where the flow does not contain harmonic
functions, in contrast to, e.g., the LK and Ikeda systems.
Specifically, we consider the MG model governed by

dx(t )

dt
= −γ x(t ) + β

M

M∑
i=1

x(t − τi )

1 + x(t − τi )10
. (8)

Here, we set γ = 1, β = 2, and τavg = 17. The discrete de-
lays are chosen in the same way as for the LK model above:
new delays required for a higher value of M are chosen ran-
domly from the distribution and added to the delays used in
the simulation for the previous lower value of M. We see,
in Fig. 10, that, for a sufficiently large M, simple oscillatory
behavior arises.

The feedback function then has a multimodal stationary
density, and the correlation time of the feedback function,
i.e., the first time when the ACF of the feedback equals 1/e
of its maximum at lag 0, increases. Figure 11(a) shows the
behavior of the correlation time versus M. After M = 40, a
monotone increase in the correlation time with M is observed
until around M = 705 at which point it begins a rapid drop
by about 10%. Figure 11(b) displays the behavior of the
permutation entropy versus M, and a sharp drop is also seen
around M = 705. The dynamics beyond the drop display a
moderately shorter correlation time and a significantly lower
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FIG. 10. Attractor evolution of the Mackey-Glass system for an
increasing number of delays. Here, x(t ) describes the current state,
whereas x(t − τavg) refers to the state at the average time delay in
the past. Simplification of the dynamics occurs as for the Lang-
Kobayashi model at a large number of delays.

entropy that is compatible with what is seen in the phase
plots of Fig. 10. In contrast to the LK model, however, the
dynamical complexity in the MG system does not increase
upon adding delays starting at M = 1 or, at least, not for these
parameter settings.

In conclusion, we found a limiting number of discrete
feedback delays for the LK model beyond which the com-
plexity gradually collapses to simpler motion, characteristic
of distributed delays with sufficiently broad memory ker-
nels. Adding delays causes more interference pathways for
the feedback light, enhancing the relaxation oscillation, and
lowering the TDS. This oscillation eventually bifurcates to a

FIG. 11. (a) Correlation time and (b) permutation entropy for
Mackey-Glass versus the number of delays. As in the attractor plots
for M < 705, high complexity can be observed. A sudden complex-
ity collapse occurs at M = 705.

stable fixed point. This phenomenon appears as a generic fea-
ture of multidelay dynamical systems and likely of networks
with large numbers of delays, and its origin may be linked to
the low effective dimension observed in stochastic distributed
delay systems [30]. Multidelay nonlinear systems may, thus,
paradoxically exhibit simple behavior. A differential delay
system owes its complexity, in part, to the continuous per-
turbations that the nondelayed system receives from delayed
feedback at a specific time in the past relative to the present,
i.e., to the underlying dynamics of a discrete-time nonlinear
map. Adding more delays at different times amounts to at-
tenuating this discrete nature of these perturbations thereby
causing a reversion to simpler dynamics. Our paper highlights
this progressive loss of complexity, which can, in fact, include
steep drops as in the MG case.

The authors thank the Natural Sciences and Engineering
Research Council of Canada (NSERC) for financially sup-
porting this research.
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